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ABSTRACT

When retention measurements are available for a set of solutes on different stationary phases, with varying mobile
phase compositions, the resulting data set can be represented by a three-way array Models that descnbe the systematic
variation 1n this traming set sufficiently, can be used to calibrate a new stationary phase Two modeis are tested for this
purpose three-way partial least squares and parallel factor analysis

One of the problems with the application of
reversed-phase liquid chromatographic methods is
the unsatisfactory reproducibility of materials for
stationary phases. The capacity factor for a speci-
fied solute, measured for a specified mobile phase
composition, varies between different stationary
phase materials of the same type [1,2]. Even sta-
tionary phases of the same brand differ between
the batches of the same material [3]. Especially in
the area of optimization of mobile phases, this
phenomenon is important; an optimized sep-
aration cannot be reproduced on a new stationary
phase [4].

Calibration of a new stationary phase is there-
fore needed. In this context, calibration is defined
as the transfer of the retention value of a solute
from one system to another, in particular from
one stationary phase to another. Examples of a
calibration procedure based on the measurements
of specially chosen solutes (markers) on the new
stationary phase, were given by Smilde et al. {5,6].
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Latent-variable modelling has made a prom-
ising contribution to multivariate calibration [5-
10]. Recently, three-way methods of data analysis,
like multi-way principal components (PC) and
partial least-squares (PLS) analyses [11,12],
tensorial calibration [13,14], and three-mode fac-
tor analysis [15], have proved to be useful in the
modelling of chemical data. A convenient survey
of methods for multi-way data analysis has been
given by Law et al. [16].

THEORY

Models for two-way arrays

Here, bold lower-case characters are used for
column vectors (one-way arrays), bold capitals for
two-way matrices (two-way arrays) and barred
bold capitals for three-way matrices (three-way
arrays). The capitals I, J and K are reserved to
indicate the number of levels 1n the different modes
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(directions) in the models and D indicates the
number of components in the models.

It is assumed that the data set under investiga-
tion can be represented by the matrix X (I X J). A
bilinear model of the data in this matrix X is

%
M

= LaPa, + e, (=1,...,1; y=1,...,J)
d=1
(1)
or
X=4p;+...+tppp+E=TP'+E (1a)

where D is the number of components in the
model, E has typical element e, t,=(t14-..,
ta)'s Pa= (Pars---» de?_, T=(t,....1p) 15 an (I
X D) matrx (usually called the score matrix), and
P=(p.,.-.,pp) 15 a (JXD) matrix (usually
called the loading matrix). For simplicity, it 1s
assumed that x,, 1s a realization from an unspeci-
fied distribution and ¢, p,, are estimates of the
corresponding population parameters. Depending
on the assumptions made with regard to the error

terms ¢

werls €, .

principal components or factor analysis model. In
applications, T and P are usually chosen to mini-
mize the Frobenius norm of E and such that
P’'P =17 and T'T is diagonal. Because each term

with residuals e Ean. 1 describes a

VILID TeSIQuAls 1 =4 AOSCTIDES

, .
t,p; has rank one, Model 1a is seen to be a

successive rank-one approximatlon of X.

Models for three-way arrays with unfolding

It 1s assumed that the data can be arranged ina
three-way array X
where the data set used here is depicted. One of
the possible ways to generalize Model 1 in the case

of a three-way array X is given by

An avamnla 1c aivan 1
. Al LCAaalipiv is siviil mn 1 15 i,

D
Xy L’:de,k*e
d=1
(1=1 I j=1,...,J; k=1 K) (2
Y ooy I e (2)
or
X=t,®P +...+t,®8P,=T-®P+E  (2a)
where td=(t1d,...,t£,)', T=(t,...,1p), X has

typical element x, ,, E has typical element e, , P,
has typical element p,, and P 1s a three-way
matrix with dimensions (D X J X K), with P, the
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Fig 1 The arrangement of the measurements Sixteen solutes
(Sol.) are measured for nine mobile phase compositions (M Ph )
on five stationary phases (S.Ph.1 to S.Ph 5).

first horizontal shee in P and P, the final one. For
notational details, Wold et al [11] shonld be con-
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sulted. The typical element of t,®P, 18 1,4
Because t, ® P, is a three-way array, Model 2a is
again a successive approximation of X. In order to

make the generalization meaningful, t, and P, are

t‘n]r\nlntpr] cnr\h ﬂ'\af T T 1S rhqﬁnnal Pdpd I for

every d=1,..., D and the Frobemus norm of Eis
muntmized. With this generalization, the idea of
bilinearity is not extended; Model 2 is not a
trilinear model [16].

Wald at al 111 olr\r\“ynd that tha ‘rol‘inn nf

Wold et al. [11] showed that the values of ¢,
and P, can be estimated by unfolding the data
cube X. The unfolding can, of course, be done 1n
different directions. That direction which is re-
lated to the objects should remain intact and
projected onto the t,; vectors. In the present exam-
ple, the stationary phases are regarded as objects.
The unfolding is done by placing the front slice of
X (a 5 X 16 matrix) in the farthest left part of the
unfolded 5 X (16 X9)=15 %144 X matrix. The
second slice of X is placed to the right of the first
slice in X and so on. For illustrative details, Wold
et al. [11] should be consulted. For obvious rea-
sons, the generalization (Model 2) 1s here called
three-way prinapal component analysis with un-
folding or, briefly, unfolded PCA.

A special case of the above model is ap-
propriate when a distinction between dependent
and independent variables can be made in those
modes of the three-way array other than the object
mode. This leads to a generalization of PLS.

It is assumed that four solutes measured at four

mobile phase compositions are sufficient to pre-
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Fig. 2 The three-way PLS model visualized. The retention values of the four markers (Sol. 1 to 4), measured at four mobile phase
compositions (M Ph.1 to 4) on stationary phases 1 to 5 constitute the X(MaMPh) block. All other retention values measured on the
five stationary phase are gathered in X(NMaMPh) The matrices P, W, and Q are explained 1n the text, as well as 1 X(MaMPh),,.,,
contains the measured retention values of the four markers for the selected four mobile-phase compositions on the new stationary
phase (S Ph. ,.,,) X(NMaMPh),,, contains the predicted values of all other solute/ mobile-phase combinations on the new stationary

phase

dict the retention for all other solute / mobile phase
combinations. The retention values of the selected
solutes [the markers (Ma)] at the selected mobile
phase (MPh) compositions are gathered in X
(MaMPh) and, without loss of generality, the four
markers are indexed with yj=1, 2, 3,4 and the
selected mobile phase compositions with &=
1, 2, 3, 4. The non-selected markers (NMa),/mo-
bile phase combinations are gathered in X(NMa-
MPh) with the appropriate j, k index combina-
tions. Figure 2 shows both data cubes, together
with the model parameters for one PLS dimen-
sion. The following model is estimated:

D
x(MaMPh) . = E LaPajp+ e,
d=1
(,‘=1’___,[; _],k=1,...,4) (3)
D
x(NMaMPh), , = Z Ladamw + ik
d=1

(i=1,....1;, j, k#1,...,4)

or

X(MaMPh) =T+ ® P+ E

X(NMaMPh) =T-® Q+F (32)

where T is a (/ X D) matrix with typical element
t.4- The product ® and the three-way matrices P,
Q. E, and F are defined analogously to Eqn. 2a.
When both the three-way arrays, X(MaMPh) and
X(NMaMPh), are unfolded in the direction which
leaves the first mode intact, the results are as
shown in Fig. 3. The process of unfolding was
explained above. By means of ordinary PLS calcu-
lations [11], the parameters ¢,;, p;, and g,, of
Model 3 can be estimated. For the estimation of
the ¢, parameters, use is made of weighting
parameters w, , for one PLS dimension gathered
in W, which has the same dimensions as P. This
three-way PLS is here called unfolded PLS, for
obvious reasons.

When a new stationary phase becomes availa-
ble, the retention values of the markers, for the
previously selected mobile phase compositions,
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Fig. 3 The unfolding of both data cubes in Fig. 2. The numbers 1/1 indicate the retention values of the first marker for the first
selected mobile phase composition, hkewise 4 /4 1s the index for the retention value of the fourth marker with the fourth selected
mobile phase composition. The numbers 17 to 144 indicate all other solute/mobile phase combinations. See Fig. 2 and the text for

more explanation

must be measured on the new stationary phase to
calibrate that new stationary phase. These values
are gathered in X(MaMPh) ., (Fig. 2) or in
X(MaMPh), ., (Fig. 3). On the assumption that
the previously calculated model and weighting
parameters p,, and w,, are valid, the 7., ,
values can be calculated. Predictions of the reten-
tion values of the non-selected solute/mobile
phase combinations can be obtained with the use
of the ¢, , and g,, values. For details, Wold et
al. [11] should again be consulted.

Models for three-way arrays with the PARAFAC
solution _

As the starting point, X is assumed to be the
same as above. The parallel factor analysis
(PARAFAC) model has the form [16}]

D
xljk = Z atdbjdckd + eljk
d=1

G=1,...,I; j=1,...,J; k=1,...,K) (4

If X, is used to represent that J X K matrix which
is the ith slice of the I X J X K three-way array X
(in the present example, this slice contains all
retention values measured on the :th stationary
phase), then Model 4 can be written as

X,=BA,C’'+E, (i1=1,...,1) (4a)

where B is a J X D matrix with typical element
b4, C1s a K X D matrix with typical element ¢,
and E, is a JX K matrix with typical element
e, x- The D X D matrix A, is diagonal, with diago-
nal elements taken from the :th row of A, the
I X D score matrix of the first mode with typical

element a,;,. The D diagonal elements of A, thus
represent the effect of changes in the relative
importance of the D factors on influencing reten-
tion on stationary phase i. For a given number of
components in the PARAFAC model, the coeffi-
cients a4, b,, and c,, are calculated such that
Y¥Yel, is minimal, where the summations run
over 1, j, and k. Note that Model 4 is a trilinear
model; the idea of bilinearity is extended in Model
4, in contrast to Model 2.

The PARAFAC model with only one factor is
depicted 1n Fig. 4. Predictions of retention values
on a new stationary phase can be obtained as
follows: suppose measurements are available for
the retention of the four markers with the previ-
ously selected four mobile phase compositions on
the new stationary phase. As in case of the un-
folded PLS solution, the new stationary phase has
to be calibrated with these measurements. These
measurements are gathered in X(MaMPh)new.
Then a,,, to a,, p can be estimated by least
squares from

D
X(MaMPh)new,jk = Z bjdckdanew,d + €new, jk
d=1

(j, k=1,...,4) (5)

where the model parameters b, and c, ; are known
from the training set (Model 4) and are assumed
to be fixed. A thorough statistical treatment of
this approach should incorporate investigations
into the statistical properties of the estimates b,
Crar @pew - €tC. This will be the subject of future
research. With the use of the a,, , values, it is
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Fig. 4. The PARAFAC model. The block of data labeled as S.Ph ,,,, contains the measured retention values of the four markers for
the selected mobile-phase compositions on the new stationary phase; a, b, and ¢ are explained 1n the text.

easy to obtain predictions of the non-selected sol-
ute/ mobile phase combinations:

D
X(NMaMPh)new,jk = Z anew,dbjdckd
d=1

(j, k#1,...,4)

Conceptual differences between the PARAFAC
and the unfolded PLS models

There is a conceptual difference between Mod-
els 2 and 4. Model 2 is an unconstrained model;
the values p,, are the factor loadings of the dth
factor (component) across modes B and C of the
data and no constraint is placed on these values.
Such a constraint is present in Model 4: p, ., =
b,4Cry- The meaning of this constraint can be
explained as follows. By comparing b,,c,, and
by, ¢y4 With by ey, and by,cyy, it is clear that the
expression of the influence of factor 4 across
mode C (as measured by ¢,;; and ¢,;) does not
depend on the level of mode B. The reverse is also
true: the expression of the influence of factor d
across mode B does not depend on the level of
mode C.

In the present example, the second mode con-
sists of the solutes and the third mode consists of
the mobile phase compositions. Studies on the
PCA of reversed-phase chromatographic data
[17,18] indicate that the loadings of the solutes on
the first principal component are related to the
hydrophobic character of the solutes whereas the
loadings of the mobile phase compositions can be

related to the polarity of the eluent. With respect
to the first factor, the above-mentioned constraint
means that the way in which hydrophobic dif-
ferences between solutes affect the differences in
retention values of those solutes, does not depend
on the mobile phase composition.

EXPERIMENTAL

Experimental details are already available [6].
Three stationary phases (octadecyl-modified re-
versed-phase material) were studied by Smilde et
al. [6]. These stationary phases are called A, B,
and C. On each stationary phase, the retention
values of sixteen solutes were measured for nine
mobile phase compositions. The data set was aug-
mented with three stationary phases of the same
brand as those used by Smilde et al. [6], but from
different batches. On the three new stationary
phases (labelled D, E, and F), the same test sol-
utes were measured for the same mobile phase
compositions as previously [6]. All retention val-
ues on the stationary phases, D, E, and F were
measured by the same analyst/ apparatus combi-
nation as for stationary phase C and are reported
in Table 1.

The PLS calculations were made with the
SIMCA-3B program (Sepanova, Enskede, Sweden)
run on a Myami Compact AT-286 (an IBM-com-
patible personal computer). The PARAFAC
calculations were done on the Cyber 170,/760
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computer of CDC at the Groningen University
Computing Centre, with standard programs and
home-made software written in PASCAL. The
markers were selected with home-made software
written in FORTRAN on the Cyber and the
Myami Compact AT-286.

RESULTS AND DISCUSSION

Prelimunary calculations on the whole data cube

For the reasons previously mentioned [6], the
logarithms of the capacity factors were used as the
retention values. The data cube was arranged such
that the first direction (mode A) consisted of the
stationary phases (index :1=1,...,6), the second
direction (mode B) of the solutes (index ;=
1,...,16), and the third direction (mode C) of the
mobile phase compositions (index k=1,...,9). In
order to obtain some insight into the data at hand,
the data cube was modelled according to Eqns. 2
and 4. Before application of the model, the data
were centred such that for each j, k the sum
Xx,, =0, where the summation covered :=
1,...,6. Because differences between stationary
phases were the primary interest, this centring
operation seems reasonable.

After the centring operation, the mean sum of
squares (MS) for each stationary phase i, before
application of the model, was calculated as

TABLE 2

Results for unfolded PCA and PARAFAC on the whole data cube

Zx,zjk /(16 X 9), where the summation ran over all
combinations of ; and k. These MS,,; values can
be regarded as the mean sum of squares to be
explained by the model. After application of the
model, analogous values were calculated for the
residuals (MS,., values). When a data cube 1s
modelled, 1t is important to know the appropriate
number of components. Because the experiment
was designed such that estimates of the varance
of the measurement error were available [6], these
estimates served as a yardstick to choose the num-
ber of components by comparing the MS, . values
with these measurement error variances.

Table 2 summarizes the results of Models 2 and
4 applied to the data cube. The measurement error
differs considerably between the stationary phases
and it is therefore hard to establish the number of
components, but one or perhaps two components
seems to be a reasonable choice. The signal-to-
noise ratio (MSbef/srzepm) 1s not very high for
stationary phases D, E, and F. A calibration train-
ing set with low s7,., values would be very ad-
vantageous.

The main differences between the unfolded
solution (Model 2) and the PARAFAC solution
(Model 4) can be summarized as follows. The first
component 1 the unfolded solution explains al-
most completely the vanation in stationary phase
B, whereas the second one does the same for
stationary phase A. It may be noted that sta-

(MS¢ 1s the mean sum of squares before application of the models. M, (k) 1s the mean sum of squared residuals after apphcation
of k components in the model. The cumulative percentages of the sums of squares explained by the first two components of the
unfolded PCA model are 65 0% and 86.1%. For the PARAFAC model these numbers are, respectively, 56.5% and 72.0% The values

of 5% 0 MSp. and MS, must be multiphed by 10™*)
Stationary s,zq,m MSy Overall results of the models Scores of stat phases on components
phase Unfolded PCA PARAFAC Unfolded PCA PARAFAC

MsS. (1) MS,..(2) MS. (D) MS,.(2) 1 2 1 2
A 2.25 30.56 26 69 0.28 2211 825 0.24 —0.62 —0.52 1.56
B 3136 82.66 0.50 0.41 14.76 10.78 -109 —0.04 —334 331
C 2.89 22.60 10.86 8.45 1307 1011 041 019 170 -207
D 11 56 890 830 326 7.09 396 —0.09 027 025 —0.74
E 6.25 735 424 362 5.36 4387 0.21 0.10 0.71 -083
F 38.44 15.14 7.93 7.23 10 39 880 032 010 119 —143
Av 15.46 2787 976 387 12.13 779
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tionary phase B scores high on the first unfolded
component, whereas stationary phase A scores
high on the second one. The PARAFAC solution
explains the variation in the stationary phases
more regularly, although the overall performance
1s a bit poorer. The PARAFAC model is more
restricted than Model 2, and this has several con-
sequences. First, the number of parameters to
estimate in Model 2, assuming two components, is
444 (16 X9+ 16 X9+ 16 X9+ 2 X 6), whereas
this number is 206 (16 X 9+2X16+2 X9+ 2 X
6) in the case of Model 4. So, when the PARA-
FAC model is applied a considerable gain in de-
grees of freedom is obtained. Secondly, in the case
of the unfolded solution, stationary phase B is
permitted to have a considerable influence on the
first component. Whether or not this is justified
depends on the information contained in the vari-
ation of the retention values on stationary phase
B. When this information 1s relevant, the strong
dependence of the first unfolded component on
this stationary phase is justified. When stationary
phase B is an outlier, this outlying behaviour is
modelled. The PARAFAC solution is less pro-
nounced in this respect.

The solutes EE and PBL remain largely unex-
plained by the PARAFAC model after application
of two components. The percentages of the ex-
plained variation for EE and PBL by the PARA-
FAC model are, respectively, 28% and 61%. These
percentages are 77% and 83%, respectively, with
the unfolded PCA model. This also illustrates a
difference between Models 2 and 4: the more
flexible Model 2 allows the solutes EE and PBL to
describe much of the variation in the components,
whereas PARAFAC is more restricted in this sense.
This was confirmed by the high loadings of EE
and PBL of the unfolded PCA components (re-
sults not shown), whereas the loadings of these
solutes on the PARAFAC components were not
extremely high.

Selection of the markers and the important mo-
bile phase compositions

The selection of solute/ mobile phase combina-
tions which can be used to calibrate a new sta-
tionary phase is based on the work of McCabe
[19] as adapted by Smilde et al. [6] for use in
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reversed-phase calibration. The purpose of this
paper is not to give an extensive evaluation of
methods for solute/mobile phase selection, thus
only brief comments will be made on the choice in
the calibration considered. The calibration proce-
dures will be validated by successively leaving out
one stationary phase, building the models with the
five remaining stationary phases, and using the
omitted stationary phase as an independent test
sample. Hence the problem comes down to choos-
ing solute/mobile phase combinations from five
stationary phases.

The first step in the selection procedure was the
unfolding of the 5 X 16 X9 data cube such that
the direction of the solutes was left intact. The
result was a 45 X 16 matrix, where the objects are
stationary/ mobile phase combinations and the
variables are the 16 solutes. Those four solutes
were selected that gave the highest sum of all the
multiple correlation coefficients between the four
solutes and the 12 unselected solutes. These
selected solutes explained the unselected ones best.
The outcome of this procedure was the following
set of solutes: anisole, dimethyl phthalate,
ethynylestradiol, and prednisolone. This result was
found six times; for each omitted stationary phase,
the procedure was repeated and gave the same
results. This places some confidence on the selec-
tion procedure.

The second step in the selection procedure was
the unfolding of the 5 X 16 X9 data cube such
that the direction of the mobile phases was left
intact. This resulted in a 80 X 9 data matrix, with
the mobile phase composttions as variables. The
same procedure as above was applied and resulted
in the choice of the wml, wm3, wal, and wa3
mixtures. These mixtures were found six times; for
each omitted stationary phase, the procedure was
repeated. The conclusion is that a new stationary
phase can be calibrated by measuring the reten-
tion values of the markers, the solutes ANS, DMP,
EE, and PRS, at the mobile phase compositions
wml, wm3, wal, and wa3.

Calibration of a new stationary phase with the
unfolded PLS model

The calibration procedure was followed with
each stationary phase left out once. This sta-
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TABLE 3
Results of the unfolded PLS and PARAFAC calibrations

(The percentage X(MaMPh) and X(NMaMPh) values are the percentages of the varation in the respective matrices explained by the
PLS model The R? values are the fraction of the variation explained by the PARAFAC components 1n the data cube The rmsep
value 1s [(1/m)Z(y, — §,)*]'/%, where y, 1s a measured In k value and §, 1s the value predicted by the model The summation runs
from 1 to m, where m 1s the number of predictions made. The percentage TEST 1s the percentage of variation n the test set explained

by the model)

Stationary Stepro PLS calibration PARAFAC calibration

phase X(MaMPh) X(NMaMPh) rmsep TEST R rmsep TEST
(%) (%) (%) (%)

A 0015 92 98 89 70 0.065 0.23 077 0069 _

B 0056 84 43 68 49 0106 4.64 060 0089 3265

C 0017 9235 91 35 0046 37.23 077 0048 3260

D 0034 88 80 8574 0026 46.13 073 0027 41 84

E 0.025 87 36 86 67 0.026 34,17 074 0031 1041

F 0.062 90 52 89.85 0039 21 87 077 0039 19 69

Av 0.039 8941 8530 0058 2405 0.73 0055 2287

? Thus value 1s not given because 1t was negative, 1 e , meaningless

tionary phase was then used as independent test
set. Hence the calibration was done six times.
Column-centring was always done in the way de-
scribed in the Preliminary Calculations section.
The results are presented in Table 3. The number
of components in the model was always chosen to
be two. This decision was based on cross-valida-
tion and on the comparison of the s,.2epro values
with the residual variance after application of the
successive dimensions in the model.

In judging the prediction results, several issues
should be kept in mind. First, the root-mean-
squared error of prediction (rmsep) values of the
respective stationary phases can be compared with
the s, values for the stationary phases, because
they are both expressed in the same units. Sec-
ondly, the nature of the percentages of variation
explained in the test set is as follows: from the
test-set values, the corresponding means from the
training set are subtracted; the sum of squares of
these corrected values gives the sum of squares
that has to be explained. Likewise, the unex-
plained sum of squares can be obtained by squar-
ing (and summing) all prediction errors (observed
values minus values predicted by the model). The
percentage of the variation explained 1s then easily
calculated. When the sum of squared values that
have to be explained is compared with the sum of
squares arising from the measurement error (which

can be calculated from the s, values), signal-
to-noise ratios can be calculated in the same way
as in the Preliminary Calculations section. These
signal-to-noise ratios were 7.2, 2.5, 5.2, 0.8, 1.1,
and 0.5 for stationary phases A, B, C, D, E and F,
respectively. The interpretation for stationary
phases, D, E and F is that the sum of squares that
has to be explained cannot be distinguished from
noise. This illustrates a serious problem: the dif-
ferences between stationary phases, although pre-
sent, are small.

In discussing the results of the unfolded PLS
calibration, 1t must be noted that Table 3 shows
stationary phases A and B to be exceptions. Ap-
plication of the unfolded PLS model is useless,
because the rmsep values are high in comparison
to the corresponding s,.,,, values. In the case of
stationary phase B, there 1s some evidence in the
training set that the model does not fit very well;
the percentages of variation explained in the
X(MaMPh) and X(NMaMPh) blocks are low. Sta-
tionary phase C has also a ligh rmsep compared
tO Srepro» DUt application of the model is not use-
less, although there 1s some lack of fit. In the case
of stationary phases D and E, the model predicts
with approximately the same error as the measure-
ment error, although the low signal-to-noise ratios
for these test sets (see above) cast doubt on the
relevance of these predictions. For stationary phase



50

F, there 1s not only the low signal-to-noise ratio,
but the rmsep value is smaller than the corre-
sponding s, value, which indicates overfitting
of the model. Probably the number of components
in the unfolded PLS model is too high; the model
complexity is not well established.

Calibration of a new stationary phase with the
PARAFAC model

The procedure was the same as with the un-
folded PLS model. Each stationary phase was left
out once and then calibrated with the use of the
model. Again column-centring was done and two
components were chosen in the PARAFAC model.
The results are presented in Table 3. Again sta-
tionary phase B is seen to be an exception, with a
low R? value 1n the traiming set. The predictions
for stationary phase B are better than in the case
of the unfolded PLS model, but there is still lack
of fit, for both stationary phases B and C. Sta-
tionary phase A 1s very badly predicted; actually
the model does not work at all. Discussion of the
results for stationary phases D, E and F is essen-
tially the same as the above discussion for the
unfolded PLS model.

Comparison of the results of both calibration
schemes and general conclusions

No clear preference for either of the two
calibration models 1s apparent, although PARA-
FAC performs better in calibrating stationary
phase B than unfolded PLS. A closer look at the
prediction errors of both models shows that the
solutes EE and PBL are almost always badly
predicted with PARAFAC. This pattern does not
emerge from the unfolded PLS prediction errors
where, for example, the solutes ACP and ACT are
badly predicted on stationary phase B. This is n
agreement with the remarks made in the Pre-
liminary Calculations section on the differences
between PARAFAC and unfolded PCA with re-
spect to the flexibility of the models.

In discussing the calibration results, 1t should
be kept in mind that stationary phases A and B
were tested with a different analyst/apparatus
combination than that used for stationary phases
C-F. Hence there are not only stationary phase
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differences in the data set but also differences
arising from other measurement conditions. This
may explain the bad predictions on stationary
phases A and B; both unfolded PLS and PARA-
FAC are unsuitable for dealing with these dif-
ferences. For example, if there is a systematic
difference between the measurements on sta-
tionary phase B and the other stationary phases
which results in a constant absolute difference
between the measurements on stationary phase B
and the corresponding average values of the other
five stationary phases, then it is doubtful that
unfolded PLS and PARAFAC, as apphed here,
would be able to handle the situation. Incorpora-
tion of variables in the Models 2 and 4 that
describe and handle the above-mentioned sys-
tematic differences may be profitable. Another
solution to the problem of systematic differences
might perhaps be found by applying a different
form of centring and /or scaling of the data cube,
but the subject of centring and/or scaling is dif-
ficult [16].

The problem of low signal-to-noise ratios in the
test set can be tackled as follows. The first step in
the calibration of a new stationary phase 1s the
measurement of four markers for four mobile
phase compositions. These 16 values can be com-
pared with the averages of the corresponding re-
tention values for the stationary phases in the
training set. The signal-to-noise ratio of the new
stationary phase can be approximated with the use
of these new retention values, by dividing the sum
of squared differences between the measured val-
ues and the corresponding averages in the training
set by the sum of squares arising from measure-
ment error. When this 1s calculated for the six
stationary phases, the outcome is 10.2, 3.6, 3.8,
1.1, 1.1, and 1.0 for stationary phases A, B, C, D,
E and F, respectively. With the use of these values,
inferences can be made with regard to the signal-
to-noise ratio of all values 1n the test set. Stated
otherwise, the a prior: sense 1n applying a model
can be judged from the signal-to-noise ratio for
the 16 measured retention values on the new sta-
tionary phase.

The (statistical) merits of both kinds of models,
unfolded PLS and PARAFAC, have still to be
established, keeping in mund their conceptual dif-
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ferences. Other three-way models should also be
evaluated. Diagnostic tools to judge what kind of
model is appropriate in a particular application
are needed. Research on these topics is underway.
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