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Abstract

In this paper, different three-way methods are tested for their power and shortcomings to solve complex second-order
calibration problems. The generic calibration problem is quantifying for an analyte in the presence of an unknown interferent:
a second-order calibration problem. Due to rank restrictions of the data, standard second-order calibration methods like
Generalized Rank Annihilation cannot be used to solve the type of complex second-order calibration problems shown in this
paper. Different real examples are tested in which it is shown that the three-way methods can, to a certain extent, deal with
the complex calibrations. This stresses the fact that all second-order calibration methods should be regarded as three-way
methods, and when put in this framework, can be compared with respect to their performance. ©1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Calibration is an important topic in analytical chem-
istry. The purpose of calibration is to determine the
amount of analyte(s) of interest in unknown samples
which might contain (unknown) interferents. More-
over, as a side goal, it is sometimes convenient to ob-
tain confirmative information about the identity of the
analytes and the interferents, if present.

The area of calibration can be divided in zero, first
and second-order calibration, etc. A nice summary is
given by Booksh and Kowalski [1]. Zero-order cali-
bration is used with zero-order data. If measurements
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on standards and unknown samples give a single in-
strumental read-out per standard or unknown sample
measurement, the resulting data is called zero-order
data. Of course, a standard can be measured several
times, but the mean value is used in the calibration,
and in essence, it is a single point measurement. The
term ‘zero-order’ is borrowed from tensor algebra [2]:
a number is a zero-order tensor. The assumption in
zero-order calibration is that only the analyte(s) of in-
terest contribute to the measured signal. This is often
a severe limitation in practice.

First-order calibration is used for first-order data.
An example of first-order data is an NIR-spectrum
taken from a standard or a sample. Essentially, a vec-
tor of measurements is generated per standard and un-
known sample. This vector (a first-order tensor) is then
used in the calibration. This is known in the analytical
chemistry and chemometric literature as multivariate
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calibration [3,4]. Considerable effort has been applied
on the development of multivariate calibration tools
[5–7]. An advantage of first-order calibration is that
it is possible to quantify the amounts of analytes of
interest in unknown samples when these samples con-
tain interferents. The only requirement is that these
interferents are also contained in the standards used to
calibrate the system.

Second-order calibration is used for second-order
data. Such data is produced by instruments that give a
matrix of responses for a single measured standard or
unknown sample. Examples of such instruments are:
hyphenated instruments [8] (GC-IR, LC-UV, GC-MS,
MS-MS, etc.); fluorescence emission/excitation in-
struments [9]; and second-order chemical sensors
[10,11]. Clearly, the number of second-order instru-
ments is growing and, therefore, the need for good
second-order calibration tools is obvious.

Several methods for second-order calibration exist
nowadays. In the early days, Rank Annihilation Factor
Analysis (RAFA) was used [12]; this was later gen-
eralized to Generalized Rank Annihilation (GRAM)
[13]. Both methods work well under certain conditions
of the second-order data: the pseudo-rank of a pure
analyte response is 1 and this pure analyte response
has the same form in the standard as in the unknown
mixture.

Pseudo-rank is defined as the rank of a measurement
if this measurement contains no experimental error.
Since all measurements are noisy, the pseudo-rank has
to be estimated and this estimate can be used to check
the condition for applying RAFA and/or GRAM. Note
that the theory of instrumentation allows in some cases
an a priori assessment of the pseudo-rank of a mea-
surement, e.g., LC–UV usually gives a pseudo-rank 1
response per analyte due to the specific properties of
the LC and UV instruments. The condition of the re-
sponse of the pure analyte having the same form in
the standard as in the unknown mixture implies that
trilinear models can be used to model the joint vari-
ation in the standard and the mixture. This is exactly
what GRAM does.

Under the above-mentioned conditions of second-
order data, second-order calibration using GRAM has
several distinct advantages. The most pronounced ad-
vantage is that it makes possible the quantification
of the analyte(s) of interest in samples containing in-
terferents. Those interferents can be completely un-

known, that is, it is not necessary that they have been
incorporated in the standards used for calibration. This
is called the second-order advantage. Another advan-
tage is that it is possible to recover the individual in-
strument responses of the analyte(s) of interest, e.g.,
the LC-chromatograms and UV-spectra can be ob-
tained for the individual analyte(s). This makes it pos-
sible to perform qualitative analysis and to check the
identity of the analytes. Hence, second-order calibra-
tion has also a resolution aspect: resolving individual
instrumental profiles. GRAM and RAFA also have a
serious drawback: they can only be used in cases of a
single standard and a single unknown mixture.

Second-order calibration in situations where the
pseudo-rank 1 restriction does not hold is consider-
ably more complicated. The direct generalization of
GRAM for situations with pure analyte responses of
pseudo-rank higher than 1 is Nonbilinear Rank Anni-
hilation (NBRA) [14]. Quantification is still possible,
but resolving individual profiles is not possible any-
more. It becomes even more complicated when the
property of rank linear additivity [15] does not hold.
Rank linear additivity means that if analyte 1 gives a
rank r1 response and analyte two a rankr2 response,
then the mixture of the two analytes gives a rank
r1 + r2 response. This is not always the case as will
be shown below in an example, and also analytes and
interferents can fail to have the rank linear additiv-
ity property. Second-order calibration using GRAM
or NBRA breaks down if the rank linear additivity
property does not hold anymore. A mathematical
treatment of the properties of GRAM, NBRA and the
relation to rank linear additivity is given by Kiers and
Smilde [16].

Several methods have been described for compli-
cated second-order calibration, that is, cases where the
rank 1 property and perhaps even rank linear additiv-
ity do not hold. One of these methods is multivariate
curve resolutions (MCR) with restrictions [10,17,18].
Another method uses restricted Tucker3 (RT3) mod-
els to calibrate the complicated second-order system
[11,19]. Both methods have been applied to a chem-
ical sensor [10,11] with reasonable success. The pur-
pose of the present paper is to use several examples
varying in complexity to show in a systematic way
the behavior of MCR and RT3 and that of a com-
pletely new method based on PARATUCK2 (PT2)
models.
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Fig. 1. The experimental set-up: C is the carrier stream (with pH
4.5); S is the injected sample; R is the injected reagent stream
(with pH 11.4); D is the detector.

Fig. 2. The flow through the flow-injection channel indicating the
sample subjected to the pH gradient (for a legend of C, S and R,
see Fig. 1).

This paper is organized as follows. The examples
are all taken from the same flow injection analysis
measurements. The system and the examples taken
from this system will be described. The theory of
the three different second-order calibration methods
(MCR, RT3, PT2) will be explained and outlined.
Then, the results will be presented.

2. Experimental

2.1. Flow injection analysis system

The flow injection analysis (FIA) system used
in this investigation [20] is shown schematically in
Fig. 1. Polypropylene tubes (0.70 cm internal diam-
eter) were used throughout. The carrier stream was
a Britton-Robinson buffer with a pH of 4.5 and the
reagent stream, a Britton-Robinson buffer with pH
11.4.

The sample was injected by an ABU 80 autoburette
(0.375 ml/min) between the carrier and the reagent
stream, as shown in Fig. 2. As the sample volume is
small (77ml) compared to the carrier stream and the
reagent (770ml), a smooth pH gradient is created over
the sample plug due to dispersion of the carrier (low
pH) and the reagent (high pH) stream.

The sample is led into an 8ml flow cell and mea-
sured on a HP 8452A photodiode array spectropho-
tometer. The sample is measured for 88 s with 1 s inter-
vals 20 s after injection from 250 to 450 nm with 2 nm
intervals. The second-order data obtained from each
sample is thus of size 89× 101. Since spikes were de-
tected in one of the channels of the photodiode-array,

the readings of this channel were removed from the
data. Hence, the actual data set for each sample is
89× 100.

The duration of detection and the pH gradi-
ent are sufficient to ensure that the analytes are
both in their acidic and basic forms during detec-
tion. Ethanol–water solutions were used in prepar-
ing the carrier, reagent, and standards so that
the final solutions were 1 : 9 ethanol–water (v/v).
The Britton–Robinson buffer contained citric acid,
potassium dihydrogenphosphate, boric acid, and
tri-(hydroxymethyl)aminomethane (TRIS) according
to Perrin and Dempsey [21]. TRIS was used instead
of 5,5-diethylbarbituric acid to prevent absorption of
the buffer in the ultraviolet region. The buffer con-
centration was 1.788 mM and the pH of the reagent
solution was adjusted with sodium hydroxide.

The test solutes 2-hydroxybenzaldehyde (2-HBA),
3-hydroxybenzaldehyde (3-HBA) and 4-hydroxyben-
zaldehyde (4-HBA) show different absorption spectra,
depending on whether they are in their acidic or ba-
sic form. Theoretically, there is no separation of the
constituents of the sample since FIA is not a chro-
matographic system but a transportation system. The
shape of the concentration profile of a specific solute
is thus the same as for the sample as such, but due
to the pH-gradient, the first part of the sample plug is
dominated by deprotonated solutes, while the end of
the sample plug is dominated by protonated solutes.
Depending on the pKa of a given solute, it will show
up with different acidic and basic profiles in the sam-
ple plug. The pKa values of the three solutes 2-HBA,
3-HBA and 4-HBA are 8.37, 8.98 and 7.61, respec-
tively [20]. Fig. 3 shows the raw data for 2-HBA. This
figure also explains graphically what the structure of
the data matrix is.

2.2. Description of the data

Three-way arrays are written as boldface underlined
uppercase characters, e.g.,A, B. Matrices are written
as boldface uppercase characters, e.g.,A, B. Vectors
are written as bold lowercase characters, e.g.,a, b.
Vectors are always column vectors. Scalars are written
as lowercase characters, e.g., a, b.

The spectra of the acidic forms of 2-HBA, 3-HBA
and 4-HBA are called, respectively,sa2, sa3 andsa4;
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Fig. 3. Landscape obtained from a sample containing only 2-HBA (top). The measured profile at 340 nm is shown below at the left (thick
line). This profile is the sum of the profile of the (unknown) acidic and basic profiles (thinner lines). Below, at the right the measured
spectrum at time 43 s is shown (thick line). This spectrum is the sum of the (unknown) acidic and basic spectra (thin lines).

and the spectra of the basic formssb2, sb3 andsb4,
respectively. The subscripts 2, 3 or 4 refer to 2, 3 or
4-HBA and the extension a or b to the acidic or ba-
sic form. Likewise, the concentration profiles of the
acidic forms of 2-HBA, 3-HBA and 4-HBA are called,
respectively,ca2, ca3 andca4; and of the basic forms
cb2, cb3 andcb4, respectively. The concentration pro-
files and spectra belong to unit concentrations of the
solutes unless stated otherwise.

The response of the pure solutes 2-HBA, 3-HBA
and 4-HBA will be called N2-HBA, N3-HBA and
N4-HBA, respectively. These matrices have the spectra
measured at different points in time in their rows.
Their order is, therefore, 89× 100, being the number
of time points versus the number of wavelengths.
Assuming Beer’s law for the measurements, the re-
sponse of the pure solute 2-HBA at unit concentration
can be written as

NNN2-HBA = cacaca2 · sasasaT
2 + cbcbcb2 · sbsbsbT

2 + EEE2-HBA (1)

where E2-HBA stands for the experimental error in
N2-HBA. Similar formulas hold for 3-HBA and 4-HBA.

Using local rank analysis techniques (e.g., fixed size
moving window evolving factor analysis [22]), it can
be concluded that the rank of the matrices consisting

of the first 10–20 rows and all the columns of the re-
sponse matrices of the pure solutes is of rank 1. This
means that there is only one UV-absorbing species in
the beginning of the response matrices. This is rea-
sonable, given the set-up of the experiment: in the be-
ginning, only the basic species is absorbing. Likewise,
local rank analysis shows that the last 10–20 rows also
of the response matrices make up a rank 1 matrix. This
means that using these local rank 1 windows, reason-
able estimates of the pure acidic and basic spectra of
all the solutes can be obtained. A non-negative least
squares step using these estimated spectra and Eq. (1)
is then sufficient to calculate the concentration profile
estimates.

In order to check the obtained estimates of the
spectra and concentration profiles, an auxiliary mea-
surement was performed for each of the solutes.
UV-spectra of the pure solutes were taken at different
pH-values, corresponding to the acidic and basic con-
ditions in the above-described FIA experiments. The
agreement between the estimates obtained with local
rank analysis and the measured ones were excellent.
From now on, these measured spectra and estimated
concentration profiles will be referred to as ‘true’
spectra and profiles, respectively.
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Closely examining the spectra and concentration
profiles, as obtained from the auxiliary experiment, it
appears that the pure spectra and concentration pro-
files of 2-HBA and 3-HBA are very similar (see also
Nørgaard and Ridder [20]). Hence, calibrations includ-
ing both these solutes will be difficult.

Assessment of the linearity of the responses was
performed. The FIA system showed good linearity.
The reproducibility of repeated measurements was
tested and resulted in a relative error of approximately
5%, which includes instrumental error and sampling
error.

2.3. Restriction on the data

During an analysis, the total concentration profile of
a solute (acidic and basic form) isca + cb. This gives
three total concentration profiles:ctot2 (=ca2 + cb2);
ctot3(=ca3 + cb3) and ctot4 (=ca4 + cb4) for 2-HBA,
3-HBA and 4-HBA, respectively.

The shape of the total concentration profile is de-
fined by the diffusion properties of the solutes. Since
the solutes resemble each other very much, it can be
expected that the diffusion behavior is equal for all
three. Hence, the shape of the total concentration pro-
files is equal:ctot2 =α · ctot3 =β · ctot4, whereα and
β are constants. This phenomenon puts a restriction
on the calibration problem and destroys the rank linear
additivity of the system. To show this, consider two
analytes 2-HBA and 3-HBA and a mixture of the two
(where, for convenience, the terms representing errors
are dropped):

NNN2-HBA = cacaca2 · sasasaT
2 + cbcbcb2 · sbsbsbT

2

NNN3-HBA = cacaca3 · sasasaT
3 + cbcbcb3 · sbsbsbT

3

MMM = cacaca2 · sasasaT
2 + cbcbcb2 · sbsbsbT

2 + cacaca3 · sasasaT
3 + cbcbcb3 · sbsbsbT

3

= (α · ctotctotctot3 − cbcbcb2)sasasaT
2 + cbcbcb2 · sbsbsbT

2 + (ctotctotctot3 − cbcbcb3)

×sasasaT
3 + cbcbcb3 · sbsbsbT

3 = ctotctotctot3
(
α · sasasaT

2 + sasasaT
3

)
+cbcbcb2

(
−sasasaT

2 + sbsbsbT
2

)
+ cbcbcb3

(
−sasasaT

3 + sbsbsbT
3

)
(2)

The last line of Eq. (2) shows that the rank ofM is 3
and not 4. Hence, rank linear additivity does not hold.

The restriction on the data has another consequence
which is related to the observation on rank linear ad-
ditivity given above. Defining the following matrices:

AAA = [ cacaca2 cbcbcb2 cacaca3 cbcbcb3 ] and

BBB = [ sasasa2 sbsbsb2 sasasa3 sbsbsb3 ] (3)

then, obviously,A is rank deficient andB has full rank.
Hence, all standard second-order calibration methods
(e.g., GRAM [13]) cannot be used immediately [16].
This rank deficiency problem is solved by the methods
proposed in this paper in different ways.

Summarizing, the FIA system represents a really
difficult second-order system: it is not a rank 1 system
and rank linear additivity does not hold. The FIA sys-
tem is, therefore, an ideal system for testing several
calibration methods for complex second-order data.

3. Theory

3.1. Restricted Tucker3 models (RT3 models)

The RT3 models will be explained with the problem
of quantifying 2-HBA in the presence of an unknown
interferent. Mathematically, this problem comes down
to

NNN2-HBA = cacaca2 · sasasaT
2 + cbcbcb2 · sbsbsbT

2 + EEE2-HBA

MMM = γ · cacaca2 · sasasaT
2 + γ · cbcbcb2 · sbsbsbT

2

+cacacau · sasasaT
u + cbcbcbu · sbsbsbT

u + EEEM (4)

where theE matrices refer to the measurement and
model error always present in real measurements. The
purpose is to estimateγ and to obtain as much infor-
mation of the unknown interferent as possible, i.e. to
obtaincau, sau, cbu andsbu (the subscript ‘u’ stands
for ‘unknown interferent’). The concentration of the
interferent inM is absorbed incau andcbu, without
loss of generality.

Due to the above mentioned restriction on the total
concentration profiles, it can be assumed that

cacaca2 + cbcbcb2 = ctotctotctot and cacacau + cbcbcbu = αctotctotctot (5)

where α is an arbitrary constant. There are several
ways to rewrite Eq. (4) according to Eq. (5). One way
of doing this is by writing

cbcbcb2 = ctotctotctot− cacaca2 and cacacau = αctotctotctot− cbcbcbu (6)

and in that case,cb2andcau can be eliminated from
the model, resulting in

NNN2-HBA = cacaca2 · sasasaT
2 + ctotctotctot · sbsbsbT

2 − cacaca2 · sbsbsbT
2 + EEE2-HBA
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MMM = γ · cacaca2 · sasasaT
2 + γ · ctotctotctot · sbsbsbT

2 − γ · cacaca2 · sbsbsbT
2

+α · ctotctotctot · sasasaT
u − cbcbcbu · sasasaT

u + cbcbcbu · sbsbsbT
u + EEEM (7)

and upon collecting the proper vectors, the following
matrices can be defined:

AAART3 = [
cacaca2 ctotctotctot cbcbcbu

]
BBBRT3 = [

sasasa2 sbsbsb2 sasasau sbsbsbu
]

CCCRT3 =
[

1 0
γ 1

]
(8)

where the choice of Eq. (6) generates a matrix with
the acidic profile of the analyte and the basic profile
of the unknown interferent.

The two matricesN2-HBA and M can be stacked
on top of each other to form the three-way matrixX.
Using Eqs. (7) and (8), this three-way matrixX can be
modelled with a Restricted Tucker model after finding
the proper core-array. Closely examining Eqs. (7) and
(8) gives the structure of the unfolded core-array as

GGGRT3 =

 1 −1 0 0

0 1 0 0
0 0 0 0

∣∣∣∣∣∣
0 0 0 0
0 0 α 0
0 0 −1 1


 (9)

where each block of 3× 4 refers to the two column
vectors inCRT3; each row refers to a column vector in
ART3; each column within a block refers to a column
vector inBRT3 and the zeroes are indicating whether a
core-array element is forced to be zero. For example,
the (1,1)th element inGRT3 describes that the first
column vector inART3 (ca2), the first column vector
in BRT3 (sa2) and the first column vector inCRT3 have
to be combined, as can be checked in formula (7).
Now, using the matricesART3, BRT3, CRT3 andGRT3
of Eqs. (8) and (9), it can be shown [19,23] that the
following holds:

[NNN2-HBA |MMM] = AAART3GGGRT3

(
CCCT

RT3 ⊗ BBBT
RT3

)
+ [EEE2-HBA |EEE] (10)

where the symbol⊗ is used to indicate the Kronecker
matrix product.

Eq. (10) gives a combined model of the measured
data: standard and unknown sample. The unknown pa-
rameters in the model areART3, BRT3 and the scalars
α andγ in GRT3 andCRT3, respectively. These param-
eters have to be estimated. An important question is

whether these parameters can be determined uniquely.
This is a very difficult issue, but it can be proved [23]
that for the model described in Eq. (10), uniqueness is
obtained forCRT3 andctot. This is an important result
since a uniqueCRT3 provides that the result obtained
in CRT3 can be used for quantification. Unfortunately,
Eq. (10) does not give unique estimates for the spectra
and concentration profiles of the unknown interferent.
However, the subspace spanned by the spectra of the
unknown interferent can be estimated uniquely [23].
This gives room for curve resolution techniques to re-
solve those spectra, but that is not pursued here.

The model parameters are estimated by means of a
constrained alternating least squares (ALS) algorithm,
where non-negativity constraints are put onART3,
BRT3, CRT3 using the non-negative least squares al-
gorithm of Lawson and Hanson [24]; applying the
constraints onGRT3 and using the fact that part of
CRT3 is known. Starting values are provided to the
algorithm and the error-sum-of-squares (the summed
norms of theE matrices) is iteratively minimized.

Note thatART3 has full rank now. The rank defi-
ciency as mentioned in the previous section is solved
by explicitly removing the linear dependency between
the columns ofA using the restriction.

Since ALS is an iterative procedure it has to be
provided with starting values. After convergence of
the algorithm, the estimates ofART3, BRT3, CRT3 and
GRT3 are obtained. For quantification, the estimated
CRT3 is important since it contains the estimated con-
centrations. The estimated concentration profiles and
spectra are obtained inART3 andBRT3, respectively.

3.2. Multivariate curve resolution (MCR)

The MCR method is explained using the same ex-
ample as above for the RT3 models; detailed explana-
tions are given elsewhere [17,18]. The starting equa-
tions are the same as above, i.e., Eq. (4) defining the
calibration problem.

The concentration profilesca2, cb2, cau andcbu are
collected in two matricesA2-HBA andAM, which are
defined as follows:

AAA2-HBA = [
cacaca2 cbcbcb2 0 0

]
AAAM = [

γ · cacaca2 γ · cbcbcb2 cacacau cbcbcbu
]

(11)
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where the ‘0’ in A2-HBA stands for a vector of zeroes
and the concentration of the interferent is again ab-
sorbed incau andcbu, as before. Likewise, the spectra
are collected inBMCR:

BBBMCR = [
sasasa2 sbsbsb2 sasasau sbsbsbu

]
(12)

Note thatBMCR = BRT3. The calibration problem of
Eq. (4) can now be written as[

NNN2-HBA
MMM

]
=

[
AAA2-HBA
AAAM

]
BBBT

MCR + EEE (13)

and, upon defining

XXX =
[

NNN2-HBA
MMM

]
and AAAMCR

[
AAA2-HBA
AAAM

]
,

estimation proceeds by alternating between

min
B̂BBMCR

∥∥∥XXX − ÂAAMCR · B̂BB
T
MCR

∥∥∥2
(14)

and

min
bf (A)MCR

∥∥∥XXX − ÂAAMCR · B̂BB
T
MCR

∥∥∥2
(15)

where the notation̂BBBMCR means that an estimate of
B̂MCR is calculated and the shapes of the estimated
analyte concentration profiles are forced to be the
same inÂAA2-HBA and ÂAAM using the trilinearity as-
sumption (see Section 1). The problems (14) and (15)
are solved under the restrictions of non-negativity for
ÂAAMCR, B̂BBMCR(using Lawson and Hansons’s algorithm
or by forcing negative values to zero) and unimodal-
ity for the concentration profiles (ÂAAMCR). After each
pair of steps (14) and (15), the estimated XXX = ÂAAMCR ·
B̂BB

T
MCRis compared with the measuredX. If the differ-

ence betweenX andX̂ (the norm of the error matrixE)
is small enough, then the algorithm is converged. The
restriction of equal total concentration profile shapes
(Eq. (5)) is not built in explicitly.

In Appendix A, it is shown thatAMCR has full col-
umn rank under mild conditions making regression
problem (14) well defined. Hence, the problem of rank
deficiency is solved by augmenting the rank deficient
matrix A (=AM) with A2-HBA. This is similar to the
procedure proposed by Amrhein et al. [25] for rank
deficient factor analysis of process data.

After convergence of the algorithm, the final esti-
mates ofAMCR andB contain the quantitative and the
qualitative information. With the algorithm, the spec-
tra and concentration profiles of the analyte 2-HBA
can be recovered. The spectra and concentration pro-
files of the interferent can be estimated, but they are
not uniquely determined (see Appendix A). Of course,
the concentration of the analyte inM (the parameter
γ ) can also be found.

3.3. PARATUCK2 (PT2) models

The calibration problem of Eq. (4) will also be used
to explain the PT2 approach. Concentrating first on a
model of the mixtureM , by definingmi

T as theith
row of M , it holds that

mmmT
i = γ · ca2,i · sasasaT

2 + γ · cb2,i · sbsbsbT
2 + cau,i · sasasaT

u

+cbu,isasasaT
u (16)

where the subscript ‘i’ of ca2, cb2, cau andcbu refers
to the ith elements of those vectors, and, again, the
concentration of the interferent is absorbed incau and
cbu. Defining the following vectors and matrices

cccT
M = [

γ 1
]

GGGPT2 =
[

1 1 0 0
0 0 1 1

]

BBBPT2 = [
sasasa2 sbsbsb2 sasasau sbsbsbu

]

AAAPT2,i =




ca2,i 0 0 0
0 cb2,i 0 0
0 0 cau,i 0
0 0 0 cbu,i


 (17)

then

mmmT
i = cccT

MGGGPT2AAAPT2,iBBB
T
PT2 (18)

which can easily be checked by using matrix multipli-
cation rules. In a similar fashion, theith row ofN2-HBA
(ni

T) can be written as

nnnT
i = cccT

NGGGPT2AAAPT2,iBBB
F
PT2 with cccT

N = [
1 0

]
(19)

and hence,

XXXi =
[

nnnT
i

mmmT
i

]
=

[
cccT
N

cccT
M

]
GGGPT2AAAPT2,iBBB

T
PT2

i = 1, ..., I = 89 (20)
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The general formulation of the PT2 model is [26]

XXXi = UUULDDDiHHH
RDDDiVVV

T with LDDDi andRDDDi

being diagonal; i = 1, ..., I (21)

and by defining UUU =
[

cccT
N

cccT
M

]
= CCCPT 2,

LDDDi =
III, HHH = GGGPT2,

RDDDi = AAAPT2,i and VVV = BBBPT2,
Eq. (20) is a special case of Eq. (21). Hence, the cal-
ibration problem (4) can be written as a special case
of the PT2 model.

Estimation of the PT2 model is performed with
an ALS scheme: fixLDi , H, RDi , V and minimize∑

i

∥∥XXXi − UUULDDDiHHHRDDDiVVVT
∥∥2

by estimatingU; then fix
LDi , H, RDi , U and estimateV by solving the corre-
sponding least squares problem, etc. This process is
continued until convergence is achieved, in the same
way as for the MCR and RT3 methods. In this ALS
scheme, restrictions are built in. First, non-negativity
is enforced in the estimation ofCPT2= [cNcM]T, BPT2
andAPT2,i by using Lawson and Hanson’s algorithm.
Secondly, sinceGPT2, LDi and part ofCPT2 are known,
these parameters do not have to be estimated. Thirdly,
since the concentration profiles should be unimodal, a
unimodality constraint was built in for the concentra-
tion profiles.

The restriction of equal shapes of concentration pro-
files (Eq. (5)) is built in using a penalty approach. To
illustrate this, suppose the least squares problem is

min
b

‖yyy − ZbZbZb‖2 subject to ttt = XbXbXb (22)

where y, Z, and t, X are given. A solution of this
problem is to reformulate it as

min
b

[∥∥∥∥ λ (ttt − XbXbXb)

yyy − ZbZbZb

∥∥∥∥
2
]

= min
b

∥∥∥∥
[

tttλ
yyy

]
−

[
XXXλ

ZZZ

]
b

∥∥∥∥
2

given a certainλ (23)

where the tuning parameterλ is used to penalize on the
restriction: ifλ is small, then the restriction oft = Xb is
‘softly’ imposed, whereas for a largeλ, this restriction
is imposed severely. This penalty procedure is used to
impose the constraint of Eq. (5) on the estimation of
APT2,i (i = 1,...,89) in the PT2 model. A high value of
λ is chosen, thereby imposing the equality restriction
in a hard way.

In Appendix A, it is shown that the PT2 model
equals the RT3 model if, in both models, the equal-
ity constraint is imposed. Hence, the PT2 model too
solves the rank deficiency by explicitly accounting for
this constraint.

3.4. Similarities and differences between
the methods

Assume that the data are ideal: no measurement er-
ror, Lambert-Beer’s law holds and the equality of the
total concentration profiles holds exactly. If the equal-
ity of the total concentration profiles is imposed on
the PT2 and RT3 models, then these models can be
shown to be mathematically identical. This is proved
in Appendix A. Moreover, if the equality as formu-
lated in Eq. (5) is present in the data, then, MCR is
mathematically equivalent to RT3; this is also shown
in Appendix A.

Summarizing, all three methods (RT3, MCR and
PT2) make a model of the measurements. All models
should fit exactly under ideal circumstances, that is,
with no noise present in the data and the model being
correct. Under these circumstances, the models are
mathematically equivalent.

In real practical situations, measurement noise is
present in the data, and Lambert-Beer’s law and the
equality of the total concentration profiles do not hold
exactly. The differences between the methods show
up during the estimation process and in the way the
constraints are built in:
1. all three methods use the non-negativity con-

straints on the estimated spectra and concentra-
tion profiles, but these are applied differently. PT2
puts non-negativity on all concentration profiles,
whereas RT3 does only apply these constraints
on the profiles inART3;

2. the constraint of unimodality of the concentration
profiles are used in MCR and PT2. In PT2, this is
done in a least squares sense, while in MCR, pa-
rameters violating the unimodality constraint are
cut off to obey unimodality;

3. the most obvious difference of the methods with
respect to the handling of constraints is the way the
constraint of equal total concentration profiles is
imposed. In MCR, this constraint is not imposed at
all; in RT3, this constraint is imposed stringently
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by making it, explicitly, a part of the model; and
in PT2, the constraint is imposed by choosing the
penalizing parameterλ; and

4. due to the way the constraints are imposed, PT2
and RT3 give least squares solutions, whereas
MCR gives an approximate least squares solution.

All the estimation methods use starting values and
an iterative scheme for estimation. Thus, they all en-
counter, to a certain extent, the problems of itera-
tive estimation: local minima, convergence problems,
slowness in the iterations, etc. Yet, there are ways to
deal with these problems, e.g., starting with different
starting values, speeding-up mechanisms, etc.

Summarizing, this is not a study of models but a
study of methodologies. The methodology consists ba-
sically of the following ingredients: the model, the
way constraints are imposed, estimation method and
initialization of the estimation method.

4. Description of the different examples

4.1. General

All the following examples will have the same struc-
ture. There is always a standard response matrix con-
taining the response of a pure analyte, and this stan-
dard is used to quantify the analyte in a mixture which,
besides the standard, also contains an unknown inter-
ferent. Due to the set-up of the experiments, this in-
terferent is known, but in the calibration, it is treated
as unknown.

The calibrations will be performed as a full
second-order calibration, i.e. an attempt will be made
to quantify the amount of the analyte in the presence
of unknown interferents (the second-order advantage).
Both quantification for the analyte of interest and
qualitative information are important. The first aspect
is of primary interest of course, but the second aspect
gives room for diagnostic checking of the results. Note
that these calibrations really test the different meth-
ods: there is only one standard, the mixture contains
unknown interferents and the solutes are very similar.

The different examples that follow have different
degrees of complexity. They will serve to illustrate the
power and shortcoming of the methods.

4.1.1. Example 1
In the first example, the standard is 2-HBA with con-

centration 0.15 mM. The mixture contains 0.10 mM
2-HBA and 0.05 mM 3-HBA as interferent. A priori,
this example is expected to be difficult since 2-HBA
and 3-HBA are very similar in response. Mathemati-
cally, this calibration problem can be stated as in Eq.
(4).

4.1.2. Example 2
In this example, 4-HBA is the analyte of interest

and a mixture of 4-HBA and 2-HBA is the unknown,
where 2-HBA serves as the unknown interferent. The
standardN4-HBA is the response of the analyte at a
concentration of 0.07 mM, and the mixture contained
0.06 mM 4-HBA and 0.05 mM 2-HBA. This exam-
ple is expected to be not too difficult since 2-HBA
and 4-HBA have dissimilar responses [20]. Mathemat-
ically, this calibration problem comes down to

NNN4-HBA = cacaca4 · sasasaT
4 + cbcbcb4 · sbsbsbT

4 + EEE4-HBA

MMM = γ · cacaca4 · sasasaT
4 + γ · cbcbcb4 · sbsbsbT

4 + cacacau · sasasaT
u

+cbcbcbu · sbsbsbT
u + EEEM (24)

where theE matrices refer again to measurement error
and the concentration of the interferent is absorbed
in cau andcbu. The restrictions on the concentration
profiles in the RT3 model become

cacaca4 + cbcbcb4 = ctotctotctot and cacacau + cbcbcbu = αctotctotctot (25)

where, again,α is an arbitrary constant. Assuming

cacaca4 = ctotctotctot− cbcbcb4 and cbcbcbu = αctotctotctot− cacacau (26)

and rewriting Eq. (24) according to Eq. (26) by defin-
ing

AAA = [
ctotctotctot cbcbcb4 cacacau

]
BBB = [

sasasa4 sbsbsb4 sasasau sbsbsbu
]

CCC =
[

1 0
γ 0

]
(27)

and

GGG =

 1 0 0 0

−1 1 0 0
0 0 0 0

∣∣∣∣∣∣
0 0 0 α

0 0 0 0
0 0 1 −1


 (28)

the RT3 model for this calibration is
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[NNN4-HBA |MMM] = AGAGAG
(
CCCT ⊗ BBBT

)
+ [EEE4-HBA |EEEM ]

(29)

and it can be shown thatC can be determined uniquely.
The uniqueness properties of this model are discussed
elsewhere [23]. A consequence of the non-uniqueness
of the spectra and profiles of the estimated interfer-
ent is that during the estimation, the acidic and basic
spectra of the interferent can be interchanged simul-
taneously with the interchanging of the acidic and ba-
sic concentration profiles. To be specific, the pair of
matricesA andB cannot be distinguished from AAA∗ =[
ctotctotctot cbcbcb4 cbcbcbu

]
and BBB∗ = [

sasasa4 sbsbsb4 sbsbsbu sasasau
]
.

This is shown in Appendix A and it holds actually for
all three calibration methods and is a restatement of
the fact that the rank 2 interferent cannot be decom-
posed uniquely in its basic and acidic spectra/profiles
(see also Section 3). However, as stated earlier, the
space spanned by the interferent spectra can be esti-
mated uniquely.

The MCR model of the calibration problem of ex-
ample is[

NNN4-HBA
MMM

]
=

[
AAA4-HBA
AAAM

]
BBBT + EEE (30)

for the proper matricesA4-HBA, AM and B defined
analogously as in Eq. (11).

The PT2 model of the calibration problem is very
similar as given in Eq. (20), the only difference being

Table 1
The quantitative results of the three different calibration methods.
The symbols used in the table are explained in the text

Examples RT3 MCR PT2

Example 1: 2-HBA
True concentration (mM) 0.10 0.10 0.10
Estimated concentration (mM) 0.0902 0.1052 0.1093
Relative error (%) 9.8 5.2 9.3
R2 0.9993 0.9990 0.9993

Example 2: 4-HBA
True concentration (mM) 0.06 0.06 0.06
Estimated concentration (mM) 0.0654 0.0610 0.0626
Relative error (%) 9.1 1.8 4.3
R2 0.9996 0.9994 0.9996

Example 3: 2-HBA
True concentration (mM) 0.10 0.10 0.10
Estimated concentration (mM) 0.1017 0.0953 0.1026
Relative error (%) 1.7 4.7 2.6
R2 0.9995 0.9995 0.9996

that, now, 4-HBA is the standard. Changes have to be
made accordingly, but an analogous model as in Eq.
(20) is obtained and not repeated here.

4.1.3. Example 3
In this example, the roles of 2-HBA and 4-HBA

are reversed compared to the previous example. Now,
2-HBA will be quantified in a mixture with 4-HBA
serving as the unknown interferent. The standard
contains 2-HBA at a concentration of 0.15 mM, and
the mixture contains 2-HBA at a concentration of
0.10 mM and the interferent 4-HBA at a concentration
of 0.06 mM.

The mathematical formulation of the calibration
problem in terms of RT3, MCR and PT2 is very
similar to the ones described in example 2 and will,
therefore, not be repeated. Again, for RT3, the con-
centration matrixC can be determined uniquely.

5. Results and discussion

5.1. Quantitative analysis

The quantitative results are summarized in Table 1.
This table shows that there is no ‘king’ method. The
numbers in this table have to be compared with the re-
producibility of 5%. Example 1 was a priori expected
to be the most difficult one, and indeed, the results for
this example are consistently the worst of all exam-
ples for all calibration methods. Nevertheless, it can
be concluded that, for all the examples, the quantita-
tive results of all calibration methods are reasonable,
keeping in mind the presence of unknown interferents
and the 5% reproducibility error. The fit of all mod-
els (RT3, MCR and PT2) to the data was calculated
(Table 1). This can be judged by theR2 values. The
R2 value has a maximum of 1, meaning a perfect fit.
All R2 values are above 0.999, indicating a very good
fit of the data. The models differ mainly due to the
way the restrictions are imposed, but they do not dif-
fer much in structure: they all fit the data very well.
The fact that the models behave similarly shows that,
for this particular application, the differences between
methodologies do not dominate the solution.
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Fig. 4. (a) The estimated acidic concentration profile of the unknown interferent with the different methods. The abbreviation ‘a.u.’ stands
for ‘arbitrary units’. True (-), MCR (-.) and PT2 (- -) estimated profiles. (b) The estimated basic concentration profile of the unknown
interferent with the different methods. True (-), MCR (-.), PT2 (- -) and RT3 (..) estimated profiles. (c) The estimated total concentration
profile of the unknown interferent with RT3. True (-) and RT3 (..) estimated profiles.

5.2. Qualitative analysis

In Section 2, it has already been mentioned that rea-
sonable estimates of the true spectra and concentra-
tion profiles were available from the auxiliary experi-

ment. Hence, the estimated spectra and concentration
profiles can be compared with those.

The qualitative results of example 2 are shown be-
cause these are representative of examples 1–3. All
methods give good estimates of the concentration pro-
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Fig. 4. (Continued).

Fig. 5. (a) The estimated acidic spectrum of the unknown interferent with the different methods. True (-), MCR (-.), PT2 (- -) and RT3
(..) estimated spectra. (b) The estimated basic spectrum of the unknown interferent with the different methods. True (-), MCR (-.),
PT2 (- -) and RT3 (..) estimated spectra.

files and spectra of the acidic and basic form of the an-
alyte 4-HBA (not shown). This is not surprising since
the problem is well-posed with respect to these pa-
rameters.

After proper matching of the true and estimated
acidic and basic spectra and concentration profiles of
the interferent, Fig. 4 and Fig. 5 could be made. Fig.
4 (a) shows the estimates of the acidic concentration
profile of the unknown interferent (2-HBA). Clearly,

MCR and PT2 do give a good estimate. Likewise,
Fig. 4 (b) and (c) give the estimates ofcbuandctot,
respectively. These estimates are also very reasonable.

Fig. 5 (a) and (b) show the quality of the estimates
of the unknown acidic and basic spectra. All meth-
ods perform reasonably well, although MCR seems to
have some trouble with the acidic spectrum of the in-
terferent, and likewise, RT3 for the basic spectrum of
the interferent. Note, however, that all three methods
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are not capable of estimating uniquely the acidic and
basic spectra of the interferent, as has been mentioned
before.

6. Conclusions

In this paper, alternative methods are given and
compared for complex second-order calibration situa-
tions. The methods give similar results for the quan-
titative analysis, making it clear that there is no king
method. The quantitative results are good, keeping in
mind the complexity of the problem, which shows that,
even for such complex data, the second-order advan-
tage is obtainable.

The qualitative results are less impressive. This
indicates that, going from the straightforward
second-order calibration cases (rank 1 pure analyte
responses) to more complex situations, a price has to
be paid. This price is in the qualitative analyses and
not in the quantitative analysis.

Scrutinizing the structural bases for the three mod-
els, it is clear that they are equal under ideal condi-
tions, i.e., no measurement error, Lambert-Beer’s law
holds exactly and the total concentration profiles are
exactly equal. As stated before in Section 3, the whole
methodology should be taken into account.

There are no clear recommendations for the method
of choice. It is merely a matter of taste, interpretability
and availability of software. The flexibility of impos-
ing constraints to a certain degree (as was done in the
PT2 model) is appealing. Such a flexibility can also
be combined with the other two approaches (MCR
and RT3). When more than one unknown interferent
is present, the situation becomes more difficult. This
is a subject of further investigation.
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Appendix A. Proof that A MCR has full column
rank

Consider the matrixAMCR (2N× 4)

AAAMCR =
[

cacaca2 cbcbcb2 000 000
γ · cacaca2 γ · cbcbcb2 cacacau cbcbcbu

]
(A.1)

It is assumed that 2N≥ 4; ca2 6= 0 andcb2 6= 0 are
not proportional; andcau 6= 0 andcbu 6= 0 are not pro-
portional, otherwiseAMCR, trivially, does not have full
column rank. These requirements are fulfilled in prac-
tice (e.g., in the examples of this paper). In order to
be of full rank, the columns ofAMCR must satisfy

µ1

[
cacaca2
γ · cacaca2

]
+ µ2

[
cbcbcb2
γ · cbcbcb2

]
+ µ3

[
0
cacacau

]

+µ4

[
0
cbcbcbu

]
= 0 ⇒ µ1 = µ2 = µ3 = µ4 = 0 (A.2)

Consider the upper part of Eq. (A.2):µ1ca2 +µ2cb2
= 0. If µ1 6= 0, thenµ2 6= 0 (sinceca2 6= 0); but this
implies thatca2 and cb2 are proportional. Since it
is assumed thatca2 and cb2 are not proportional, it
holds thatµ1 = 0. Hence, sincecb2 6= 0, it holds that
µ2 = 0. Consider now the lower part of Eq. (A.3):
µ3cau +µ4cbu = 0. Following the same reasoning, it
holds thatµ3 =µ4 = 0. Hence, the implication in Eq.
(A.2) holds andAMCR has full rank under the assump-
tions made in the beginning of this section.

Appendix B. Proof that RT3 and PT2 are equal
under ideal conditions

The RT3 model is given by Eqs. (8), (9) and
(10). For ideal conditions (no measurement error,
Lambert-Beer’s law holds exactly and the total con-
centration profiles are exactly equal), the error term
in Eq. (10) should be dropped. For any Tucker model
(and consequently, also for RT3 models), there are
alternative ways to write such a model [27]. An
alternative way of writing the (noiseless) Eq. (10) is

XXXi = CCCRT3


 3∑

p=1

aaaipGGGp


BBBT

RT3; i = 1, ..., 89 (A.3)

whereaip is the ipth typical element ofART3, X i is
the ith slice with dimensions 100× 2 of the three-way
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array X formed by stackingN2-HBA and M on top
of each other;G1, G2 andG3 are rearrangements of
GRT3:

GGG1 =
[

1 −1 0 0
0 0 0 0

]

GGG2 =
[

0 1 0 0
0 0 α 0

]

GGG3 =
[

0 0 0 0
0 0 −1 1

]
(A.4)

Writing out the summation term in Eq. (A.3), this
becomes[

cacaca2,i

0
ctotctotctoti − cacaca2,i

0
0
αctotctotctoti − cbcbcbu,i

0
cbcbcbu,i

]
(A.5)

The PT2 model is shown in Eq. (20). The matri-
ces X i , CPT2, and BPT2 equal their counterparts in
Eq. (A.3) (X i , CRT3 and BRT3, respectively). Hence,
it remains to be shown thatGPT2APT2,i equals Eq.
(A.5). APT2,i is defined in Eq. (17) and by substitut-
ing cb2,i = ctoti − ca2,i andcau,i=actoti − cbu,i , APT2,i
becomes

AAAPT2,i

=




ca2,i 0 0 0
0 ctoti − ca2,i 0 0
0 0 α · ctoti − cbu,i 0
0 0 0 cbu,i




(A.6)

and if thisAPT2,i is multiplied by theGPT2 of Eq. (17),
it results in Eq. (A.5). Hence, RT3 and PT2 are equal
if the equality constraint is applied.

Appendix C. Proof that MCR and RT3 are equal
under ideal conditions

In this part, it is shown that under ideal conditions
(as defined above), the MCR and RT3 models are
equal. Note that the equality constraint is explicitly ac-
counted for in the RT3 model, whereas this constraint
is not imposed on the MCR model. Nevertheless, it is
assumed that the constraint holds exactly in the data.

The MCR model is stated in Eq. (13). In Appendix
A, the error termE is assumed to be zero. Eq. (13)
can be rewritten as

[
NNNT

2-HBA MMMT
] = BBB

[
AAAT

2−HBA AAAT
M

]

= BBB




cacacaT
2 γ · cacacaT

2
ctotctotctotT − cacacaT

2 γ · ctotctotctotT − γ · cacacaT
2

0 α · ctotctotctotT − cbcbcbT
u

0 cbcbcbT
u




= BBB · AAAT
MCR (A.7)

where Eq. (6) is used to account for the equality con-
straint in the data.

The RT3 model of Eq. (10) can be rewritten (skip-
ping the error term) as[
NNNT

2-HBA MMMT
] = BG̃BG̃BG̃RT3(AAA

T
RT3 ⊗ CCCT) (A.8)

where

GGGRT3 =




1 0 0 0 0 0
−1 0 1 0 0 0
0 0 0 α 0 −1
0 0 0 0 0 1


 (A.9)

and, clearly, MCR equals RT3 ifAAAT
MCR = G̃̃G̃GRT3(AAA

T
RT3 ⊗ CCC

T
).Writing

out the Kronecker product of this last term, this
becomes

AAAT
RT3 ⊗ CCCT =


 cacacaT

2
ctotctotctotT

cbcbcbT
u


 ⊗

[
1 γ

0 1

]

=




cacacaT
2

ctotctotctotT

cbcbcbT
u

0
0
0

γ · cacacaT
2

γ · ctotctotctotT

γ · cbcbcbT
u

cacacaT
2

ctotctotctotT

cbcbcbT
u




(A.10)

and upon multiplying Eq. (A.10) withG̃GGRT3using
the rules of partitioned matrices, the result is AAAT

MCR.
Hence, MCR equals RT3 when the equality constraint
is present in the data and applied to the RT3 model.

Appendix D. Confusion of interferent spectra and
profiles in the RT3 model

In this part of Appendix A, it is shown that the pure
spectra and concentration profiles of the interferents
can be permuted without changing the solution. This
will be shown for the RT3 model in example 2, but it
holds for all models in all examples.
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Using the restrictions in Eq. (25) to reformulate
N4-HBA andM gives

NNN4-HBA = ctotctotctot · sasasaT
4 − cbcbcb4 · sasasaT

4 + cbcbcb4 · sbsbsbT
4

M̃MM = γ · ctot · sactot · sactot · saT
4 − γ · cbcbcb4 · sasasaT

4 + γ · cbcbcb4 · sbsbsbT
4

+cacacau · sasasaT
u + α · ctotctotctot · sbsbsbT

u − cacacau · sbsbsbT
u (A.11)

Simultaneous changingcau, cbu andsau, sbu gives

NNN4-HBA = ctotctotctot · sasasaT
4 − cbcbcb4 · sasasaT

4 + cbcbcb4 · sbsbsbT
4

M̃MM = γ · ctot · sactot · sactot · saT
4 − γ · cbcbcb4 · sasasaT

4 + γ · cbcbcb4 · sbsbsbT
4

+cbcbcbu · sbsbsbT
u + α · ctotctotctot · sasasaT

u − cbcbcbu · sasasaT
u (A.12)

and usingcbu =αctot − cau to rewriteM̃MM gives

M̃MM = γ · ctotctotctot · sasasaT
4 − γ · cbcbcb4 · sasasaT

4 + γ · cbcbcb4 · sbsbsbT
4

+(α · ctotctotctot− cacacau)sbsbsbT
u + α · ctotctotctot · sasasaT

u

−(α · ctotctotctot− cacacau)sasasaT
u = M̃MM (A.13)

where the last line of Eq. (A.13) can be deduced by
proper collecting of the terms. Hence, the calibration
models where bothsau, sbu, and simultaneously,cau,
cbu are permuted cannot be distinguished from each
other.
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