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ABSTRACT 

When retention measurements are avadable for a set of solutes on different stationary phases, with varymg mobile 

phase composltlons, the resulting data set can be represented by a three-way array Models that descnbe the systematic 

vanatlon m this trammg set suffxlently, can be used to cahbrate a new stationary phase Two modeh are tested for tls 

purpose three-way partial least squares and parallel factor analysis 

One of the problems with the application of 
reversed-phase liquid chromatographic methods is 
the unsatisfactory reproducibihty of materials for 
stationary phases. The capacity factor for a speci- 

fied solute, measured for a specified mobile phase 
composition, varies between different stationary 

phase materials of the same type [1,2]. Even sta- 
tionary phases of the same brand differ between 
the batches of the same material [3]. Especially in 
the area of optimization of mobile phases, this 
phenomenon 1s important; an optirmzed sep- 
aration cannot be reproduced on a new stationary 

phase [4]. 
Calibration of a new stationary phase is there- 

fore needed. In this context, calibration is defined 
as the transfer of the retention value of a solute 
from one system to another, m particular from 
one stationary phase to another. Examples of a 
calibration procedure based on the measurements 
of specially chosen solutes (markers) on the new 
stationary phase, were given by Smtlde et al. [5,6]. 
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Latent-variable modelling has made a prom- 
ising contribution to multivariate calibration [5- 
lo]. Recently, three-way methods of data analysis, 
like multi-way principal components (PC) and 

partial least-squares (PLS) analyses [11,12], 
tensorial calibration [13,14], and three-mode fac- 
tor analysts [15], have proved to be useful in the 
modelling of chemical data. A convenient survey 
of methods for multi-way data analysis has been 

given by Law et al. [16]. 

THEORY 

Models for two-way arrays 
Here, bold lower-case characters are used for 

column vectors (one-way arrays), bold capitals for 
two-way matrices (two-way arrays) and barred 
bold capitals for three-way matrices (three-way 

arrays). The capitals I, J and K are reserved to 
indicate the number of levels m the different modes 
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(directions) in the models and D indicates the 
number of components m the models. 

It is assumed that the data set under investiga- 
tion can be represented by the matrix X (I X J). A 
bilinear model of the data in this matrix X is 

D 

x,,= c trdpd,+e,, (1=1,..., I; j=l,..., J) 
d=l 

(1) 

or 

X=t,p;+...+t,p;+E=TP’+E (14 

where D is the number of components in the 
model, E has typical element e,,, t, = (t,d, . . . , 

tld)‘, pd=(pdl~~-~~pdJ)‘~ T=(t,,...,t,) 1s an (1 

x D) matrix (usually called the score matrix), and 
P=(p,,...,p,) IS a (JxD) matrix (usually 
called the loading matrix). For simplicity, it 1s 
assumed that x,, 1s a realization from an unspeci- 
fied distribution and trd, pd, are estimates of the 
corresponding population parameters. Depending 
on the assumptions made with regard to the error 

terms c,,, with residuals e,,, Eqn. 1 describes a 
principal components or factor analysis model. In 
applications, T and P are usually chosen to mini- 
rmze the Frobenius norm of E and such that 

P’P = Z and T’T is diagonal. Because each term 
tdpi has rank one, Model la is seen to be a 
successive rank-one approximation of X. 

Models for three-way arrays with unfolding 

It 1s assumed that the data can be arranged in a 
three-way array x. An example is given in Fig. 1, 

where the data set used here is depicted. One of 
the possible ways to generalize Model 1 in the case 
of a three-way array % is given by 

D 

x,,k = c trdPdJk + erlk 
d=l 

(z=l,..., I; j=l,..., J; k=l,..., K) (2) 

or 

x=tl~PP,+...+t,~P,,=T*~P+E (2a) 

where t,= (t,, ,..., tld)‘, T= (t ,,..., tD), x has 
typical element x,,~, E has typical element e,,k, Pd 
has typical element pd,k and p 1s a three-way 
matnx with dimensions (D x J X K), with P, the 

I - Sol. I6 

Rg 1 The arrangement of the measurements Sixteen solutes 

(Sol.) are measured for mne mobile phase composltlons (M Ph ) 

on hve stationary phases (S.Ph.1 to S.Ph 5). 

first horizontal slice in p and PO the final one. For 
notational details, Wold et al. [ll] should be con- 
sulted. The typical element of td 63 Pd is trdpdlk. 

Because t, 03 Pd is a three-way array, Model 2a is 
again a successive approximation of %. In order to 
make the generalization meaningful, t d and Pd are 
calculated such that T’T 1s diagonal, P&P, = Z for 

everyd= l,..., D and the Frobemus norm of E is 
rnmnnized. With this generalization, the idea of 
bilinearity is not extended; Model 2 is not a 
trillnear model [16]. 

Wold et al. [ll] showed that the values of t, 
and cd can be estimated by unfolding the data 

cube X. The unfolding can, of course, be done m 
different directions. That direction which is re- 
lated to the objects should remain intact and 
projected OntO the td VeCtOrS. h the preSent exam- 
ple, the stationary phases are regarded as objects. 
The unfolding is done by placing the front slice of 
x (a 5 x 16 matrix) in the farthest left part of the 
unfolded 5 X(16X9)=5X 144 X matrix. The 
second slice of x is placed to the right of the first 
slice in X and so on. For illustrative details, Wold 

et al. [ll] should be consulted. For obvious rea- 
sons, the generalization (Model 2) 1s here called 
three-way principal component analysis with un- 
folding or, briefly, unfolded PCA. 

A special case of the above model is ap- 
propriate when a distinction between dependent 
and independent variables can be made in those 

modes of the three-way array other than the ObJect 
mode. This leads to a generalization of PLS. 

It is assumed that four solutes measured at four 
mobile phase compositions are sufficient to pre- 
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-Sol. 

S.Ph. 
nelv 

Fig. 2 The three-way PLS model vlsuallzed. The retention values of the four markers (Sol. 1 to 4), measured at four mobile phase 
composltlons (M Ph.1 to 4) on stationary phases 1 to 5 constitute the X(MaMPh) block. All other retention values measured on the 
five stationary phase are gathered m x(NMaMPh) The matrices P, W, and Q are explamed m the text, as well as f x(MaMPh),,, 
contams the measured retention values of the four markers for the selected four mobile-phase compositions on the new stationary 
phase (S Ph. new ) %(NMaMPh) new contams the predicted values of all other solute/mobtle-phase combmatlons on the new stationary 

diet the retention for all other solute/mobile phase 
combmations. The retention values of the selected 
solutes [the markers (Ma)] at the selected mobile 
phase (Mph) compositions are gathered in % 
(MaMPh) and, without loss of generality, the four 
markers are indexed with J = 1, 2, 3,4 and the 
selected mobile phase compositions with k = 
1, 2, 3, 4. The non-selected markers (NMa)/mo- 
bile phase combinations are gathered m R(NMa- 
Mph) with the appropriate J, k index combina- 
tions. Ftgure 2 shows both data cubes, together 
with the model parameters for one PLS dimen- 
sion. The following model is estimated: 

x(MaMPh),,k = t trdPdlk + erlk 

d=l 

(i= l,..., I; J, k=1,...,4) 

D 

x (NMaMPh) Ilk = c ‘rd qd/k + fr,k 

d=l 

(3) 

(z= l,..., 1; J, k+ 1,...,4) 

or 

X(MaMPh)=T*@P+@ 

%(NMaMPh) = T* Q 0 + F 
(3a) 

where T is a (I x D) matrix with typical element 
tld. The product 8 and the three-way matrices P, 
Q, E, and p are defined analogously to Eqn. 2a. 
When both the three-way arrays, %(MaMPh) and 
%(NMaMPh), are unfolded in the direction which 
leaves the first mode intact, the results are as 
shown in Fig. 3. The process of unfolding was 
explained above. By means of ordinary PLS calcu- 
lations [IL], the parameters trd, pdlk and qd,k of 
Model 3 can be estimated. For the estimation of 
the t,, parameters, use is made of weighting 
parameters wdlk for one PLS dimension gathered 
in W, which has the same dimensions as P. This 
three-way PLS is here called unfolded PLS, for 
obvious reasons. 

When a new stationary phase becomes availa- 
ble, the retention values of the markers, for the 
previously selected mobile phase compositions, 
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S.Ph.n,,(Xl -+ [ 1 1 1 z FM! hizh& 1 1 

Ftg. 3 The unfoldmg of both data cubes m Fig. 2. The numbers l/l Indicate the retentton values of the first marker for the ftrst 

selected mobtle phase composmon, hkewrse 4/4 is the mdex for the retentron value of the fourth marker wtth the fourth selected 

mobile phase composttton. The numbers 17 to 144 indicate all other solute/mobtle phase combmattons. See Ftg. 2 and the text for 

more explanation 

must be measured on the new stationary phase to 
calibrate that new stationary phase. These values 
are gathered in X(MaMPh).,, (Fig. 2) or in 

X(MaMPh) new (Fig. 3). On the assumption that 
the previously calculated model and weighting 
parameters pdlk and wdlk are valid, the tne,+ 
values can be calculated. Predictions of the reten- 
tion values of the non-selected solute/mobile 
phase combinations can be obtained with the use 

of the tnew.d and qd,k values. For details, Wold et 
al. [ll] should again be consulted. 

Models for three-way arrays with the PARAFAC 

solution 
As the starting point, X is assumed to be the 

same as above. The parallel factor analysis 
(PARAFAC) model has the form [16] 

X r]k = 5 aldbJdckd + erlk 

d=l 

(i= l,..., I; J = l,..., J; k = l,..., K) (4) 

If X, is used to represent that .Z X K matrix which 
is the i th slice of the Z x J X K three-way array X 
(in the present example, this slice contains all 
retention values measured on the I th stationary 
phase), then Model 4 can be written as 

X,=BA,C’+E, (1=1,..., Z) (4a) 

where B is a J X D matrix with typical element 
b,d, C 1s a K x D matrix with typical element ckd, 
and E, is a J x K matrix with typical element 
erlk. The D x D matrix A, is diagonal, with diago- 
nal elements taken from the I th row of A, the 
Z X D score matrix of the first mode with typical 

element a,& The D diagonal elements of A, thus 
represent the effect of changes in the relative 
importance of the D factors on influencing reten- 
tion on stationary phase I. For a given number of 
components in the PARAFAC model, the coeffi- 
cients ard, b,d, and Ckd are calculated such that 
~~&+,k is minimal, where the summations run 
over I, I, and k. Note that Model 4 is a trilinear 
model; the idea of bilinearity is extended in Model 
4, in contrast to Model 2. 

The PARAFAC model with only one factor is 
depicted m Fig. 4. Predictions of retention values 
on a new stationary phase can be obtained as 
follows: suppose measurements are available for 
the retention of the four markers with the previ- 
ously selected four mobile phase compositions on 
the new stationary phase. As in case of the un- 
folded PLS solution, the new stationary phase has 
to be calibrated with these measurements. These 
measurements are gathered in X(MaMPh),,,,. 

Then a.,,,, to anew,D can be estimated by least 
squares from 

D 

X@faMPhhew.,k = c bldCkd%ew,d + enew,lk 

d=l 

(j, k=1,...,4) (5) 

where the model parameters b,d and ckd are known 
from the training set (Model 4) and are assumed 
to be fixed. A thorough statistical treatment of 
this approach should incorporate investigations 
into the statistical properties of the estimates bJd, 

Ckd, a_,d, etc. This will be the subject of future 
research. With the use of the a”.,,d values, it is 
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Fig. 4. The PARAFAC model. The block of data labeled as S.Ph nnu contams the measured retention values of the four markers for 

the selected mobde-phase compositions on the new stationary phase; a, b, and c are explamed m the text. 

easy to obtain predictions of the non-selected sol- 
ute/ mobile phase combinations: 

x(NMaMPh),,,,,k = g %,,,&&k, 
d=l 

(j, k# 1,...,4) 

Conceptual differences between the PARA FAC 

and the unfolded PLS models 
There is a conceptual difference between Mod- 

els 2 and 4. Model 2 is an unconstrained model; 

the VdUeS pdlk are the factor loadings of the dth 
factor (component) across modes B and C of the 
data and no constraint is placed on these values. 
Such a constraint is present in Model 4: pd,k = 

bid Ckd. The meaning of this constraint can be 

explained as follows. By comparing b,,c,, and 
b,,c,, with b,,c,, and b,,c,,, it is clear that the 
expression of the influence of factor d across 

mode C (as measured by cid and c&,) does not 
depend on the level of mode B. The reverse is also 

true: the expression of the influence of factor d 

across mode B does not depend on the level of 
mode C. 

In the present example, the second mode con- 
sists of the solutes and the third mode consists of 
the mobile phase compositions. Studies on the 

PCA of reversed-phase chromatographic data 
[17,18] indicate that the loadings of the solutes on 
the first principal component are related to the 

hydrophobic character of the solutes whereas the 
loadings of the mobile phase compositions can be 

related to the polarity of the eluent. With respect 
to the first factor, the above-mentioned constraint 
means that the way in which hydrophobic dif- 
ferences between solutes affect the differences in 
retention values of those solutes, does not depend 
on the mobile phase composition. 

EXPERIMENTAL 

Experimental details are already available [6]. 
Three stationary phases (octadecyl-modified re- 
versed-phase material) were studied by Smilde et 
al. [6]. These stationary phases are called A, B, 
and C. On each stationary phase, the retention 
values of sixteen solutes were measured for nine 
mobile phase compositions. The data set was aug- 
mented with three stationary phases of the same 

brand as those used by Smilde et al. [6], but from 
different batches. On the three new stationary 
phases (labelled D, E, and F), the same test sol- 
utes were measured for the same mobile phase 
compositions as previously [6]. All retention val- 

ues on the stationary phases, D, E, and F were 
measured by the same analyst/apparatus combi- 
nation as for stationary phase C and are reported 
in Table 1. 

The PLS calculations were made with the 
SIMCA-3B program (Sepanova, Enskede, Sweden) 
run on a Myami Compact AT-286 (an IBM-com- 

patible personal computer). The PARAFAC 
calculations were done on the Cyber 170/760 
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computer of CDC at the Groningen University 
Computing Centre, with standard programs and 
home-made software written m PASCAL. The 
markers were selected with home-made software 
written in FORTRAN on the Cyber and the 
Myami Compact AT-286. 

RESULTS AND DISCUSSION 

Prehmmary calculations on the whole data cube 
For the reasons previously mentioned [6], the 

logarithms of the capacity factors were used as the 
retention values. The data cube was arranged such 
that the first direction (mode A) consisted of the 

stationary phases (index I = 1,. . . ,6), the second 
direction (mode B) of the solutes (index J = 
1 , . . . ,16), and the third direction (mode C) of the 
mobile phase compositions (index k = 1,. . . ,9). In 
order to obtain some insight into the data at hand, 
the data cube was modelled according to Eqns. 2 
and 4. Before application of the model, the data 
were centred such that for each J, k the sum 

&,k = 0, where the summation covered 1 = 
1 , . . . ,6. Because differences between stationary 
phases were the primary mterest, this centring 
operation seems reasonable. 

After the centring operation, the mean sum of 
squares (MS) for each stationary phase I, before 
application of the model, was calculated as 

Cx;?,,/(16 X 9) where the summation ran over all 
combinations of J and k. These MS,,, values can 
be regarded as the mean sum of squares to be 
explained by the model. After application of the 
model, analogous values were calculated for the 
residuals (MS,,, values). When a data cube is 
modelled, it is important to know the appropriate 
number of components. Because the experiment 
was designed such that estimates of the variance 
of the measurement error were available [6], these 
estimates served as a yardstick to choose the num- 
ber of components by comparing the MS,,, values 
with these measurement error variances. 

Table 2 summarizes the results of Models 2 and 
4 applied to the data cube. The measurement error 
differs considerably between the stationary phases 
and it is therefore hard to establish the number of 
components, but one or perhaps two components 
seems to be a reasonable choice. The signal-to- 

noise ratio (MS,JS&~) IS not very high for 
stationary phases D, E, and F. A calibration train- 
ing set with low s&0 values would be very ad- 
vantageous. 

The main differences between the unfolded 
solution (Model 2) and the PARAFAC solution 
(Model 4) can be summarized as follows. The first 

component m the unfolded solution explains al- 
most completely the variation in stationary phase 
B, whereas the second one does the same for 
stationary phase A. It may be noted that sta- 

TABLE 2 

Results for unfolded PCA and PARAFAC on the whole data cube 

(MS,, IS the mean sum of squares before apphcatlon of the models. M,,,(k) 1s the mean sum of squared residuals after apphcatlon 
of k components m the model. The cumulatwe percentages of the sums of squares explamed by the first two components of the 
unfolded PCA model are 65 0% and 86.1%. For the PARAFAC model these numbers are, respectively, 56.5% and 72.0% The values 

of S&> MS,, and MS,,, must be multlphed by 10m4) 

Stationary ’ &pro MS,, Overall results of the models Scores of stat phases on components 
phase Unfolded PCA PARAFAC Unfolded PCA PARAFAC 

M&,(l) M%,(2) M&,(l) M&,(2) 1 2 1 2 

A 2.25 30.56 26 69 0.28 
B 31 36 82.66 0.50 0.41 
C 2.89 22.60 10.86 8.45 
D 1156 8 90 8 30 3 26 
E 6.25 7 35 4.24 3.62 
F 38.44 15.14 7.93 1.23 

Av 15.46 2187 9 76 3 87 

22.11 8 25 0.24 - 0.62 -0.52 1.56 
14.76 10.78 -109 - 0.04 -3 34 3 51 
1307 10 11 0 41 0 19 1 70 -207 

7.09 3 96 - 0.09 0 27 0 25 - 0.74 
5.36 4 87 0.21 0.10 0.71 -083 

10 39 8 80 0 32 0 10 1.19 -143 

12.13 7 79 
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tionary phase B scores high on the first unfolded 
component, whereas stationary phase A scores 
high on the second one. The PARAFAC solution 

explains the variation in the stationary phases 
more regularly, although the overall performance 
1s a bit poorer. The PARAFAC model is more 
restricted than Model 2, and this has several con- 

sequences. First, the number of parameters to 
estimate in Model 2, assuming two components, is 
444 (16 x 9 + 16 x 9 + 16 x 9 + 2 x 6) whereas 
this number is 206 (16 X 9 + 2 X 16 + 2 X 9 + 2 X 
6) m the case of Model 4. So, when the PARA- 
FAC model is applied a considerable gain in de- 
grees of freedom is obtained. Secondly, in the case 
of the unfolded solution, stationary phase B is 
permitted to have a considerable influence on the 
first component. Whether or not this is justified 
depends on the information contained in the vari- 
ation of the retention values on stationary phase 

B. When this information 1s relevant, the strong 
dependence of the first unfolded component on 
this stationary phase is justified. When stationary 
phase B is an outlier, this outlying behaviour is 

modelled. The PARAFAC solution is less pro- 
nounced in this respect. 

The solutes EE and PBL remain largely unex- 
plained by the PARAFAC model after application 
of two components. The percentages of the ex- 
plained variation for EE and PBL by the PARA- 
FAC model are, respectively, 28% and 61%. These 
percentages are 77% and 83% respectively, with 
the unfolded PCA model. This also illustrates a 
difference between Models 2 and 4: the more 
flexible Model 2 allows the solutes EE and PBL to 
describe much of the variation in the components, 
whereas PARAFAC is more restricted in this sense. 
This was confirmed by the high loadings of EE 

and PBL of the unfolded PCA components (re- 
sults not shown), whereas the loadings of these 
solutes on the PARAFAC components were not 
extremely high. 

Selection of the markers and the Important mo- 

bile phase compositions 

The selection of solute/mobile phase combina- 
tions which can be used to calibrate a new sta- 

tionary phase is based on the work of McCabe 
[19] as adapted by Smilde et al. [6] for use m 

reversed-phase cahbratron. The purpose of this 
paper is not to give an extensive evaluation of 
methods for solute/ mobile phase selectton, thus 

only brief comments will be made on the choice in 
the calibration considered. The calibration proce- 
dures will be validated by successrvely leaving out 
one stationary phase, building the models with the 
five remaining stationary phases, and using the 
omitted stationary phase as an independent test 

sample. Hence the problem comes down to choos- 
mg solute/mobrle phase combmations from five 
stationary phases. 

The first step in the selection procedure was the 
unfolding of the 5 x 16 x 9 data cube such that 
the direction of the solutes was left intact. The 
result was a 45 X 16 matrix, where the objects are 

stattonary/mobtle phase combinations and the 
variables are the 16 solutes. Those four solutes 
were selected that gave the highest sum of all the 
multiple correlatron coefficients between the four 
solutes and the 12 unselected solutes. These 
selected solutes explained the unselected ones best. 
The outcome of this procedure was the following 
set of solutes: anisole, dimethyl phthalate, 
ethynylestradiol, and prednisolone. This result was 
found six times; for each omitted stationary phase, 

the procedure was repeated and gave the same 
results. Thts places some confidence on the selec- 
tion procedure. 

The second step in the selection procedure was 
the unfolding of the 5 X 16 X 9 data cube such 
that the direction of the mobile phases was left 
intact. This resulted in a 80 X 9 data matrix, with 
the mobile phase composttions as variables. The 
same procedure as above was applied and resulted 
in the choice of the wml, wm3, wal, and wa3 
mixtures. These mixtures were found six times; for 

each omitted stationary phase, the procedure was 
repeated. The conclusion is that a new stationary 
phase can be calibrated by measuring the reten- 
tion values of the markers, the solutes ANS, DMP, 
EE, and PRS, at the mobile phase composttions 
wml, wm3, wal, and wa3. 

Cabbratlon of a new stationary phase with the 

unfolded PLS model 

The calibration procedure was followed with 
each stationary phase left out once. This sta- 
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TABLE 3 

Results of the unfolded PLS and PARAFAC cahbratlons 

(The percentage X(MaMPh) and X(NMaMPh) values are the percentages of the vanatlon m the respectwe matrices explamed by the 

PLS model The R* values are the fraction of the vanatlon explamed by the PARAFAC components m the data cube The rmsep 

value IS [(l/m)x(y -j )2]1/2, where y, IS a measured In k value and j, IS the value predicted by the model The summation runs 

from 1 to M, where’m I: the number of predlctlons made. The percentage TEST 1s the percentage of vanatlon m the test set explained 

by the model) 

Stationary 

phase 

A 

B 

C 

D 

E 

F 

Av 

&pro 

0 015 

0 056 

0 017 

0 034 

0.025 

0.062 

0.039 

PLS cahbratlon PARAFAC cahbratlon 

X(MaMPh) X(NMaMPh) rmsep TEST R2 rmsep TEST 

(%) (W (W) (%) 

92 98 89 70 0.065 0.23 0 77 0 069 a _ 

84 43 68 49 0 106 4.64 0 60 0 089 32 65 
92 35 9135 0 046 37.23 0 77 0 048 32 60 
88 80 85 74 0 026 46.13 0 73 0 027 41 84 
87 36 86 67 0.026 34.17 0 74 0 031 10 41 
90 52 89.85 0 039 21 87 0 77 0 039 19 69 

89 41 85 30 0 058 24 05 0.73 0 055 22 87 

a Tks value IS not gwen because It was negatwe, I e , meaningless 

tionary phase was then used as independent test 
set. Hence the calibration was done six times. 
Column-centrmg was always done in the way de- 
scribed in the Prelimmary Calculations section. 
The results are presented m Table 3. The number 
of components in the model was always chosen to 
be two. Tlus decision was based on cross-valida- 
tion and on the comparison of the s&,,,, values 
with the residual variance after application of the 
successive dimensions in the model. 

In Judging the prediction results, several issues 
should be kept in mind. First, the root-mean- 
squared error of prediction (rmsep) values of the 
respective stationary phases can be compared with 

the s,,rro values for the stationary phases, because 
they are both expressed m the same units. Sec- 

ondly, the nature of the percentages of variation 
explained in the test set is as follows: from the 
test-set values, the corresponding means from the 
training set are subtracted; the sum of squares of 
these corrected values gives the sum of squares 
that has to be explained. Likewise, the unex- 
plained sum of squares can be obtained by squar- 
ing (and summing) all prediction errors (observed 
values minus values predicted by the model). The 
percentage of the variation explained is then easily 
calculated. When the sum of squared values that 
have to be explained is compared with the sum of 

squares arising from the measurement error (which 

can be calculated from the srepro values), signal- 
to-noise ratios can be calculated in the same way 
as in the Preliminary Calculations section. These 
signal-to-noise ratios were 7.2, 2.5, 5.2, 0.8, 1.1, 
and 0.5 for stationary phases A, B, C, D, E and F, 
respectively. The interpretation for stationary 
phases, D, E and F is that the sum of squares that 
has to be explained cannot be distinguished from 
noise. This illustrates a serious problem: the dif- 

ferences between stationary phases, although pre- 
sent, are small. 

In discussing the results of the unfolded PLS 
calibration, it must be noted that Table 3 shows 

stationary phases A and B to be exceptions. Ap- 
phcation of the unfolded PLS model is useless, 
because the rmsep values are lugh in comparison 

to the corresponding s,,rro values. In the case of 
stationary phase B, there is some evidence in the 
training set that the model does not fit very well; 
the percentages of variation explained in the 
X(MaMPh) and X(NMaMPh) blocks are low. Sta- 
tionary phase C has also a lugh rmsep compared 

to &pro, but application of the model is not use- 
less, although there is some lack of fit. In the case 
of stationary phases D and E, the model predicts 
with approximately the same error as the measure- 
ment error, although the low signal-to-noise ratios 

for these test sets (see above) cast doubt on the 
relevance of these predictions. For stationary phase 
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F, there 1s not only the low signal-to-noise ratio, 
but the rmsep value is smaller than the corre- 

sponding srepro value, which indicates overfitting 
of the model. Probably the number of components 

in the unfolded PLS model is too high; the model 
complexity is not well established. 

Calrbratron of a new statronaty phase with the 

PARA FAC model 
The procedure was the same as with the un- 

folded PLS model. Each stationary phase was left 
out once and then calibrated with the use of the 
model. Again column-centring was done and two 
components were chosen in the PARAFAC model. 
The results are presented in Table 3. Again sta- 
tionary phase B is seen to be an exception, with a 
low R2 value m the training set. The predictions 
for stationary phase B are better than in the case 
of the unfolded PLS model, but there is still lack 
of fit, for both stationary phases B and C. Sta- 
tionary phase A is very badly predicted; actually 
the model does not work at all. Discussion of the 
results for stationary phases D, E and F is essen- 
tially the same as the above discussion for the 
unfolded PLS model. 

Comparison of the results of both calibration 

schemes and general conclusions 
No clear preference for either of the two 

calibration models is apparent, although PARA- 
FAC performs better in calibrating stationary 
phase B than unfolded PLS. A closer look at the 
prediction errors of both models shows that the 
solutes EE and PBL are almost always badly 
predicted with PARAFAC. This pattern does not 
emerge from the unfolded PLS prediction errors 
where, for example, the solutes ACP and ACT are 
badly predicted on stationary phase B. This is m 

agreement with the remarks made m the Pre- 
liminary Calculations section on the differences 
between PARAFAC and unfolded PCA with re- 
spect to the flexibility of the models. 

In discussing the calibration results, tt should 
be kept m mind that stationary phases A and B 
were tested with a different analyst/apparatus 

combination than that used for stationary phases 
C-F. Hence there are not only stationary phase 

differences in the data set but also differences 
arising from other measurement conditions. This 
may explain the bad predictions on stationary 

phases A and B; both unfolded PLS and PARA- 
FAC are unsuitable for dealing with these dif- 
ferences. For example, if there is a systematic 
difference between the measurements on sta- 
tionary phase B and the other stationary phases 
which results in a constant absolute difference 
between the measurements on stationary phase B 

and the correspondmg average values of the other 
five stationary phases, then it is doubtful that 
unfolded PLS and PARAFAC, as applied here, 
would be able to handle the situation. Incorpora- 
tion of variables in the Models 2 and 4 that 
describe and handle the above-mentioned sys- 
tematic differences may be profitable. Another 
solution to the problem of systematic differences 
might perhaps be found by applying a different 
form of centring and/or scalmg of the data cube, 
but the subject of centring and/or scaling is dif- 

ficult [16]. 
The problem of low signal-to-noise ratios in the 

test set can be tackled as follows. The first step in 
the calibration of a new stationary phase is the 
measurement of four markers for four mobile 
phase compositions. These 16 values can be com- 

pared with the averages of the corresponding re- 
tention values for the stationary phases in the 
training set. The signal-to-noise ratio of the new 
stationary phase can be approximated with the use 
of these new retention values, by dividing the sum 
of squared differences between the measured val- 
ues and the corresponding averages in the training 
set by the sum of squares arising from measure- 
ment error. When this is calculated for the SIX 
stationary phases, the outcome is 10.2, 3.6, 3.8, 
1.1, 1.1, and 1.0 for stationary phases A, B, C, D, 

E and F, respectively. With the use of these values, 
inferences can be made with regard to the signal- 
to-noise ratio of all values m the test set. Stated 
otherwise, the a prlorl sense m applying a model 
can be Judged from the signal-to-noise ratio for 

the 16 measured retention values on the new sta- 
tionary phase. 

The (statistical) merits of both kmds of models, 
unfolded PLS and PARAFAC, have still to be 
established, keeping in mmd then conceptual dif- 
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ferences. Other three-way models should also be 
evaluated. Diagnostic tools to judge what kind of 
model is appropriate in a particular application 
are needed. Research on these topics is underway. 
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