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Abstract

The present paper deals with the data exploration of three-way environmental data with the use of ‘‘Structuration des Tableaux A Trois

Indices de la Statistique’’ (STATIS). The performance of the method is compared with Tucker3 and PARAFAC2, two more commonly used

methods in chemometric N-way data analysis. The features of STATIS are demonstrated on real data sets. Due to its robust properties, lack of

special requirements for data preprocessing and ability to deal with sets of two-way tables (matrices) that do not have the same dimension for

columns or rows, STATIS appears as a very attractive three-way exploratory tool.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Environmental data sets can be multidimensional and

have a complex structure. Usually, they are collected as sets

(tables) of objects and variables obtained under different

experimental circumstances or for various sampling periods,

etc. Putting all tables together results in data with three-way

structure [1]. An example for such data is when in samples

collected at different sampling sites, the concentrations of

several chemical components are measured during certain

period of time (sites� parameters� time). There are many

tools helping to explore and interpret three- or higher way

structure of the data. The most popular ones in chemo-

metrics are PARAFAC [2,3], PARAFAC2 [4,5] and Tucker3

[6,7]. A software tool, called CUBATCH, for applying these

methods was recently presented [8].

The aim of this paper is to present a method, called

STATIS [9–11], which can also be applied for exploratory

analysis of three-way data sets, and to compare its perfor-

mance with N-way methods for the analysis of environmen-

tal data. The abbreviation STATIS stands for ‘‘Structuration
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des Tableaux ATrois Indices de la Statistique’’, which could

be translated in English as ‘‘structuring three-way data sets

in statistics’’.
2. Theory

2.1. STATIS

STATIS is an exploratory tool for three-way data analy-

sis. Its main idea is to compare different data tables

(matrices) obtained under various experimental conditions,

but containing the same number of rows and/or columns

[12]. By analogy to N-way methods, the three-way data set

is denoted by X with dimensions I, J and K, corresponding

to the number of rows, columns and tables, respectively [1].

Thus, an element of X is xijk, where i= 1, . . ., I, j = 1, . . ., J
and k = 1, . . ., K.

Each direction is called a mode and the number of levels

in the mode is called dimension (see Fig. 1a). A table Xk is a

slice of X of dimension I� Jk (see Fig. 1b) obtained by

fixing the index in the third mode. It can also be named a

frontal slab or layer. The tables Xi and Xj are called

horizontal and vertical slabs, and can be obtained by fixing



Fig. 1. (a) A three-way data array; (b) definition of k-th frontal slab; (c) unfolding of X (I� J�K) to X (I� JK); (d) the case when k-th and kV-th frontal slabs

have different column dimension (Jk p Jk V).

I. Stanimirova et al. / Chemometrics and Intelligent Laboratory Systems 73 (2004) 219–233220
the first or the second mode index. This notation, usual for

N-way methods, is introduced here in STATIS, in order to

make the description of the method comparable to that used

in N-way analysis.

To illustrate the main steps of the method [12], let us first

consider that different Xk tables, for example sites� para-

parameters (I� Jk) are put next to each other, which

results in a two-way matrix of dimension I� JK or

sites� (parameters� time) (see Fig. 1c). Such a matrix

could be analyzed by principal component analysis (PCA).

This is known as unfolding PCA. PCA performed on the

variance–covariance matrix of this composite table gives

information about similarity between sites based on param-

eters measured during different sampling times. The vari-

ance–covariance matrix for the unfolded table is obtained by

summing the individual, Wk, variance–covariance matrices:

W ¼
XK
k¼1

Wk ð1Þ

However, the knowledge how similar the individual data

tables are cannot be obtained and atypical (sites� para-

parameters) tables then have too large an influence in the

final result. In STATIS, the variance of each table is

weighted according to the similarities among the tables,

which gives a three-way character to the method and makes

results more robust and more interpretable.

W ¼
XK
k¼1

akWk ; ð2Þ

where ak is a vector of weights. As a consequence, if the

weights are equal to 1, results from unfolded PCA and

STATIS will be the same. In fact, STATIS can be considered

as an unfolded PCAwith a special weighting of the variance

of individual tables. This weighting confers its three-way

character to the method.
How the weighting is performed will be shown consid-

ering the aforementioned example. First, the tables

(sites� parameters) for different sampling time are com-

pared. For each data table, the variance–covariance matrix,

Wk (I� I), reflecting the similarities between I objects

within this data table, is computed:

Wk ¼ XkQkX
T
k ; ð3Þ

where Xk is a matrix of dimension I� Jk and Xk
T is its

transpose matrix. When all Xk matrices of X have the same

number of variables, Qk is usually the identity matrix of

dimension J� J, whereas if there are differences in number

of variables in individual Xk matrices, they can be, if

necessary, compensated by using Qk ( Jk� Jk) with the

diagonal elements equal to 1/Jk.

The similarities between two variance–covariance ma-

trices Wk and WkV for data tables k and kV, computed

according to Eq. (3), can be calculated as follows:

hWk ;WkVi ¼ traceðWkDWkVDÞ; ð4Þ

where D is a matrix of dimension I� I, the diagonal

elements of which are equal to 1/I.

The most commonly used measure of closeness between

the variance–covariance matrices is the so-called RV coef-

ficient, which has been introduced by Robert and Escoufier

[13]. For the k-th and the kV-th data tables, it is defined in

the following way:

RVðWk ;WkVÞ ¼
hWk ;WkViffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hWk ;WkihWkV;WkVi
p ð5Þ

Since hWk, Wki and hWkV,WkVi are equal to the sum of

the squared diagonal elements of Wk and WkV, respectively,
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they are the norm of the k-th and kV-th variance–covariance

matrices.

The RV coefficients are non-negative and scaled between

0 and 1, and organized into a square matrix (K�K). The

closer RV (k, kV) is to 1, the more similar the two variance–

covariance matrices k and kV are. The similarities among

tables can be visualized in the space of principal components,

after performing PCA on the RV matrix, which is called

interstructure analysis. The first eigenvector obtained after

PCA of the non-centered RV matrix is a global size variable

representing the ‘‘agreement between tables’’. Its elements

are normalized in such a way that their sum is equal to 1 and

used as weights (ak) in order to define what in STATIS is

called a ‘‘compromise’’ among K tables as a weighted sum of

the variance–covariance matrices Wk, yielding Eq. (2).

As it was mentioned above, the STATIS compromise, W,

differs from the usual way of defining the compromise as a

mean of the covariance matrices as in two-way PCA of

unfolded matrix. Including weights proportional to the

agreement between tables makes the STATIS compromise

more robust. The weight of the outlier will be closer to zero

with respect to the other weights. PCA of the compromise

matrix W (I� I) gives information about the similarity of

objects in the first mode. Their distribution can be visualized

in the space spanned by the principal components and the

representation is called compromise plot. Additionally, it is

possible to project individual covariance matrices, Wk, on

the compromise plot. Such a plot displays the location of

each object on the compromise plot as a weighted center of

K individual locations of this object. From the scores of the

compromise matrix, W, the loadings of individual vari-

ance–covariance matrices, Wk, can be obtained and this is

important for visualizing the ‘‘hidden’’ modes. The coor-

dinates (loadings) of the objects from the k-th table for f

principal components on the compromise plot are given by

the following equation:

Ck ¼ WkLE; ð6Þ

where E is a diagonal matrix ( f� f ), the diagonal elements

of which are the inverse of the square roots of the compro-

mise eigenvalues. Matrix L contains the scores of the PCA

of the compromise and has dimension I� f.

STATIS offers another possibility, which makes this

approach quite attractive for exploratory analysis. Because

the variance–covariance matrices are calculated as the first

step, in the case, when Xk and XkVhave the same dimension

in the first mode (Ik = IkV), but they differ in the second

mode dimension ( Jk p JkV) (see Fig. 1d), the compromise

for I objects can be obtained using the same algorithm. For

example, when the concentrations of chemical components

(parameters) are measured during different sampling periods

at each sampling site (parameters� time� sites), the com-

promise for the parameters can be obtained.

If all tables have the same dimension for columns and

rows, i.e. when the structure of the data is perfect, then three
different data arrangements are possible, leading to three

strategies of data analysis with STATIS. In this way, a

compromise can be obtained for each of the modes by a

different rearrangement of X. When, all data tables do not

have the same dimension for rows or columns, i.e. the

structure of the data is imperfect; the compromise is

obtained on the mode, for which all tables have the same

dimension. For the aforementioned example, it means that

compromise can be obtained on the parameters and the

sampling sites.

The algorithm of STATIS can be summarized as follows:

1. Calculate the K variance–covariance matrices as

Wk ¼ XkQkX
T
k

2. Calculate the matrix of RV coefficients (K�K)

RVðWk ;WkVÞ ¼
hWk ;WkViffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hWk ;WkihWkV;WkVi
p

3. Perform PCA of the RV matrix [S,V,S] = SVD(RV), SVD

is the singular value decomposition version of PCA [14]

ak ¼ s1=
XK
k¼1

S1k;

where s1 (K� 1) is the first column vector of the matrix S

4. Calculate the compromise among tables as:

W ¼
XK
k¼1

akWk

5. Perform PCA of W

½L;V;L� ¼ SVDðWÞ

6. Display the compromise score plot

2.2. Tucker3

Tucker3 is a method for data decomposition [6,7,15],

considered as a generalization of two-way principal com-

ponent analysis to N-way arrays. The original N-way data

array, X, of dimension I� J�K is decomposed into three

matrices A(I� S), B( J�M) and C(K�N), the elements of

which are called loadings, where S, M and N are the number

of factors extracted on the first, second and third mode,

respectively. The interactions between different modes are

explained by the core array G(S�M�N), arranged as

S�MN. The unfolded original data to X(I� JK) can be

reconstructed by Tucker3 model as:

X ¼ AGðB 	 CÞT ; ð7Þ
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where 	 is the Kronecker product. For example, for two

matrices X and Y, where X is of dimension I� J, it is

defined as:

X 	 Y ¼

x11Y : : : x1JY

] ]

xI1Y : : : xIJY

2
66664

3
77775

The data decomposition is done by means of alternating

least square algorithms [15,16]. The main steps of Tucker3

algorithm are described in Ref. [15].

Tucker3 allows easy visualization of the distribution of

the objects in the factor space in all modes, but the

interpretation is quite complicated. The difficulty comes

from the fact that one has to take into account the elements

of Tucker3 core array, G, which gives information about

important interactions between modes.

2.3. PARAFAC2

In some cases, the slabs (tables) constituting X do not

have the same numbers of rows or columns. The N-way

method, which can deal with that problem, is PARAFAC2.

The objective of the method is to model new Y data

containing the covariance matrices of the set of two-way

Xk matrices of X. If Xk matrices of X are arranged as frontal

slabs and have different columns dimension, the new Y has

dimension I� I�K. After unfolding of Y as Y(K� II), the

PARAFAC2 model can be written as follows:

YðK�IIÞ ¼ ðCA	 ACT ÞTdiagðvecHÞðA 	 AÞT ; ð8Þ

where j	j is the Khatry-Rao product [15]. Matrix A(I�F)

contains the first mode loadings and matrix C(K�F) holds

the third mode loadings, respectively, where F is the number

of factors extracted. H is the cross-product matrix of B

(H =BTB), where B holds the second mode loadings.
3. Data preprocessing

Data preprocessing takes an important place in data

analysis [17]. Several types of data pretreatment are known,

the most usual ones in two-way data analysis are centering

and scaling. Centering removes the differences in the size of

rows and/or columns. In row centering the corresponding

row mean is subtracted from each element of the data matrix.

Column centering is done by subtracting from each data

element the corresponding column mean. Centering can be

done sequentially on rows and columns, which is known as

double centering. The order of centering does not affect the

final result. Scaling can also be done on rows and columns of

the data matrix. Centering and scaling can be combined. This

is the case for autoscaling, which is applied among the others
when the variables are in different units. Its aim is to give the

variables the same importance, by making the standard

deviation of each variable equal to 1. These preprocessing

methods can be extended to N-way arrays. The preprocess-

ing of N-way data requires more caution, and several rules

on how to do this can be found in the literature [17]. Single

data centering is done across one mode and can be followed,

if necessary, by sequential centering in other modes. Scaling

in one mode will not change the data structure, whereas

scaling to unit standard deviation in two modes is not

possible. Combinations of centering and scaling for a given

mode can be performed in the same way as for the two-way

data. They are not problematic, when scaling within one

mode is combined with centering across other modes [17].

Several scalings can be performed sequentially, in both

preprocessing of two-way and preprocessing of N-way data,

but will generally need iterations and may not converge. If

centering is applied when this is not necessary, i.e. when

there is no offset to be corrected [17], it can contribute

additional artificial variation, which will destroy the data

structure and will lead to spurious results obtained by both

two-way and N-way methods.

In STATIS, depending on the problem at hand, prepro-

cessing can be done for each table separately or on unfolded

data; similar to the way this would be done for the unfolded

two-way data.
4. Data

The data set consists of the annual mean concentrations of

nine chemical components (H+, NH4
+, Na+, K+, Ca2+, Mg2 +,

Cl�, NO3
� and SO4

2�) monitored during 12 years at six

sampling sites (Reutte, Kufstein, Innervillgraten, Sonnblick,

Nasswald and Lobau), 15 years at Haunsberg and Werfen-

weng, 10 years at Litschau and Lunz, 9 years at the Nassfeld

site [18]. The data do not have perfect trilinear structure,

since for one mode (years) the dimensions of the data are not

the same for all data tables. In order to obtain also data with

perfect trilinear structure, the time dimension of the original

data was set to be 8 years for each sampling site, but as we

will show later, it is also possible to work with data with an

imperfect trilinear structure and to use all the data.
5. Results and discussion

First, STATIS is performed on the non-preprocessed data

set with perfect trilinear structure. Each data table Xk (I� Jk)

contains different sampling sites (I= 11), characterized by

chemical components ( J = 9) measured in a certain year k.

The K tables are arranged as frontal slabs in X. PCA of the

RV matrix reflecting the similarity between tables is pre-

sented in Fig. 2a.

Tables 1 (year 1990), 2 (year 1991), 3 (year 1992) and 6

(year 1995) are the most different from the mean covariance



Fig. 2. Results of STATIS for the non-preprocessed data set with perfect trilinear structure: (a) PCA of the RV matrix: PC1–PC2 plot for 8 years; (b) bar plot of

8 weights for 11 sites; (c) eigenvalues scree plot of PCA of the site compromise matrix; (d) PC1–PC2 plot of the compromise of 11 sites; (e) PCA of the RV

matrix: PC1–PC2 plot for 8 years; (f) bar plot of 8 weights for 9 variables; (g) eigenvalues scree plot of PCA of the variable compromise matrix; (h) PC1–PC2

plot of the compromise of 9 variables; (i) PCA of the RV matrix: PC1–PC2 plot for 9 variables; (j) bar plot of 9 weights for 8 years; (k) eigenvalues scree plot

of PCA of the years compromise matrix; (l) PC1–PC2 plot of the compromise of 8 years.
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(see Fig. 2a) and the weights for these tables are therefore

smaller with comparison to the others (see Fig. 2b).

The weights define the compromise for the different

sites. Two principal components, after PCA of the com-
promise, explain 92.9% of the variance (see Fig. 2c). All

sites, except Haunsberg (1), form a single group in the left

upper corner in the space spanned by the first two PCs

(see Fig. 2d). These are Innervillgraten (2), Reute (3),
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Kufstein (4), Litschau (5), Lobau (6), Lunz (7), Nassfeld

(8), Nasswald (9), Sonnblick (10) and Werfenweng (11),

which show similar ion concentration patterns for all

chemical components measured during the period of sam-

pling. The Haunsberg site is different from the compact

group.

The same compromise pattern reflecting the similarities

between sites can be obtained when the tables are arranged

as vertical slabs. In this case, the tables are compared with

respect to the measured properties. This means that each

slab (table) contains information about the ion concentra-

tions of one chemical component monitored at 11 sampling

sites during 8 years and X is of dimension 11� 8� 9.

The compromise of variables is obtained after reorgan-

izing X in such a way that variables are considered the first

mode (I = 9), sampling sites the second ( J = 11) and years of

sampling the third (K = 8). Fig. 2e presents the similarities

among tables. The sixth table (year 1995) agrees the least

with the compromise, which is reflected by its smaller

weight (see Fig. 2f). Two principal components explain

95.3% of the variance, after PCA of the compromise (see

Fig. 2g). There are two groups of variables determining the

sample composition at different sites (see Fig. 2h). The first

contains H+, Na+, K+, Mg2 + ion concentrations (marked as

1, 3, 4 and 6, respectively) and the second comprises NH4
+,

NO3
� and SO4

2� (marked as 2, 8 and 9). The samples

content mainly differs with respect to the Ca2 + (5) and

Cl� (7) ion concentrations.

If X is reshaped as I = 8, J = 11 and K = 9 or I= 8, J = 9

and K = 11, then a compromise plot reflecting the similarity

between the years can be obtained. Results for the first

combination, where tables are compared according to the

variables (see Fig. 2i) are presented. The compromise is

defined by the weights with respect to the variables (see Fig.

2j). Two PCs, of the PCA of the compromise matrix, explain

94.7% of variance (see Fig. 2k). A group of objects nos. 1

(1990), 2 (1991) and 3 (1992) can be found in the left lower

corner on the compromise plot. The others 4 (1993), 5

(1994), 6 (1995), 7 (1996) and 8 (1997) differ from each

other and from the compact group (see Fig. 2l).

Because the weights are not very different (due to not

very large differences between covariance matrices), the

STATIS results are comparable to those obtained by two-

way PCA of unfolded data.

Before interpreting these results, we will first compare

the performance of STATIS with N-way methods and the

effect of pretreatment of the data. Tucker3 was applied to

the same non-preprocessed data with perfect trilinear struc-

ture. The Tucker3 method was chosen, because similarly to

PCA, in Tucker3 the resulting loading matrices are orthog-

onal. The results are presented in Fig. 3.

The variance explained for each combination of model

complexity, starting from [1 1 1] to [5 5 5], is calculated (see

Fig. 3a). The decomposition model with two factors in each

mode, [2 2 2], explains 91.6% of the total data variance.

Further increase of the model complexity does not change
much the explained data variance. The pattern observed for

the three modes, sites, variables and time resembles the

pattern of those modes obtained by the STATIS method (see

Figs. 2d,h,l and 3b,c,d). When the results of Tucker3 have to

be interpreted further, the core array G (see Fig. 3e), the

elements of which reflect the interactions between the

modes, is taken into account.

The results were not fully interpreted for the non-pre-

processed data, because the measured properties (variables)

have different units, which leads to a large difference in the

variables range. Only the comparison of the performance of

both methods is presented. Scaling, to the unit standard

deviation within the mode containing the variables, gives

them the same importance.

The results of STATIS for preprocessed data are shown in

Fig. 4. The patterns on the compromise plots differ from those

observed for non-preprocessed data (see Figs. 2 and 4). The

compromise plot of the sites is shown for two principal

components explaining 87.9% of the variance (see Fig. 4a).

The same number of principal components is selected to

visualize the distributions of the variables and years on the

compromise plots, and the variance explained is 89.7% and

93.2%, respectively (see Fig. 4b and c). Three groups of sites

can be distinguished along PC1 on the site compromise plot

(see Fig. 4d). The first group contains the Innervillgraten (2),

Reutte (3) and Sonnblick (10) sites; the second one can be

split into two subgroups, Kufstein (4), Werfenweng (11) and

Lunz (7), Nassfeld (8) and Nasswald (9); and the third group

contains Haunsberg (1), Litschau (5) and Lobau (6). The

second PC separates the Haunsberg (1) samples from the rest.

On the variable compromise (see Fig. 4e), PC1 is a factor

reflecting the NH4
+ (2), NO3

� (8) and SO4
2� (9) ion concen-

trations of the samples. The second latent factor contrasts the

H+ (1) ion concentration with the K+ (4), Ca2 + (5), Mg2 + (6)

and Cl� (7) ion concentrations. The compromise plot for

years reveals a diffuse structure. A segregation of 1990 (1)–

1993 (4) and 1995 (6)–1996 (7) periods can be observed

along PC2. Putting all the information together, it can be

concluded that the samples can be ranked according to their

NH4
+ (2), NO3

� (8) and SO4
2� (9) content for the whole

sampling period. The Innervillgraten (2), Reutte (3) and

Sonnblick (10) samples have low, the Kufstein (4), Lunz

(7), Nassfeld (8), Nasswald (9) andWerfenweng (11) samples

intermediate and Litschau (5), Lobau (6), and Haunsberg (1)

high NH4
+ (2), NO3

� (8) and SO4
2� (9) content. Samples from

Innervillgraten (2), Reutte (3) and Sonnblick (10) have also a

somewhat lower acidity. The Haunsberg (1) samples can be

distinguished from the others by their high Ca2 + (5) and Cl�

(7) content in 1995 and 1996.

It is not necessary to obtain the compromise for the three

modes to interpret the results. Another way of representation

can be used [10]. The location of each point on the

compromise plot is a weighted center of K individual

locations of this point. This can be visualized by drawing

convex hulls through individual locations projected on the

compromise plot. The smaller dispersion of the individual



Fig. 3. Results of Tucker3 for the non-preprocessed data: (a) explained variance by models of different complexities; (b) projection of sites on the plane defined

by A1 and A2; (c) projection of variables on the plane defined by B1 and B2; (d) projection of years on the plane defined by C1 and C2; (e) core array G(2 2 2).
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locations around its compromise the better agreement

among tables in the compromise. If the convex hulls do

not overlap, it can be concluded that the compromise points

are different. For example, almost all convex hulls formed

by the individual locations (different chemical components,

1–9) on the year compromise plot (see Fig. 4g) overlap,

except the convex hulls for 1995 (6) and 1996 (7) years.

Drawing all eight (for each year) convex hulls makes the

plot unreadable in details. For this reason, to illustrate how

such plot can be interpreted the convex hull for the 1995

year (6) is drawn separately in Fig. 4h. In this way, the

information about the concentration profile for this year can
be obtained. To be able to observe the relation with the

sampling sites for the same year, the convex hull passing

through the different sampling sites is constructed. This

convex hull is presented in Fig. 4i.

Along PC1, sites nos. 2, 3, 4, 5, 7, 8, 9, 10 and 11 are

situated near the compromise point (6), whereas sites 1 and

6 are far away in Fig. 4i. Site 1 is also segregated from the

others along PC2. In Fig. 4h, parameters 2 and 8 are far

away from the compromise point along PC1, whereas

parameters 5 and 7 are different from the others along

PC2. Combining the information of Fig. 4i and h, it can

be concluded that all samples collected during 1995 (year
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6), except those from sites Haunsberg (1) and Lobau (6),

have low ion concentrations of NH4
+ (parameter 2) and NO3

�

(parameter 8). The samples from Haunsberg (1) are richer in

Ca2 + (5) and Cl� (7).

Results for the same preprocessed data set were obtained

by Tucker3. The chosen model complexity is [3 3 2], i.e.

three factors in the first and the second modes, and two

factors in the third mode. The total variance explained is

89.7% (see Fig. 5a). Because of the rotational freedom of

the Tucker3 model, the selected model is the one with a

straightforward interpretable core matrix.

The patterns observed for sites (see Figs. 4d and 5b),

variables (see Figs. 4e and 5d) and years (see Figs. 4f and

5f) are slightly different from those obtained by STATIS.

For example, year 1995 (6) can be segregated from year

1996 (7) along the second factor of the third mode C2 in

Fig. 5f, whereas this is not possible along PC2 in Fig. 4f.

The reason is that the variance explained in each of the

separate STATIS analyses is different from the total variance

explained by the complex Tucker3 model.

To interpret the relationships between the elements in

different modes the core array G is needed (see Fig. 5g).

First, the more important elements from the core array are

selected. They are (1,1,1), (3,3,1), (2,2,1) and (3,2,1). Thus,

the first three loading vectors in the first two modes and one

loading vector in the third mode should be considered in

interpretation. How to interpret the results will be demon-

strated with an example. The elements along the first factor

of the first, second and third mode have sign ‘ + ’, the core

element (1,1,1) has sign ‘ + ’ and their product is ‘ + ’. Three

groups of sites can again be observed along the first factor in

the first mode A1 (see Fig. 5b). The same groups were

observed along PC1 on the STATIS site compromise plot for

the standardized data (see Fig. 4d). The first factor of the

second mode B1 (see Fig. 5d) reflects mainly NH4
+ (2), NO3

�

(8) and SO4
2� (9) ion concentration of the samples. A

diffuse distribution of the objects can be seen along the

first factor in the third mode C1 (see Fig. 5f). It can be

concluded that the samples from all sites are ranked accord-

ing to their increasing content of NH4
+ (2), NO3

� (8) and

SO4
2� (9) during the whole sampling period. This was also

the first conclusion made from the STATIS results. In the

same manner the interpretation for the other important

elements is made. For all sites, except Haunsberg (1), Lobau

(6) and Werfenweng (11) a substantial decrease of Na+ (3),

K+ (4), Ca2 + (5), Mg2 + (6), Cl� (7) concentrations com-

bined with increase of acidity of the samples during 1995

(6) and 1996 (7) is observed. Samples from Haunsberg (1),

can be recognized from the others by their high Ca2 + and

Cl� ion concentrations during 1995 (6) and 1996 (7) years
Fig. 4. Results of STATIS for the standardized data set with perfect trilinear struc

eigenvalues scree plot, of PCA of the variable compromise matrix; (c) eigenvalues

compromise of 11 sites; (e) PC1–PC2 plot of the compromise of 9 variables; (f) P

on the year compromise plot; (h) convex hull of 9 variables drawn on the comprom

for year 1995 (6).
as well as Lobau (6) samples by their very high proportion

of K+ (4) and Mg2 + (6) during 1995 (6).

Another possibility is to perform STATIS on autoscaled

data. Autoscaling combines centering and scaling to unit

standard deviation (standardization). It removes differences

in variables range and gives them the same importance in

the data analysis. This type of pretreatment gives results that

are more interpretable from a chemical point of view, but

because we want to compare with Tucker3 and PARAFAC2,

where autoscaling is giving, for our data sets, much more

complex models, which are difficult to interpret, we insist

here more on comparing results obtained on raw data or data

after standardization. The results of autoscaled data obtained

by STATIS for the first three PCs in each mode are

presented in Fig. 6.

The first latent factor on the variable compromise (see Fig.

6a) plot reflects now the total ionic content (except H+) of the

samples, while the first PC was explaining more the NH4
+,

NO3
�, SO4

2� content of the samples when the data were only

standardized. The second PC describes the acidity of the

samples and the third latent factor is a ‘‘mixed salt’’ factor

contrasting Cl� (7) on one hand and K+ (4) and Mg2 + (6) ion

concentrations on the other (see Fig. 6b). Along PC1, the sites

on the site compromise (see Fig. 6c) are ranked according to

their total ionic content (except H+). Sonnblick (10), followed

by Innervillgraten (2) and Reutte (3) has the lowest ionic

content. Intermediate values are found for Kufstein (4), Lunz

(7), Nasswald (9) and Werfenweng (11), Nassfeld (8) has the

higher ionic content and the highest contents are found for

Litschau (5), Lobau (6) and Haunsberg (1). Haunsberg

samples can be distinguished from the others mainly because

of their higher proportion of Cl� (7) during 1995 (6), and

Lobau samples because of their high K+ and Mg2 + ion

concentrations during the same year, 1995 (see Fig. 6e and f).

5.1. Applying STATIS to data with a non-perfect structure

STATIS can be used also when the data set does not have

the same dimension for columns and/or rows (imperfect

trilinear structure). In the case of the studied data, the

properties of the samples collected at each site are measured

during different sampling periods. The performance of the

STATIS method on such data will give information about

variables and sites distribution on the compromise plots. In

order to obtain the variable compromise, X is arranged as

I = 9 (chemical components), Jk p JkV (different sampling

period of each site) and K = 11 (sampling sites). The results

of standardized data are presented in Fig. 7.

Two principal components explain 89.8% of the com-

promise matrix variance. The object distribution on the
ture: (a) eigenvalues scree plot of PCA of the site compromise matrix; (b)

scree plot of PCA of the year compromise matrix; (d) PC1–PC2 plot of the

C1–PC2 plot of the compromise of 8 years; (g) convex hulls of 9 variables

ise for year 1995 (6); (i) convex hull of 11 sites drawn on the compromise



Fig. 5. Results of Tucker3 for the standardized data: (a) explained variance by models of different complexities; (b) projection of sites on the plane defined by A1 and A2; (c) projection of sites on the plane defined

by A1 and A3; (d) projection of variables on the plane defined by B1 and B2; (e) projection of variables on the plane defined by B1 and B3; (f) projection of years on the plane defined by C1 and C2; (g) core array

G (3 3 2).
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Fig. 6. Results of STATIS for the autoscaled data set with perfect trilinear structure: (a) PC1–PC2 plot of the compromise of 9 variables; (b) PC1–PC3 plot of

the compromise of 9 variables; (c) PC1–PC2 plot of the compromise of 11 sites; (d) PC1–PC3 plot of the compromise of 11 sites; (e) PC1–PC2 plot of the

compromise of 8 years; (f) PC1–PC3 plot of the compromise of 8 years.
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variable compromise plot (see Fig. 7a) is almost the same as

in the case of preprocessed data with perfect trilinear

structure (compare Figs. 4e and 7a). On the projection

PC1–PC2, there are again three groups of parameters.

Due to the different sampling period of each site, Jk pJkV,
the variance–covariance matrix for each individual site in X

is calculated, which leads to new data Y of dimension

I� I�K. Y of dimension K� I� I is used as input data

in STATIS to obtain the compromise for sites.
The site compromise plot, constructed for two principal

components, explaining 91.9% of the variance, is given in

Fig. 7b. Three groups of sites can again be distinguished

along PC1. Haunsberg (1) and Lobau (6) sites can be clearly

segregated from the others sites along PC2.

The PARAFAC2 method, able to deal with imperfect

trilinear structures, was also applied to the studied data set.

The results are presented for the variables and sites in Fig.

7c and d, respectively. The projection of variables on the



Fig. 7. PC1–PC2 plot of the compromise of: (a) 9 variables and (b) 11 sites, after applying STATIS to standardized data with a non-perfect structure; projection

of: (c) variables on the plane defined by A1 and A2, and (d) sites on the plane defined by C1 and C2, after applying PARAFAC2 to standardized data with a

non-perfect structure; (e) projection of years on the plane defined by B1 and B2 for the Haunsberg site (1), after applying PARAFAC2; (f) projection of years

on the plane defined by PC1 and PC2 for the Haunsberg site (1), after applying STATIS.
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plane defined by the first two factors accounts for 89.3%

of the total variance. The pattern of variables is similar to

that obtained with STATIS for the variable compromise

(compare Fig. 7a and c). However, the sequence of factors

obtained in both methods is reversed. The first factor of

PARAFAC2 corresponds to PC2 of STATIS. The same

situation is observed for the site distribution (see Fig. 7d).

Again the first PARAFAC2 factor corresponds to the

second STATIS principal component. Moreover, the pat-
tern is different. The objects 1 (Haunsberg) and 6 (Lobau)

can be distinguished along PC2 on the STATIS site

compromise (see Fig. 7b), whereas they come close

together on the projection of sites in the plane defined

by two PARAFAC2 factors (see Fig. 7d). Additionally,

information about the concentration profile during the

whole sampling period of each site can be obtained. For

instance, the concentration profile for Haunsberg (1)

explains its outlying character (see Fig. 7e). During



Fig. 8. (a) Bar plot of 11 weights for 9 variables for contaminated data with imperfect structure; (b) PC1–PC2 plot of the compromise of 9 variables for contaminated data with imperfect structure; (c) PC1–PC2

plot of the compromise of 9 variables for non-contaminated data with imperfect structure; (d) projection of variables on the plane defined by A1 and A2, after applying PARAFAC2 to contaminated data; (e) bar

plot of 11 weights for 9 variables for contaminated data with perfect trilinear structure; (f) PC1–PC2 plot of the compromise of 9 variables for contaminated data with perfect structure; (g) projection of variables on

the plane defined by B1 and B2, after applying Tucker3 to contaminated data.
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1993–1997 (objects nos. 9–13), it differs from the profile

in other sampling years. The reason is the high concen-

trations of Ca2 + (5) and Cl� (7).

The same information about the concentration profile

during the whole sampling period of each site can be

achieved by the STATIS method. From the scores of PCA

(L) of the variable compromise, set of loadings (Pk) for

each of the K individual tables, Xk, constituting X for f

principal components can be obtained using the following

equation:

Pk ¼ XT
k LE; ð9Þ

where E and L have the same dimensionality as E and L in

Eq. (6).

Fig. 7f shows the concentration profile for Haunsberg

during 1985–1999 (objects nos. 1–15). The pattern ob-

served resembles the pattern obtained by PARAFAC2 (see

Fig. 7f and e). However, the sequence of factors is again

reversed.

Some differences between the results of STATIS and the

Tucker3 as well as PARAFAC2 methods can be expected

due to the different objectives of the methods. Tucker3 and

PARAFAC2 are decomposition models, which fit the orig-

inal data as well as possible, whereas STATIS reveals object

distributions on the compromise plot.

5.2. Robust properties of STATIS

The robust properties of STATIS are demonstrated on

data sets (with imperfect and perfect trilinear structure),

where deliberately a few outlying objects were introduced.

For the complete data, i.e. the data with imperfect trilinear

structure, the concentration of Na+ (3) was increased 25

times for the first year (1988), 9 times for the second year

(1989) and 16 times for the third year (1990) for the Reutte

site (table 3). The results for STATIS and PARAFAC2 are

given in Fig. 8a–d.

As expected the third site (Reutte) has now the smallest

weight (see Fig. 8a). The consequence of this is that the

variable compromise plot remains unchanged (see Fig. 8b).

For comparison, the variable compromise plot of the orig-

inal data is presented in Fig. 8c. PARAFAC2 is however

very sensitive to the presence of outliers for the same

contaminated data set. Fig. 8d shows that the variable

pattern observed is influenced to a high extent by the high

concentrations of Na+ (3) for Reutte site.

For the same site Reutte (3) the concentration value of

Na+ was increased 25 times for the first, the second and

the third year in the data set with perfect trilinear structure.

As a result of the STATIS comparison between tables, the

third table (site) has the smallest weight (see Fig. 8e). The

variable compromise plot constructed for two PCs explain-

ing 91.9% of variance remains unchanged (see Figs. 2h

and 8f).

For comparison, Tucker3 was applied to the same con-

taminated data set. The complexity of the model is [3 2 3]
explaining almost the same amount of variance as in

STATIS, 91.7%. The variable distribution is far more highly

influenced by the outlying object 3 (Na+) (see Fig. 8g).
6. Conclusions

STATIS is a three-way method for exploratory data

analysis. It is best understood starting from an unfolded

two-way table. For an I� J�K data set this is obtained by

juxtaposition of K (I� J) two-way tables. To analyze the

resulting table by PCA, the variance–covariance matrix is

used. This is normally obtained by summing the K vari-

ance–covariance matrices of the K individual tables consti-

tuting the unfolded table. STATIS first weights the

variance–covariance matrices of each table according to

the similarities between them. The tables least similar to the

mean are given the lowest weight. In this way, the three-way

character of the method is obtained.

To demonstrate the method, we have compared it with

PARAFAC2 and Tucker3, which are considered the stan-

dard methods in chemometrics for the analysis of three-way

data. We wanted to see if they give similar results when

applied to a chemical data set. Since such results depend on

the pretreatment of the data, we considered pretreatments

that are feasible also with PARAFAC2 and/or Tucker3. It

was found that STATIS and Tucker3 lead to the same results

for non-preprocessed data. When the data are standardized,

the Tucker3 model gives similar results but requires for our

data set a higher complexity to explain the same amount of

variance as in STATIS.

An advantage of STATIS, shared among N-way methods

only by PARAFAC2, is that it can deal also with imperfect

trilinear data structure, i.e. data for which one or more rows

or columns are missing in the data cube. Some small, but

unimportant, differences are observed in the results for

standardized data with both methods. STATIS has several

other features that make it a useful tool for exploratory

analysis. The first such feature is that there are no special

requirements in STATIS on how to preprocess the data. All

pretreatments that would be acceptable for the unfolded 2-

way table can be applied.

Another appealing feature of STATIS as an exploratory

tool is its robust properties. The results are not affected by

the presence of large outliers. A third feature, that should be

outlined, is its very good visualization properties. The

compromise plots with convex hulls drawn through indi-

vidual objects give an impression about the similarities and

dissimilarities among them and help to identify the variables

responsible for the dissimilarities, thereby making the inter-

pretation of the STATIS results easier.

Additionally, contrary to N-way methods, the STATIS

algorithm is very computer time efficient since it is non-

iterative.

STATIS is also subject to some limitations. It cannot be

generalized to more than three-way data and it is only an
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exploratory tool since it cannot be used in a modeling

context as can be done with other N-way models.
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