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The calibration of a chemical sensor for chlorinated hydro- 
carbon analytes based on the Fujiwara reaction is described. 
This sensor generates a particular type of data: medium-rank 
second-order data. With this type of data it is possible to 
calibrate the sensor in such a way that quantitation for the 
analytes in the presence of unknown interferents is possible. 
The calibration method developed is a new approach based on 
so-called restricted Tucker models that utilize all available 
chemical information. 

In order to be able to monitor in situ multiple chlorinated 
hydrocarbons in contaminated soil, different approaches are 
available.' One of the approaches is based on the Fujiwara 
reaction of chlorinated hydrocarbons with pyridine and a base.2 
In this reaction, intermediates and final products are formed 
which can be detected with UV/visible ~pectroscopy.~ One 
way to use this reaction is to measure the absorbance at a 
particular wavelength of the species being formed after the 
analyte permeates a membrane of a chemical sensor and 
encounters the Fujiwara reagent. Since the measurement is 
done at one wavelength, this is a zero-order mea~urement .~ 
Therefore, calibration for the chlorinated hydrocarbons using 
this chemical sensor is called zero-order calibration. The 
disadvantage of using zero-order calibration is that the 
selectivity of such a calibration is low. There are usually 
more absorbing species a t  the particular wavelength and these 
species may be present in unknown concentrations in unknown 
samples. This puts a severe constraint on the applicability of 
zero-order calibration: an unknown interference cannot be 
detected and accounted for. This is called the background 
problem. 

If the measurements are not performed at one particular 
wavelength but at multiple wavelengths simultaneously, the 
result is a vector of measurements acquired at a certain point 
in time. Calibration with a chemical sensor based on multiple 
wavelength absorbances at a certain point in time is called 
first-order calibration. For the chlorinated hydrocarbons 
chloroform, trichloroethylene, and 1 ,l ,l -trichloroethane, cali- 
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bration based on first-order measurements with a chemical 
sensor is described in the first part of this series.s Although 
less severe, the background problem is still present: an 
unknown interference can be detected but calibration for the 
analyte of interest is impossible. 

The approach taken in this paper and in the second part 
of this series6 uses not only the full spectrum at a certain time 
point but also temporal information of the successive UV/ 
visible spectra. At regularly spaced time intervals, a UV/ 
visible spectrum is collected. At each point in time such a 
spectrum has contributions from a mixture of the intermediate 
and final species. The data obtained from measuring one 
sample (containing a mixture of analytes of interest and 
unknown interferences) can be ordered in a matrix with 
dimensions equal to the number of time points by the number 
of wavelengths. This type of data is called second-order data.' 
Under certain conditions, calibration with second-order data 
yields the second-order advantage: the ability to quantify for 
analytes of interest in the presence of unknown interferents. 
Of course, it is possible to obtain first-order data using this 
matrix of measurements by stringing out the matrix in one 
long vector. The first-order calibration methods-like partial 
least squares-can then be used. This is also shown in the 
first part of this series. This stringing out and using the data 
in a first-order way however destroys the second-order 
advantage. 

The analyte of interest enters the reaction chamber of the 
chemical sensor through a membrane. The Fujiwara reagent 
is added, the reaction starts, and intermediate and final species 
are formed. The development or vanishing in time of a 
particular intermediate or final species will be referred to as 
the time profile of that species. This particular species has 
a UV/visible spectrum which will be referred to as the species 
spectrum. The time profiles and the spectra of the species are 
not assumed to be known a priori. Estimates of these time 
profiles and spectra can be obtained from multivariate curve 
resolution methodse8 This is shown in the second part of this 
seriesS6 

In order to solve the background problem, a full second- 
order method should be used.' In case of response matrices 
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generated by a pure analyte with rank one, the generalized 
rank annihilation method can be used.’ This method is able 
to quantitate for specific analytes in the presence of unknown 
interferences. 

For pure analyte responses of rank higher than one (caused 
by multiple absorbing species) the calibration becomes more 
complicated. The challenge is, of course, to retain the second- 
order advantage. Recently, a second-order calibration method 
suited for medium-rankcases was de~eloped.~ The calibration 
of the reagent-based chemical sensor fits exactly in the 
framework of medium-rank second-order calibration. This 
medium-rank second-order calibration method is based on 
restricted Tucker models. 

The first paper in this series deals with the description of 
the sensor and zero- and first-order calibration.5 The second 
paper describes the curve resolution of the response matrices, 
Le., the estimation of the underlying spectra and time profiles.6 
The second paper also describes details concerning the kinetics 
of the applied reactions and a calibration procedure based on 
the full-response matrices. This third paper describes the 
results of applying medium-rank second-order calibration to 
the Fujiwara reaction-based data. A short description of the 
theory will be given. 

THEORY 
Medium-Rank Second-Order Calibration with Restricted 

Tucker Models. In the following, italic lower and upper case 
characters refer to scalars, bold lower case characters refer 
to vectors, bold uppercase characters refer to matrices and 
bold underlined uppercase characters refer to three-way 
matrices (also called third-order tensor). (Note: scalars, 
vectors, and matrices designated in this third paper of the 
series do not directly correspond to those of the same name 
in the first and second parts of the series.) 

A short description of the theory will be given as more 
detailed information is given el~ewhere.~ One calibration 
example is used as an illustration in order to explain the theory. 
Suppose that the analyte l,l,l-trichloroethane (TCA) gener- 
ates one unique absorbing species, the analyte trichlororeth- 
ylene (TCE) generates two absorbing species, and the analyte 
chloroform (CHCl3) also generates two absorbing species. 
The number of species generated by the analytes can be 
established with rank analysis of the response matrices. 
Principal component analysis or curve resolution can be used 
for this purpose. Assume that the second species being formed 
by TCE and CHCl3 has the same spectrum; Le., it is the same 
species but with a different time profile for analytes TCE and 
CHC13. The calibration problem can be stated as follows: 

( l a )  Nl = Z l l X I Y l t  + El 

M = ~41N1* + ~42N** + ~43N3* + U, + E, (Id) 
where Z / k  represents the true concentration of analyte k in 
mixture 1. The x vectors are the true time profiles of the 
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species, the y vectors the true spectra of the species, Um is the 
interferent in the mixture sample M, and the E matrices are 
error matrices. The rank of Um can vary between 0 (no 
interferent) and any positive number. From now on N1 refers 
to TCA, NZ refers to TCE, and N3 refers to CHC13. Nk* is 
the unit concentration response of analyte k = 1 ,2 ,3  (TCA, 
TCE, and CHCl3, respectively); Le., Nk* = Nk/zk. With 
NBRA’O the presence of N1, Nz, and N3 in M can be 
established. The rank of U, can be established by analyzing 
the rank of M, using the information of the presence of the 
analyte, and with knowledge about the level of the measure- 
ment error. It is assumed that the unit time profiles and 
spectra of the species are equal in the pure samples and in the 
mixtures. It is important to stress the fact that the time scale 
of the measurements represented in N1, Nz, N3, and M is the 
same; i.e. the recording of the spectra starts at time zero and 
evolves at the same points in time for each analyte and mixture. 

The quantitation of TCA (=N1) can be found with the 
generalized annihilation method (GRAM’) since the rank of 
NI (eliminating the noise) is one. Hence, the contribution of 
N1 can be substracted from M. 

For illustrative purposes it is assumed that there is no 
interferent present. Examples of other calibration models 
which take care of interferents will be discussed later in this 
paper. 

Assuming absence of TCA and no interferent in M the 
calibration problem is 

(2a) 

(2b) 

(2c) 

NZ = Z l Z X 2 Y 2  + z l Z X 3 Y ~  + 

N3 = zz3x4yi + z ~ ~ x ~ ~ :  + E, with y5 = y3 

M = z ~ ~ N ~ *  + Z,~N,* + E,,, 

where the values of 232 and 233  are desired (quantitation) 
together with estimations of the x and y vectors (qualitative 
information). Calibration proceeds by stacking Nz, N3, and 
M to form the three-way matrix Q (I X J X 3), where I and 
J are the dimensions of Nz, N3, and M. Let X, Y, and Z be 
the matrices consisting of the x, y, and zvectors. The estimated 
counterparts of these matrices will be called A, B, and C, 
respectively. 

Two different models for analyzing three-way data are 
useful in this calibration. The first model is the PARAFAC 
or trilinear model.11.12 An element dijk of Q is modeled as 

(3) 

where Q is chosen in such a way that with elements eijk has 
a small norm (i.e., Ceijkz is small). Define the vectors a,, b,, 
and c, as vectors with elements ai,, bi,, and ci,, respectively. 
The outer tensor product of a,, b,, and c, is called the qth triad 
in the PARAFAC decomposition and is obtained by multi- 
plying ai,, b,,, and Ckq for each i ,  j ,  and k .  The PARAFAC 
model as represented in eq 3 is visualized in Figure 1. 
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Figure 1. PARAFAC model. The three-way matrlces D and E are 
explained In the text. The sticks to the right of the equal sign represent 
the vectors a, b, and c of the PARAFAC model. 

i; + Eo 
Figure 2. Tucker model. The matrices A, B, C, E, E, ando are explained 
In the text. 

Another way to decompose E is the Tucker m0del.12.'~ 
Again, let dijk be an element of E, then 

dijk = 9 aipbjqCk8pqr + eijk (4) 
p=1 q=1 r=l 

is the Tucker decomposition of E. The elements gpqr are the 
typical elements of the three-way array 5 (P X Q X R) which 
has a much smaller size than 12. The three-way array 5 is 
called the core array. P, Q, and R are parameters to be chosen 
in such a way that E, with elements eijk, has a small norm. 
The Tucker model, as represented in eq 4, is visualized in 
Figure 2. From this figure it is obvious that the vectors a,, 
b,, and c, (defined in the same way as above) are connected 
(multiplied) with each other by the core element g,,,. In eq 
4 this is accomplished by the triple summation. 

From eqs 3 and 4 it is clear that PARAFAC is a special 
case of the Tucker model. Taking P = Q = R and gpqr = 1, 
if and only if p = q = r, transforms the Tucker model into the 
PARAFAC model. For the PARAFAC model the core array 
is a P X P X P cube with ones on the superdiagonal. The 
Tucker model is more general due to the possibility of an 
unequal number of loading vectors in each dimension and 
because of a more general core array. 

One of the latest developments in three-way analysis is the 
restricted Tucker model.14 TheTucker model can be restricted 
by setting specific core array elements to zero. The result is 
a much more parsimonious model in terms of the number of 
parameters to be estimated. Only particular multiplications 
of a,, bq, and cr are allowed. The zero elements in the core 
array can be selected by theory or chemical knowledge about 
the system. 

Other restrictions also apply to the Tucker model. Since 
the pure underlying time profiles, spectra, and concentrations 

(13) Kroonenberg, P. M. Three-mode Principal Component Analysis; DSWO 
Press: Leiden, The Netherlands, 1983. 
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Flgure 3. Restricted Tucker model. This model is a special case of 
the Tucker model of Flgure 2. The core array has ones (or nonzero's) 
at particular places. The C matrix contains the concentrations, and 
part of C (the upper part) Is known. The other part of C is unknown 
(7) and has to be estimated together with A and B. 

Table 1. Unfolded Core Array of the PARAFAC Four-Component 
Model of the Theory Example 

1 2 3 Q  1 2 3 Q  1 2 3 Q  1 2 3 Q  

1 1 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  
2 0 0 0 0  0 1 0 0  0 0 0 0  0 0 0 0  
3 0 0 0 0  0 0 0 0  0 0 1 0  0 0 0 0  
P O 0 0 0  0 0 0 0  0 0 0 0  0 0 0 1  

1 2 3 R 

Table 2. Unfolded Core Array of the Theory Example after 
APPlylne Ys = Ys 

1 2 Q  1 2 Q  1 2 Q  l 2 Q  

1 1 0 0  0 0 0  0 0 0  0 0  0 
2 0 0 0  0 1 0  0 0 0  0 0  0 
3 0 0 0  0 0 0  0 0 1  0 0  0 
P O 0 0  0 0 0  0 0 0  0 1  0 

1 2 3 R 

are nonnegative, this can also be assumed for the estimated 
counterparts A, B, and C. Moreover, part of C is known: the 
part describing the concentrations in the standard solutions. 
All of these constraints can be incorporated in the restricted 
Tucker model. The estimation procedure becomes a com- 
bination of an alternating least squares and a nonnegative 
least squares a1g0rithm.l~ 

Counting the number of vectors in the calibration problem 
represented by eqs 2a-c present in the X, Y, and Z domain, 
the maximum is four (in the Xdomain). In order to provide 
"space" for the X-domain vectors a four-component 
PARAFAC model must be used to model eqs 2a-c simul- 
taneously. The core array of this four-component PARAFAC 
model is a 4 X 4 X 4 three-way array with ones on the 
superdiagonal. If each horizontal slice of this core array is 
placed next to each other (unfolded or strung out12), the result 
is presented in Table 1. 

In Table 1, P = 4, Q = 4, and R = 4 stand for the number 
of components in theX, Y, and Z domain, respectively. More 
specifically, XZ-xs correspond to P = 1 to P = 4, respectively, 
and likewise y2-y5 correspond to Q = 1 to Q = 4. The z vectors 
are represented by R = 1-4. Applying the knowledge that 
y3 = ys gives the unfolded core array of Table 2. 

In Table 2 the column associated with q = 4 (ys) is added 
to the column associated with q = 2 (y3) of Table 1. Therefore, 
the value of Q changes from 4 to 3 in Table 2. The first two 

(15) Lawson, Ch. L.; Hanson, R. J .  Soluing Least Squares Problems; Prenticc- 
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Table 9. Final Unfolded Core Array of the Theory Example 
1 2 Q = 3  1 2  Q = 3  

1 1 0  0 0 0  0 
2 0 1  0 0 0  0 
3 0 0  0 0 0  1 
P O 0  0 0 1  0 

1 R = 2  

Table 4. Spectral SlmllarHlw 
TCA TCEl TCEZ CHCl31 CHCI32 

TCA 1 0.86 0.47 0.49 0.40 
TCEl 0.86 1 0.70 0.76 0.62 
TCE2 0.47 0.70 1 0.98 0.98 
CHC131 0.49 0.76 0.98 1 0.97 
CHCI32 0.40 0.62 0.98 0.97 1 

columns of Z in the four-component PARAFAC model are 
equal because both dyads x2y+ and ~ 3 ~ 3 ~  represent the 
contribution of N2. Both 2 1  and 22 will describe the 
concentration of N2 in N2, N3, and hi. Obviously, 21 = 22, and 
likewise, 23 = z4, where Z = [ZI 22 23  z4]. In order to 
accommodate these relationships the r = 2 (22) block is added 
to the r = 1 (z1) block and the r = 4 (24) block is added to 
the r = 3 (z3) block of Table 2. The resulting unfolded core 
array is shown in Table 3. 

The core array shown in Table 3 has exactly the right size 
(4 X 3 X 2) since the model has to support four x vectors, 
three y vectors, and two concentration vectors (z). The 
restricted Tucker model is estimated using the core array of 
Table 3, applying nonnegativity constraints to the estimation 
of A, B, and C, and using the known concentrations in C. 

Estimation of the restricted Tucker models starts with 
starting values for A, B, and C. Multivariate curve resolution 
(MCR) of the pure analyte responses gives estimates of the 
true time profiles (A) and spectra (B).6,8 This is explained 
in detail in the second paper of this series. These estimated 
time profiles and spectra will be used as starting values. The 
first two rows of C are (222 0) and (0 ~ 3 3 ) ~  respectively. In 
the third row of C, arbitrary positive constants are used as 
starting values. After convergence of the iterative estimation 
procedure, the final row in C gives the estimates of the 
concentrations of N2 and N3 in M. 

Complexity of the Calibration Problems. The calibration 
method developed will be illustrated with two data sets. The 
experimental setup of both data sets is described in part 1 of 
this series. The difference between both data sets is that the 
first one is measured at room temperature and the second one 
at 10 OC. It is expected that the same absorbing species are 
being formed, but of course at different reaction rates. The 
complexity of the first data set will be described in detail, and 
the complexity of the second data set differs mainly with respect 
to the temporal profiles and will be discussed shortly. 

In part 2 of this series, the estimated unit spectra (spectra 
at unit concentration) and time profiles of the different species 
formed by the analytes in the Fujiwara reaction werepresented. 
These spectra and time profiles can be helpful for assessing 
the complexity of the calibration problems. 

If each spectrum is understood as a vector in the 100- 
dimensional space (the number of wavelengths at which 
absorbances are measured equal loo), then the cosine of the 
angle between the vectors serves as a measure of similarity 
of the spectra. These cosines are presented in Table 4. 

The cosine varies between 0 and 1, where a 0 means that 
the spectra are very dissimilar and a 1 means that the spectra 
are very similar. From this table it is clear that there is a high 
overlap between the second species formed by TCE (TCE2) 
and both species formed by CHCl3 (CHC131 and CHC132). 
Also, the spectra of both species formed by CHC13 are very 

~ ~~ 

Table 5. Thne Proflle SbnllarHler 
TCA TCEl TCEZ CHClal CHC132 

TCA 1 0.15 0.93 0.30 0.94 
TCEl 0.15 1 0.36 0.95 0.37 
TCEZ 0.93 0.36 1 0.56 0.999 
CHCl31 0.30 0.95 0.56 1 0.56 
CHClj2 0.94 0.37 0.999 0.56 1 

similar (0.97) to each other. Since the second species formed 
by TCE and CHC13 are both final products in the Fujiwara 
reaction and have a very high spectral overlap, it is assumed 
that these species are identical. 

The analyte TCA forms one species that has spectral 
differences with respect to the ones formed by TCE and CHCl3. 
This makes the calibration for TCA easier, and also the 
calibration of TCE and/or CHCL3 in the presence of TCA 
should be possible. 

A similar approach can be taken with respect to the time 
profiles. Again a cosine is calculated between the different 
time profiles understood as vectors in the 6 1 dimensional space 
(measurements were taken at 61 regularly spaced time points). 
Note that the cosine gives information about the angle between 
time profiles and is therefore a measure of similarity of the 
unit time profiles: the time profiles scaled to unit concentration. 
In other words, the cosine is a measure of similarity in shape. 
This holds, of course, also for the spectral similarities. 

In Table 5 ,  the time profile similarities are shown. The 
first species formed by TCE and CHCl3 overlap; the second 
species overlaps even more. There is also some overlap in 
time profile shapes of the species formed by TCA and the 
second species formed by TCE and CHCl3. This overlap 
counteracts the spectral differences between the species formed 
by TCA and the ones formed by TCE and CHCl3 (see Table 
4). 

In the calibrations, the full response matrices of the analytes 
are used. It is therefore useful to look at the full response 
matrices of each species and of the analytes. The response 
matrices of the five different species can be approximated by 
taking the outer product of the spectrum and the time profile 
for each species. Thus, five different response matrices are 
obtained, assuming five different species. Each response 
matrix is therefore of rank one. A congruence coefficient 
between these matrices can be calculated according to 

( 5 )  
I I A ~ B I I  

( ( ~ ~ ~ 1 ( ~ / ~ 1 ) ~ ~ ~ 1 1 ~ / ~  

where IIA(( is the Frobenius norm of a matrix.16 This congruence 
coefficient varies between 0 and 1, where 0 means no similarity 
and 1 means perfect similarity between the matrices A and 

~ ~~ 
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Table 6. Pure Specks Shnllarltles 
TCA TCEl TCE2 CHClp1 CHCl32 

TCA 1 0.02 0.86 0.09 0.88 
TCEl 0.02 1 0.13 0.90 0.14 
TCE2 0.86 0.13 1 0.32 0.997 
CHClpl 0.09 0.90 0.32 1 0.32 
CHClp2 0.88 0.14 0.997 0.32 1 

Table 8. Unfolded Core Array of Example 2 
1 2 Q = 3  1 2  Q = 3  

1 1 0  0 0 0  0 
0 2 0 1  0 

3 0 0  0 0 0  1 
P O 0  0 0 1  0 

0 0  

1 R = 2  

Table 7. Analyte Slmllarltles 
TCA TCE CHCI3 

TCA 1 0.71 0.68 
TCE 0.71 1 0.998 
CHClo 0.68 0.998 1 

B. In Table 6, the similarities between the different species 
are presented. It is clear that the first species formed by TCE 
(TCE 1) and formed by CHCl3 (CHC131) are similar (0.90) 
and the two second species (TCE2 and CHC132) are assumed 
to be equal, which is supported by the similarity of 0.997. 

There is no direct relationship between the values in either 
Table 4 or 5 and Table 6. However, some conclusions can be 
drawn. The high similarity between the time profile shapes 
of TCA and those of TCE2 and CHC132 is counteracted to 
some extent by a low spectral agreement. Still, the similarity 
of the total TCA species and the second TCE and CHC13 
species is moderate (0.86 and 0.88, respectively). The first 
species of TCE and CHC13 are overlapped (0.90). This is a 
consequence of a high spectral similarity. 

As a final step, the total similarity between analytes is 
calculated. In order to do this, the two total species responses 
TCEl and TCE2 are added. The same is done for CHCl3. 
For TCA, the total species response is the same as the total 
analyte response since TCA generates only one species. The 
congruence between the total response matrices generated by 
the pure analytes can be calculated using eq 5 .  The results 
are reported in Table 7. 

Table 7 clearly shows the difficulty of the calibration 
problem. There is a high similarity between TCE and CHC13. 
This means that the quantitation of, for example, TCE in the 
presence of the unknown interferent CHCl3, or vice versa, is 
a very difficult task. The analyte TCA as an interferent should 
not present too much difficulty. 

If the experiment is performed at a lower temperature (10 
OC; second data set) a difference in time profiles is expected. 
This is exactly what happens, and the time profile similarities 
show less overlap than in the first data set and result in lower 
species similarities. The analyte similarity of TCE and CHC13 
is 0.46, which is low compared to the analogous similarity in 
the first data set (0.998). 

While it is true that thus far only three analytes are dealt 
with which would yield good results if they are the only ones 
present, the real aim is to do the analysis in the presence of 
unexpected interferents. Therefore, one should consider the 
analysis of, for example, TCE in a case where TCA, CHC13, 
and other interferents are present. In order to illustrate the 
calibration methods, TCE will be used as an interferent in the 
calibration of CHCl3 in a mixture and vice versa. These cases 
represent the hardest calibration cases, since the responses of 
TCE and CHC13 overlap severely. The results extend easily 
to cases of more unknown interferents. 

EXPERIMENTAL SECTION 
In this section different calibration examples are described 

which are used to test the restricted Tucker calibration 
methodology. The calibrations differ with respect to the 
presence of an interferent. Results for both data sets will be 
presented, but the structures of the calibration problems are 
the same for both data sets. Throughout it will be assumed 
that TCE and CHCl3 have the second (final) species in 
common: the spectra of the second species being formed by 
TCE and CHCl3 are equal, but their time profiles are not 
equal since the reaction kinetics differ. The structure of the 
calibration problems will be discussed in this section, whereas 
the results for the two different data sets will be presented in 
the Results section. 

Example 1 .  The first calibration is already formalized in 
eqs 2a-c and will be called example 1. The model is estimated 
by using the constraints that A, B, and C are nonnegative and 
the first two rows in C are (212 0) and (0 ~23), respectively. 
Starting values for A and B are obtained from multivariate 
curve resolution. 

Example 2. In the second example, the analyte CHCl3 is 
used as an unknown interferent. The standard Nz is the 
response of pure TCE, and the mixture consists of TCE and 
CHC13. This is the real second-order challenge: is it possible 
to quantify for TCE in the presence of an unknown? Of course, 
it must first be determined whether TCE is in the mixture. 
There are several ways of doing this.'O The equations that 
describe example 2 are 

( 6 4  

(6b) 

(6c) 

where zmu stands for the concentration of the unknown U, in 
M. The error matrices are left out for convenience. The 
unfolded core array associated with example 2 is presented 
in Table 8. 

In Table 8, P = 4 ( X  domain), Q = 3 (Y domain), and Q 
= 2 (concentration domain). The first row of C is (z12 0). 
Since CHCl3 acts as an interferenf in example 2, the associated 
starting columns in A and B are chosen randomly. The 
columns in A and B associated with TCE have starting values 
obtained from multivariate curve resolution. 

Example 3. In this example, a mixture of TCE and CHC13 
is used and only CHCl3 is used as a standard. Hence, it is 
the reverse of the previous example. The calibration model 
is nearly the same; the core arrays associated with examples 
2 and 3 are equal. Of course, the proper arrangements have 
to be made in matrices A, B, and C. 

N2 = zlZxZYzf + z 1 2 x 3 Y ~  

M = zI2N2* + U, 
U, = z,,x4y~ + z,,x5y~ with ys = y3 

RESULTS AND DISCUSSION 
Quality of the First Data Set (Room Temperature). In 

part 1 of this series, a general description of the experimental 
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Table 9. Results of Example 1 Data Set 1 

N 7.31 0.24 1.48 0.24 
M 7.31 0.24 1.48 0.24 

TCEconc maxabs CGClpconc maxabs SD 

7.14 (2.3%) 1.58 (7.0%) 0.0027 

Table 13. Results of Example 2 Data Set 2 

N 0.488 0.055 
M 1.464 0.165 0.995 0.28 

TCE concn max abs CHCln conc max abs SD 

1.418 (3.1%) 0.00068 

Table 10. Results of Example 2 Data Set 1 

N 7.31 0.24 
M 7.31 0.24 1.48 0.24 

TCEconc maxabs CHClpconc maxabs SD 

8.26 (13.2%) 0.0018 

Table 14. Resub of Example 3 Data Set 2 

N 0.995 0.28 
M 1.464 0.165 0.995 0.28 

TCEconc maxabs CHC13conc maxabs SD 

0.742 (25.4%) 0.00055 

Table 11. Results of Example 3 Data Set 1 

N 4.45 0.7 1 
M 2.93 0.09 4.45 0.7 1 

TCE conc max abs CHC13 conc max abs SD 

3.84 (13.7%) 0.0025 

~~~~~ ~ 

Table 12. Results of Example 1 Data Set 2 

N 0.488 0.055 0.995 0.28 
M 1.464 0.165 0.995 0.28 

TCE conc max abs CHC1, conc max abs SD 

1.520 (3.8%) 0.975 (2.0%) 0.00065 

setup is given. The pure experimental error of the data in this 
data set is between 3.2 and 3.4% (relative error) for TCA and 
between 2.4 and 2.5% for CHC13. For TCE, a similar number 
is expected. These values are calculated as averages over 
time for absorbances at particular wavelengths. Another way 
to approach reproducibility is by calculating 

10- (IOSA + 0.5B(( (7) 

where IlAll denotes the Frobenius norm of A and the matrices 
A and B are responses of reproduced measurements. For TCE 
at a concentration of 7.3 1 ppm this number is 3.04%. A similar 
number is expected for CHCl3. These numbers give an 
indication of the range of relative errors in concentrations due 
to measurement error. 

In a similar way, a standard deviation value can be 
calculated by dividing JIA - B(I by 61 X 100 (number of time- 
points times number of wavelengths) and taking the square 
root. These numbers are 0.0059 and 0.0113 for the above- 
mentioned TCE and TCA standards, respectively. The SD 
values given in Tables 9-1 1 can be compared with the range 
0.0059-0.01 13. 

QualityoftheSecondDataSet (10 "C). Theonlydifference 
between the second and first data set is the temperature. 
Experimental details are given in part 1 of this series. 

For CHC13 the results of using eq 7 was 3-5%, and for 
TCE this number was 5-896. These values give an indication 
of the experimental error in the second data set. A standard 
deviation value, analogous to the first data set, was calculated. 
These values were 0.0063 and 0.0048 for CHCl3 and TCE, 
respectively. The SD values reported in Tables 12-14 can be 
compared with these values. 

Results for Data Set 1. Example I .  It is clear from Table 
7 that the analytes TCE and CHC13 have a very similar 

response. In the mixture of example 1, the analytes TCE and 
CHC13 are present in the same amount as in the standards. 
Table 9 shows the results of the calibration. The relative 
prediction errors are low, and the SD value indicates a very 
good fit of the model. Hence, despite the similar response of 
the analytes TCE and CHCL3, calibration is possible provided 
that a mixture behaves well: linear additivity should hold, 
and each analyte has to contribute to a certain extent to the 
signal in the mixture. The latter can be checked by comparing 
the maximum absorbance contribution of the analytes to the 
mixture. For both analytes this maximum was 0.24, indicating 
that both analytes contribute in the same order of magnitude 
to the overall absorbance of the mixture. The results of this 
example are better than thecorresponding ones in part 2 (Table 
2, part 2).6 

Example 2. In this example, the real second-order 
challenge is obtained: the mixture contains an unknown 
interferent. This is important since it tests the ability of the 
method to calibrate in the presence of an unknown interferent. 
The results are reported in Table 10. The interferent has 
approximately the same contribution to the mixture response 
signal as the analyte. The quantitation for TCE is performed 
with a relative prediction error of 13.2%. Given the high 
overlap between the analyte and the interferent this error is 
very reasonable, also compared to an experimental error in 
the order of 3-4%. The prediction errors are of the same 
order of magnitude as in part 2 (Table 2, part 2).6 The fit 
of the model to the data is good again. 

An analogous case of predicting the concentration of TCE 
in the presence of the interferent CHC13 was performed in 
part l.5 This resulted in a prediction error of 105%. The 
difference between 13.2% on the one hand and 105% on the 
other hand clearly shows the second-order advantage of the 
restricted Tucker model approach. 

Example 3. This example is the reverse of the previous 
one. Now TCE acts as an interferent and the results are 
reported in Table 11. The interferent in this example has a 
lower contribution to the mixture response signal than the 
analyte. The relative prediction error in the concentration of 
CHC13 is 13.7%. This error is reasonable, also compared 
with the error of the same calibration in part 2 (Table 2, part 
2)6 and an experimental error of 3-4%. The SD value is low, 
indicating a good fit of the model. 

The error of predicting the concentration of CHC13 in the 
presence of TCE in part l5 is 42.7%. Example 3 clearly gives 
a better result. 

Results for Data Set 2. Example I .  The setup of the 
calibration is the same as for the first example of data set 1. 
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The results of the calibration are shown in Table 12. The 
prediction errors are very low, and the predictions can be 
considered as being very good. The model fits the data very 
well. 

Example 2. This example shows the second-order 
advantage: calibration of TCE in the presence of an unknown 
interferent (CHC13). Table 13 presents the result of this 
calibration. The prediction error of TCE in the mixture is 
very low (3.1%). The prediction is very good: on the order 
of magnitude of the experimental error. The model fits the 
data very well. 

Example 3. In this example, TCE serves as the unknown 
interferent in a mixture also containing the analyte CHC13. 
Table 14 presents the result. The prediction error of CHCl3 
is higher than in example 2. This is because the two species 
being formed by CHC13 have very similar spectra (a cosine 
value of 0.99); this causes instability in the estimated model, 
especially in the B matrix. Since the model fits the data very 
well, the conclusion is that the error surface is rather flat in 
the neighborhood of the minimum error: relatively small 
changes in parameter values (e.g., theestimated concentration) 
do not change the error very much. 

General Comments. The starting values of the algorithm 
for the unknown parts in C are important. Calculations have 
shown that different starting values give slightly different 
calibration results. Good starting values can perhaps be found 
using nonbilinear rankannihilation.'" More research is needed 
in this area. 

The problem encountered in example 3 of data set 2 can 
be circumvented by designing better algorithms. Such 

algorithms should be more robust to similarities in spectra 
(estimation of B) and time profiles (estimation of A). 

In all the above examples, only one standard was used to 
quantitate for an analyte in a mixture. The restricted Tucker 
model approach can be augmented easily to support more 
than one standard. The results should be better when multiple 
standards that span a range of concentrations are used. 

GENERAL CONCLUSIONS 
A complete new class of calibration models is described for 

second-order calibration. It is shown with experimental data 
that quantitation of analytes in mixtures containing unknown 
interferences is possible. The restricted Tucker model ap- 
proach makes it possible to develop fully selective reaction- 
based chemical sensors. 
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