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A new procedure is discussed which fits either the weighted or simple 
Euclidian model to data that may (a) be defined at either the nominal, 
ordinal, interval or ratio levels of measurement; (b) have missing observa- 
tions; (c) be symmetric or asymmetric; (d) be conditional or unconditional; 
(e) be replicated or unreplicated; and (f) be continuous or discrete. Various 
special cases of the procedure include the most commonly used individual 
differences multidimensional scaling models, the familiar nonmetric multi- 
dimensional scaling model, and several other previously undiscussed variants. 

The procedure optimizes the fit of the model directly to the data (not to 
scalar products determined from the data) by an alternating least squares pro- 
cedure which is convergent, very quick, and relatively free from local mini- 
mum problems. 

The procedure is evaluated via both Monte Carlo and empirical data. 
It  is found to be robust in the face of measurement error, capable of recovering 
the true underlying configuration in the Monte Carlo situation, and capable of 
obtaining structures equivalent to those obtained by other less general pro- 
cedures in the empirical situation. 

Key words: Euclidian model, INDSCAL, measurement, similarities, data 
analysis, similarities data, quantification, successive block algorithm. 

1. Purpose and Motivation 

One of the most  vigorous areas of endeavor  in recent  mul t i -d imens iona l  
scaling research concerns the represen ta t ion  of ind iv idua l  differences. The  
weighted Eucl id ian  model  is cur ren t ly  the most  widely used ind iv idua l  

This project was supported in part by Research Grant No. MH10006 and Research 
Grant No. MH26504, awarded by the National Institute of Mental Health, DHEW. We 
wish to thank Robert F. Baker, J. Douglas Carroll, Joseph Kruskal, and Amnon Rapoport 
for comments on an earlier draft of this paper. Portions of the research reported here were 
presented to the spring meeting of the Psychometric Society, 1975. ALSCAL, a program 
to perform the computations discussed in this paper, may be obtained from any of the 
authors. 

Jan de Leeuw is currently at Datatheorie, Central Rekeninstituut, Wassenaarseweg 80, 
Leiden, The Netherlands. Yoshio Takane can be reached at the Department of Psychology, 
University of Tokyo, Tokyo, Japan. 

Requests for reprints should be sent to Forrest W. Young, Psychometric Lab, Uni- 
versity of North Carolina, Davie Hall 013 A, Chapel Hill, North Carolina 27514. 



8 PSYCHOMETRIKA 

differences model of the various ones that have been proposed. One of the 
m.dn attractions of this model undoubtedly relates to the strict isolation of 
iilf.ormation common to all individuals from information unique to each 
individual. The idea of representing communality among sets of observations 
by a single multidimensional Euclidean space, while representing the unique- 
ness of each individual by differential weights attached to the dimensions 
of the space is an ingeneous idea particularly conductive to simple arid 
straightforward interpretation. The fact that the dimensions of the space 
are unrotatable makes the model even more attractive. 

The weighted Euclidian model is certainly not the most general individual 
differences model proposed within the multidimensional scaling framework 
[Tucker, 1972], nor is it appropriate to all types of individual differences 
[McGee, 1968]. Furthermore, the most successful implementation of the 
model [Carroll & Chang, 1970] is severely limited in terms of the types of 
data to which the model can be applied, particularly in light of recent interest 
in nonmetric multidimensional scaling [Kruskal, 1964]. 

It  is the purpose of this paper to propose and evaluate a new procedure 
for fitting the weighted Euclidian model to data that are much less severely 
restricted than those appropriate to the Carroll-Chang procedure. Our 
procedure is appropriate to data that may have missing observations, that 
may be defined at the nominal, ordinal, interval or ratio measurement levels, 
that may be discrete or continuous~ and that may Or may not be asymmetric, 
conditional or replicated. Furthermore, our procedure is able, without 
further complications, to fit the simple unweighted Euclidian model. Thus 
several individual differences models [Carroll & Chang, 1970; McGee, 1968; 
Young, 1975] as well as models not including individual differences notions 
[Kruskal, 1964; Torgerson, 1952] and other previously undiscussed variants 
can be realized within one common framework. 

The weighted Euclidian model and the associated procedures for fitting 
the model to empirical data were proposed by several people at about the 
same time [Horan, 1969; Bloxom, Note 1; Carroll & Chang, 1970]. The most 
successful procedure and the most complete proposal is that of Carroll and 
Chang. Their INDSCAL (individual differences scaling) procedure is formally 
an n-way generalization of Eckart and Young's [1936] two-way canonical 
decomposition which Carroll and Chang call the CANDECOMP procedure. 
This procedure is performed, after an initial ~onversion of observed dissimi- 
larities to product moments, by alternately obtaining least squares estimates 
of the individual differences weights W (for fixed estimates of the stimulus 
configuration X), and then obtaining lemst squares estimates of X given W. 
This procedure belongs to a class of numekical procedures termed alternating 
least squares (ALS) procedures by de Leeuw, Young and Takane [1976], 
which have the desirable property of being necessarily convergent. That is, 
it is never possible for an ALS procedure to obtain an iteration which worsens 
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the function it is designed to optimize. On every iteration the function must 
be improved due to the conditional least squares properties of each phase 
of an ALS procedure. More will be said oil this later. 

The Carroll-Chang CANDECOMP procedure has two consequences 
which are relevant to the present discussion. First, the minimization criterion 
(called STRAIN, by Carroll) is defined in terms of the product moments 
computed from the raw data, not in terms of the raw data themselves. Thus 
INDSCAL does not optimize the fit between the weighted Euclidian model 
and the data, strictly speaking, but rather the fit between a vector product 
model and a transformation of the data. Second, due to the operation which 
converts dissimilarities into scalar products (which involves addition, etc.), 
the procedure is metric. 

Bloxom [Note 1] proposed a gradient procedure to optimize STRAIN 
which is also a metric procedure. Unfortunately, due to the nature of gradient 
procedures, the convergence properties of the Carroll-Chang ALS-type 
procedure are lost. This may account for the reported [Carroll & Chang, 1970] 
inferiority of Bloxom's procedure in terms of speed of convergence relative 
to the INDSCAL procedure. Perhaps for this reason Bloxom [1974] proposed 
another procedure based on the equivalence of the problem as posed in the 
STRAIN framework to the analysis of covariance structures proposed by 
Jhreskog [1970]. The performance of this proposal has yet to be investigated. 

Schhnemann [1972] presents an elegant algebraic solution for the weighted 
Euclidian model. However, since the logic of his developments is not oriented 
towards optimizing a well defined quantity, it cannot be applied to real data 
with the expectation of unqualified success, as Schhnemann notes. This means 
that the procedure has little practical significance to the data analyst. His 
idea, however, has been extended by de Leeuw [Note 5] to obtain a rational 
initial start to be used for more robust procedures for fitting the weighted 
Euclidian model. We w'ill go into this topic further in later portions of this 
paper. 

All of the procedures discussed up to this point place very stringent 
requirements on the data. Specifically, they all require that the data be 
symmetric, have no missing observations, be unreplicated and unconditional, 
and be defined at least at the interval level of measurement. Several proce- 
dures which relax some or all of these restrictions have been proposed and 
investigated, with varying degrees of success. 

Carroll and Chang's first nonmetric procedure, mentioned briefly in 
their original paper [1970] and called NINDSCAL (nonmetric INDSCAL) 
is a two-phase procedure which uses the metric CANDECOMP procedure in 
the first phase (iteratively until convergence) and Kruskal's [1964] least 
squares monotonic regression in the second phase. These two phases are 
iteratively applied. It is important to note that the first phase minimizes 
STRAIN (which is defined on scalar products as discussed above), whereas 
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the second phase minimizes Kruskal's STRESS, which is defined on the raw 
data. Since two different functions are involved, NINDSCAL has no assurance 
of convergence on a stable point, and eventually either oscilates or diverges 
after a few iterations. Furthermore, the procedure is very inefficient, and 
of the several data restrictions noted relaxes only the measurement level 
requirements. 

For these reasons, Carroll and Chang have recently [Note 3] proposed 
another nonmetric procedure to minimize STRAIN that uses an ALS method 
after initial estimates of W and X are obtained by an improved CANDECOMP 
procedure. This approach, which involves STRAIN in all phases of each 
iteration, is the first stable procedure for nonmetric multidimensional scaling 
which involves the weighted Euclidian model. It  has the highly desirable 
consequence of relaxing all of the data restrictions noted above. However, 
the procedure is within the STRAIN framework, and thus does not directly 
optimize the fit between the distance model and the raw data, but rather 
between the scalar products computed from an optimal monotonic trans- 
formation of the raw data and the scalar products computed from the coor- 
dinates. Of the various procedures reviewed here, this is the soundest (at least 
theoretically), although its efficiency is yet to be reported. 

A third nonmetric procedure for fitting the weighted Euclidian model 
has been tried by the second author of this paper. This procedure uses a 
gradient technique to simultaneously improve estimates of W and X by using 
the derivatives of the STRESS loss function. While this procedure Ca) uses 
one loss function throughout the entire procedure, and (b) optimizes the fit 
to the data directly, it has been found to be highly susceptible to the exact 
nature of the starting point. A careful choice of the initial orientation of X is 
required. Although this difficulty could be remedied by using de Leeuw's 
[Note 5} initial rotation procedure (as is done in the work to be reported here), 
it appears to be the case that the procedure still suffers from the use of the 
gradient procedure. 

Finally, a gradient procedure has been proposed by Yates [Note 17] 
for nonmetrically fitting the weighted Euclidian model. This procedure is in 
neither the STRESS or STRAIN framework; rather, it attempts to minimize 
the proportion of variance in the model which is due to incorrectly ordered 
pairs of distances (relative to the order of the dissimilarities). This goal has 
been adopted by several authors in the context of the unweighted Euclidian 
model [Guttman, Note 9; de Leeuw, Note 6; Johnson, 1973], and has been 
fully discussed by de Leeuw [1975] and Young [1975]. While this procedure 
has the advantage of optimizing a relationship defined directly in terms of 
the raw data and subjects the data to none of the restrictions mentioned 
above, it suffers from mixing together two different optimizing functions, as 
shown by de Leeuw [1975] and discussed by Young [1975]. 

In this paper we present a new nonmetric procedure f()r fitting the 
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weighted Euclidian model which a) is in the STRESS framework; b) uses the 
ALS approach; and c) removes all of the data restrictions mentioned above. 

2. The Problem 

The problem we solve in this paper is that of obtaining a robust and 
efficient procedure for nonmetric individual differences multidimensional 
scaling. In this section we discuss the most important aspects of the problem, 
namely the individual differences models, the types of data, and the optimiza- 
tion criterion utilized in our work. 

I ndivid**al Differences Models 

As emphasized in the previous section, we use the weighted Euclidian 
model to represent individual differences. This model is 

d 2 ~ w~(xio - x~o) ~, ~,o > O, (1) ,i~ = _ 
a=l  

as is well known (the non-negativity restriction is optional). However, as 
was briefly mentioned in the preceding section, we also treat the (unweighted) 
Euclidian model within our framework. This model is equivalent to (1) when 
all w~ = 1, and can also be viewed as an individual differences model in 
certain circumstances. We will discuss the full variety of models subsumed 
by (1) in Section 5 of this paper. 

Types o] Data 

Previous authors of multidimensional scaling papers [Shepard, 1962; 
Kruskal, 1964; Guttman, 1968; Carroll & Chang, 1970] have emphasized a 
dichotomy of measurement levels which they termed metric and nonmetric. 
When placed in the context of Stevens's [1951] measurement theory, it is 
clear that these terms correspond to three of the four measurement levels 
delineated by Stevens, namely ordinal (nonmetric) and interval or ratio 
(metric). The developments presented here, on the other hand, extend multi- 
dimensional scaling to data defined at all four of Stevens's levels, including 
the nominal level. Furthermore, we also distinguish two types of measurement 
processes (discrete and continuous) and three types of conditionality (un- 
conditional, matrix-conditional, and row-conditional). While we discuss these 
notions here as though they form "types of data," this is a pedagogical 
simplification of our philosophical position, as will be discussed in Section 5. 

The general nature of the problem faced by an ~nalysis procedure explicitly 
designed for data having such a wide variety of measurement characteristics 
is best viewed in the light shed by Fisher's notion of optimal sealing [Fisher, 
1946]. Fisher's objective in proposing optimal scaling was to scale the observa- 
tions so that (a) they would fit the model as well as possible in a least squares 
sense, and (b) the measurement characteristics of the observations would 
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be strictly maintained. Fisher's optimal scaling notion is one of the corner- 
stones of our own work. 

Let  us define the squared observations O, the optimally scaled squared 
observations D*, and the squared distances D. (The optimally scaled squared 
observations are commonly referred to as the disparities in the MDS context. 
We sometimes refer to them as the estimates, since they are least squares 
estimates of the squared distances.) Each of these symbols represents a 
collection of matrices. Tha t  is, 0 is a collection of all matrices O, for all 
individuals i from whom we have obtained observations o,ik about stimulus 
pairs (j, k). Correspondingly, D* is the collection of matrices D~* with elements 
d ,k  .2, and D is the collection of all matrices D with elements dlik 2 defined 
by (1). 

With these definitions we can formally represent the optimal scaling 
problem as a transformation problem, as follows. We wish to obtain a trans- 
formation t of the raw observations which generates the optimally scaled 
observations d,~*; i.e., 

(2) t[o.~] = [d,i~*], 

where the precise definition of t is a function of the measurement level, 
process, and conditionality, and is such that  a least squares relationship 
exists between d,k* and d,k given that  the measurement characteristics are 
strictly maintained. In the remainder of this section we discuss in detail the 
measurement restrictions which must be maintained. In a later section we 
present the corresponding least squares methods for obtaining the trans- 
formations. 

To fully understand the several levels, process, and conditionality restric- 
tions, we must first introduce a concept which is crucial to our work. I t  is our 
view that  all observations are categorical. That  is, we view an observation 
variable as consisting of observations which fall into a variety of categories, 
such that  all observations in a particular category are empirically equivalent. 
Furthermore, we take this "categorical" view regardless of the variable's 
measurement level and regardless of the nature of the process which generated 
the observations. Stated most simply, it is our view tha t  the observational 
process delivers observations which are categorical because of the finite 
precision of the measurement and observation process, if for no other reason. 
For example, if one is measuring temperature with an ordinary thermometer 
(which is likely to generate interval level observations reasonably assumed to 
reflect a continuous process), it is doubtful whether the degrees are reported 
with any more precision than whole degrees. Thus, the observation is cate- 
gorical: there are a very large (indeed infinite) number of uniquely different 
temperatures which would all be reported as say, 40 ° . Thus, we say tha t  the 
observation of 40 ° is categorical. 
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As we will see, the three types of measurement restrictions (level, process, 
and conditionality restrictions) concern three different aspects of the obser- 
vation categories. The process restrictions concern the relationships among 
all the observations w i t h i n  a single category; the level restrictions concern 
the relationships among all the observations b e t w e e n  different categories; 
and the conditionality restrictions concern the possibility of sets of categories. 
We will first take up the process restrictions, then the level restrictions, and 
finally the conditionality restrictions. 

There are two types of process restrictions, one invoked when we assume 
that  the generating process is discrete, and the other when we assume that  
it is continuous. One or the other assumption must always be made. If  we 
believe that  the process is discrete, then all observations within a particular 
categoi'y should be represented by the same real number after the trans- 
formation t has been made. On the other hand, if we adopt the continuous 
assumption, then each of the observations within a particular category should 
be represented by a real number selected from a closed interval of real num- 
bers. These process restrictions are related to the "primary-secondary" 
distinction discussed by Kruskal [1964], and to the "weak-strong" distinction 
discussed by Gut tman [1968]. In the discrete case, the discrete nature of the 
process is reflected by the fact tha t  we choose a single (discrete) number to 
represent all observations in the category. In the continuous case, the con- 
t inuity of the process is reflected by the fact tha t  we choose real numbers 
from a closed (continuous) interval of real numbers. Formally, we define the 
two restrictions as follows. The discrete restriction is 

( 3 )  c ~ : ( o , ~  ~ o,..o) - - .  ( d . ~ *  = d . . o* ) ,  

where ~-~ indicates empirical equivalence (i.e., membership in the same cate- 
gory) and where the superscript on t ~ indicates the discrete assumption. The 
continuous restriction is represented as 

4 + (4)  t": (o,i~ o.,,,,o) ~ ( d . , , -  = d,~,,o- < d . ~ *  < d + = d ..... ) ,  

l ( d ,  ik-  d . . . .  - < d.. .o* < d,i , ,  + = d,..o+), 

where d . , o -  and d.~ + are the lower and upper bounds of the interval of real 
numbers. Note that  one of the implications of empirical (categorical) equiv- 
alence is that  the upper and lower boundaries of all observations in a particular 
category are the same for all the observations. Thus, the boundaries are more 
correctly thought of as applying to the categories rather than the observa- 
tions. Denoting this, however, would involve a somewhat more complicated 
notational system. Note also that  for all observations in a particular category 
the corresponding rescaled observations are required to fall in the interval 
but  not to be equal. 
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We now turn to the second set of restraints on the several measurement 
transformations t, the level restraints. With these restraints we determine the 
nature of the allowable transformations t so tha t  they  correspond to the 
assumed level of measurement of the observation variables. There are, of 
course, a variety of different restraints which might be of interest, but we only 
mention three here. With these three, we can satisfy the characteristics of 
Stevens's four measurement levels. 

For nominal variables, we introduce no level restraints as the charac- 
teristics of nominal variables are completely specified by the previously 
mentioned process restraints. 

For ordinal variables, we require, in addition to the process restraints, 
that  the real numbers assigned to observations in different categories represent 
the order of the empirical observations. That  is, 

(5)  t ° : (o,i,o < oo,.o) - ~  ( d . ~ *  < d . . . .  * ) ,  

where the superscript on t o indicates the order restriction, and where < indi- 
cates empirical order. Note tha t  we require weak order; i.e., the assigned 
numbers are permitted to be equal even if the observations are not. The 
problem of what to do about ties has already been handled by our previous 
discussion of the process restrictions. If the variable is discrete-ordinal (t'*°), 

then tied observations remMn tied after transformation, whereas for con- 
tinuous-ordinal (t °°) variables, ~ied observations may be untied after trans- 
formation. 

For quantitative (interval or ratio) variables, we require that  the real 
numbers assigned to the observations be linearly related to the observations. 
That  is, 

(6)  tl : d , ~  * = ~o + ~ , o , ,  , 

where ~o = 0 for ratio variables. When necessary we denote the interval 
transformation as t ~ and the ratio transformation as t ~. More generally, we 
may require tha t  the assigned numbers be related to the observations by a 
polynomial of known degree: 

(7)  t": d.~* = ~_. ~o,ik',  
q=O 

(where the summation starts at 1 for ratio variables). Note that  we still 
think of the observations as being categorical even if the measurement level 
is quantitative, although this is not very illuminating since each category 
will generally have only one observation (i.e., there are usually no ties). 
Thus the discrete-continuous distinction is usually only of academic interest 
with quantitative variables and will not be pursued further. 

Finally, we ~.iarn to the third type of measurement restrictions, those 
concerning the conditionality of the observations. As has been emphasized 
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by Coombs [1964], it may be that  the measurement characteristics of the 
observations are conditional on some aspect of the experimental situation in 
such a way that  some observations cannot be meaningfully compared with 
other observations. For example, if several subjects in a paired comparison 
similarity experiment are required to judge the similarity of all pairs of 
stimuli, we are usually unwilling to say that  one subject 's judgment of 7 
(on a similarity scale of 1 through 9, for example) can be said to represent 
more similarity than another subject 's judgment of 6. We just are not sure 
that  the subjects are using the response scale in identical ways. In fact, we 
are pret ty  sure tha t  they do not use the scale identically, so we say that  the 
measurements are conditional on the subject. More generally, we refer to 
this type of conditionality as matrix-conditionality, since all observations 
within a matrix are comparable, but  not those observations between matrices. 
I t  is also possible to have row-conditionM observations, as discussed by 
Coombs [1964, Ch. 17], and unconditional observations. (Note that  Coombs' 
unconditional case corresponds with our matrix-conditionM case.) 

Formally, we state tha t  the domain of the measurement transformation 
t is dependent on the type of conditionMity. For unconditional data the domain 
is the entire set of observations and the transformation is denoted t. For 
matrix-conditional data the domain is a single matrix of data  and the trans- 
formation is denoted t~ . Finally, for row-conditional data  the domain is a 
single row of a single matrix, and the transformation is denoted I ,  . The 
previous discussion of measurement level and process wel~e implicitly in terms 
of unconditional data, and all of the definitions of level and process must be 
modified appropriately. We do not explicate these modifications here as they 
are lengthy and obvious. Of course other patterns of conditionality are 
possible, though unlikely. I t  may also sometimes be the case that  different 
measurement levels or processes may be associated with conditionality. 
We do not go into these generalizations in this paper, although they have 
been discussed by Young [1973] and Kruskal, Young and Seery [Note 14]. 

Opli~izalion Criteria 

Most of the procedures for fitting the weighted Euclidian model which 
we discussed in the first section were in the STRAIN framework. Tha t  is, 
they were designed to optimize a suitably normalized version of the function 

N 

(8) ~2(X, W, P*) = ~ t r  (P,* - XW,X ' ) ' (P ,*  - X W , X ' ) ,  
- -  i = t 

where P* is the collection of P~* for i = 1, . . .  , N, where W~ is a diagonal 
matrix of weights for subject i, and where P~* is the matrix of pseudoscalar 
products derived from subject i's dissimilarities under either metric or non- 
metric assumptions. I t  should be emphasized that  the pseudoscalar products 
P* are determined from the optimally scaled data  D* according to the pro- 



] 6 PSYCHOMETRIKA 

cedure first suggested by Eckart and Young [1936]. This procedure involves 
multiplying each element d~i~ *~ by - 1 / 2  and then, using these --1/2d~it, .2, 
subtracting the row and column mean from and adding the matrix mean to 
each --1/2d,k .2. This process, known as doubling centering, yields the 
elements p,l~* of P*. The matrix P,* is called a matrix of pseudoscalar 
products because if r real principal components of P~* are obtained, and if 
these components are arranged column-wise in a matrix F ; ,  then P~ = F,F{ 
is the rank r matrix which is a least squares fit to P~*. Commonly, both P, 
and P~* are referred to as scalar product or product moment matrices, but 
sometimes, for the sake of clarity, we refer to P~* as "pseudo" scalar products, 
and P, as scalar products. 

Equation (8), STRAIN, is a least squares criterion defined between the 
scalar products derived from the data and the scalar products derived from 
the model. Although the optimization of STRAIN is very straightforward 
when the data are metric, it is rather complicated when they are nonmetric. 
Two fundamentally different optimization procedures have been proposed. 
The more satisfactory of these approaches, proposed by Carroll and Chang 
[Note 3], assumes that the observed dissimilarities must be monotonic with 
a set of values from which the scalar products P{~; are computed. That is, 
it is required that 

(.~) t°[o, .~] = [d . ,o*] ,  

so that P~* may be computed from D~* in a way which optimizes STRAIN. 
While the measurement aspects of this approach are sound, the optimization 
problem is very complex, and the efficiency and robustness of the procedure 
is yet to be documented. The other, less satisfactory approach, taken by 
Levinsohn and Young [1974], involves computing a matrix of scalar products 
P~ directly from the raw observations at the outset of the analysis. The 
procedure then optimizes STRAIN under the assumption that P~ is non- 
metric. That is, this procedure requires that 

(10) t°[P,;~] = [P,ik*]. 

Certainly the measurement aspects of this approach are confusing since the 
data must be assumed to be metric in order to derive the scalar products 
which are themselves assumed to be nonmetric. I t  might be pointed out, 
however, that  this approach is by far the simplest computationatly, and has 
the desirable property of requiring much less storage than any of the other 
procedures discussed in this paper. This procedure, then, is particularly 
suited to small computers. 

Due to the complexity of the first procedure and the measurement 
characteristics of the second, we are inclined to adopt a criterion which is more 
consistent with the STRESS framework. More precisely, we define a ]east 
squares criterion on the squared distances, namely 
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i - -1  

(11) ~2(x, w ,  D*) = ~ ~ ~ ( d . W  - d.,,~) 2, 
i i k 

where d~j~ .2 is an element of D~*, where d~10* is defined by (1), and where (11) 
is subject to suitable normalization conditions. Since (11) is in the STRESS 
framework, but  differs in tha t  it is defined on squared distances d ~  z and 
squared estimates d.~ *~, we refer to the formula as SSTRESS. (Note that  
d~i~ .2 is the least squares estimate of d~n 2, not the square of the least squares 
estimate of d~i, . . )  Hayashi [1974] and Obenchain [Note 15] have developed 
multidimensional sealing procedures within the SSTRESS framework, and 
Young [Note 18] has discussed the index. 

While SSTRESS and STRESS are not strictly equivalent, the monotonic 
restriction 

t°[o.,~ ~] = [ d , f ] ,  

defined on 0.~02 and d.k .2 is precisely equivalent to the monotonic restriction 
defined on o.k and dii~o*. While this precise equivalence also follows with the 
nominal and ratio levels of measurement, it does not follow with the interval 
level of measurement, where a linear relationship between 0..,: and d~i~:* 
implies a nonlinear relationship between 0.~, '~ and d . S  2. We will further 
investigate this inconvenience later on, but  at the moment it suffices to say 
that  this diffÉculty can be surmounted. Tiffs allows us to state that the mea- 
surement restrictions 

02)  t[o,,~] = [d,..*], 

and 

(129 t[o.,~, '~1 = [d.~*~], 

are equivalent over the four measurement levels. 
We do not mean to imply that  SSTRESS is in every way equivalent to 

STRESS, of course. One important  difference is that  large values of d,k 
and d,k* receive more emphasis with SSTRESS thau STRESS. A simple 
example will make this clear. Suppose we have the followb~g two cases: 

(A) d.~ = 2, d . k *  = 1, 

(B) d~;k = 5, d~ik* = 6. 

If we use STRESS the relative contribution of these discrepancies is equal, 
but  if we use SSTRESS we have a ratio of 3 to 11, which is quite different 
from equality. This effect is more marked when we compare the case 

(C) di;i,. = 5, d,i,:* = 4, 

with Case (B). In Case (C) we have squared discrepancies of 9 if evaluated 
by (11). So even if we have the same d~i~, and the difference is equal when 
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STRESS is used, the direction of the difference differentially contributes to 
SSTRESS. A simple algebraic manipulation clarifies the point even further. 
Define 

where e ~  may be positive or negative. With STRESS the amount that the 
discrepancy between d,~: and d~i~,* contributes is simply e,~: ~. However, 
with SSTRESS we have 

= e,i~2[e,k + 2d, il:] '2, 

so that not only the absolute magnitude of e~i~: but also the sign of e~ik (d,~, is 
always non-negative) and the magnitude of d,~: are related to the overall 
evaluation of fit. The relation, although algebraically tractable, is not straight- 
forward and not entirely illuminating. We cannot compare the absolute 
magnitude of fit because the normalization factors in the two formulas may 
be different. 

There is, of course, no a priori reason for choosing one or the other of the 
two formulas. The important point is that the adoption of the SSTRESS 
formula is perfectly compatible with the measurement level restrictions 
mentioned above (just as is STRESS), whereas the STRAIN formula is not. 
Our basic reason for choosing SSTRESS over STRESS is, simply, algorithmic 
convenience. As you may have noticed, the individual differences weights W 
(Eq. 1) are linear with respect to the squared distances, but not with respect 
to the distances themselves. This greatly simplifies the estimation procedure 
since the least squares estimates of W can be obtained by a series of elementary 
matrix operations when SSTRESS is adopted as the optimization criterion. 

3. The A L S C A L  Algorithm 

In this section we present in detail an alternating least squares algorithm 
for individual differences scaling (ALSCAL). 

The alternating least squares (ALS) method is a general approach to 
parameter estimation which involves subdividing the parameters into several 
subsets, and then obtaining least squares estimates for one of the parameter 
subsets under the assumption that all remaining parameters are in fact known 
constants. The estimation is then alternately repeated for first one subset 
and then another until all subsets have been so estimated. This entire process 
is then iterated until convergence (which is assured) is obtained. 

With this general definition of ALS one can find its beginnings in the 
work of Yates [1933] and Horst [Note 11], and follow its development through 
many researchers, culminating in the NILES/NIPALS work of Wold and 
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associates [Wold & Lyttkens, 1969]. Generally ALS has been used in the 
metric situation where one is concerned only with estimation of the model 
parameters. The extension of ALS to the nonmetric situation in which the 
procedure is used to estimate data parameters (i.e., to optimally scale the 
data) as well as model parameters was first made by Torgerson, in the initial 
configuration routine of the TORSCA algorithm for nonmetric multidimen- 
sional scaling [Young & Torgerson, 1967]. Since then ALS has been used by 
Roskam [Note 16] in the nonmetric principal components situation, Young 
[1972] for initial values in the polynomial conjoint scaling situation, de Leeuw 
[Note 4] for the canonical analysis of categorical data, de Leeuw, Young and 
Takane for nonmetric ANOVA [1976] and Young, de Leeuw and Takane for 
nonmetric multiple and canonical regression [1976]. The most recent non- 
metric results directly motivated the present work, which extends the ALS 
approach to quadratic models. 

The ALSCAL algorithm involves two major phases and two minor 
phases. The first major phase involves obtaining the least squares estimates 
of the optimally scaled observations D* under the assumption that the 
configuration X and the weights W are constants. That is, we solve the 
conditional least squares problem which minimizes SSTRESS (11) under 
the condition that X and W are not variables. Notationally, we indicate 
this as MIN~), [~b2(D * I X, W)]. The second major phase involves two separate 
minimization subphases, the first solving the problem MINw[O~(W t X, D*)] 
and the second the problem MINx[O2(X I W, D*)]. The two minor phases are 
initialization and termination phases. The flow we have chosen is as follows. 

. Initialization phase 

Compute the initial values of X and W directly from 0 usi~g a 
modification of SchSnemann's algebraic solution. 

. Optimal scaling pitase 

1.1 Calculate the squared weighted Euclidian distances D using 
X and W. 

1.2 Obtain the optimally scaled (least squares estimated) dis- 
parities D* from the distances D, the observations 0, and 
the relevant measurement restrictions. Use the de Leeuw, 
Young and Takane [1976] method. 

1.3 Normalize appropriately. 

2. Termination phase 

Determine whether the rate of improvement of SSTRESS is 
sufficiently low to warrant termination. If so, print results and 
stop. If not, go to the next step. 



20 PSYCHOMETRIKA 

3. Model estimation phase 

3.1 Calculate the new least squares estimates of the weights W 
from the old X and the new D* (from step 1.3) by regression 
techniques. 

3.2 Impose nonnegativity constraints on W, if necessary, by 
an ALS technique developed here. 

3.3 Calculate the new least squares estimate of the configuration 
X from the new weights just calculated ill steps 3.1 and 3.2 
and the D* computed in step 1.3, by using Gill and Murray's 
modification of the Newton-Raphson procedure. 

3.4 Return to step 1.1 for another iteration. 

Finally, a comment should be made about the ensuing discussion, which 
is limited to the weighted Euclidian model as applied to symmetric data 
with no missing elements. These limitations are only made to simplify the 
discussion. The unweighted Euclidian model may be fit to the data by simply 
skipping the weight estimation phase (which implicitly fixes the weights 
to unity). Asymmetric data may be easily handled by changing summation 
ranges and matrix orders. Missing data may be treated by excluding all 
missing elements from the optimization criterion, with estimates of the 
missing data being generated from the model parameters obtained at the 
conclusion of the analysis. All of these options have been included in the 
ALSCAL program, and, as will be demonstrated in Section 4, have been 
extensively evaluated. 

Initialization Phase 

The initialization procedure discussed in this section is very similar to 
the work presented by Sch6nemann [1972] in which he obtained an algebraic 
solution to (8) for the error-free ratio measurement level case. 

Let us suppose that there are N scalar product matrices P, (one for each 
of the N subjects i) of order n (there are n stimuli) which satisfy 

(13) P, = X W , X ' ,  

where the symbols are defined as in (8). (Recall that W~ is a diagonal matrix 
of weights for subject i, whereas W is a rectangular matrix of weights for all 
subjects.) The problem is to recover X and W~ from the P~ , under the 
assumption that X is of full column rank, and that the diagonal elements 
of W~ are strictly positive for at least one subject. For any nonsingular 
diagonal matrix T of order t (there are t dimensions), we have 

(14) P, = X T ( T - ' W , T - ' ) T X ' ,  

and consequently must make some restriction on the size of the W; for 
identification purposes. Thus, we define 
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1 N 
= ~ _ , W , ,  

and assume that D. = I, implying that P. = X X '  (where P is the average 
P,) .  Solutions to this particular equation are determined up to a rotation. 
We select an arbitrary one of them, for example by using t steps of a Cholesky 
process or by using the t dominant eigenvalues and vectors of P . .  Call this 
arbitrary solution Y. It  follows that 

X = Y K ,  

where K is a rotation matrix. We also know that 

( X ' X ) - ' X ' P ~ X ( X ' X ) - '  = W , ,  

should be diagonal for each i. It  follows that we should select our rotation 
K in such a way that 

( 1 5 )  K ' ( Y ' Y ) - I Y ' P , Y ( Y ' Y ) - ~ K  = W , ,  

is diagonal for each i. (Note that K ' K  = K K '  = I,  and that K -~ = K'). 
Let 

(16) C, = ( y , y ) - l y , p , y ( y , y ) - l .  

It  is the case that any linear combination of the N matrices C~ (with different 
roots) can be used to find the rotation K. Assume that such a linear combina- 
tion e is possible. We then compute the (unique) set of eigenvectors of 
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(17) Co = ~ _ , e , C , ,  

to find K and compute W~ from (15). Thus we have obtained the configuration 
X, and the weights W. It  follows from the assumption we have made that the 
solution is unique (up to permutations of the dimensions). Note that the 
assumption that there is a linear combination e is, essentially, eqUivalent to 
the assumption that the weights for at least one subject i are all different. 

The preceding developments, which closely follow those presented by 
Sch6nemann [1972], are only appropriate to error-free data due to the rela- 
tionship defined by (13). In the fallible case in which the relationship is only 
approximately true we need to make two choices. First, we need to define P , 
and second, we need to define e. The first problem is quite easily solved by 
simply double centering the elements of each data matrix O~ with elements 
o~k2 (and dividing by - 2 )  to obtain a matrix P~ of scalar products for each 
subject. We then average over subjects to obtain P ,  which can be decomposed 
into 

(18) p = Y y ' ,  
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to obtain Y, the arbitrarily oriented configuration which best reproduces 
the averaged scalar products. Note that a) if the data are asymmetric, we 
average o~:t~ 2 and o~ki 2 for all k and j within each matrix i before double 
centering; b) if the data contain missing elements, each element is estimated 
as being equal to the subject's mean judgment; and e) the conditionality 
of the data is ignored. 

The second problem, that of defining the best orientation of the con- 
figuration and the associated weights, is solved by obtaining a rotation matrix 
K which simultaneously diagonalizes the matrices C~ as much as possible. 
The method suggested by de Leeuw and Pruzansky [Note 7] is used. 

Since the procedure just outlined assumes that the data are metric, it is 
possible to obtain negative weights, especially when the metric assumption 
is radically violated. (Note that our definition of the weighted Euclidian 
model includes the requiremeI.lt that all weights be non-negative.) When 
negative weights are observed we use the following admittedly arbitrary 
procedure: We simply add the absolute value of the largest negative weight 
to all weights, thus ensuring that all weights are non-negative. We then calcu- 
lttte the distances (1) and disparities (as explained in the next section), 
replace the raw data with the disparities and repeat the procedure outlined 
above. We are not certain of the theoretical consequences of this procedure 
Mthough in all cases we have tested the results are satisfactory. 

Optimal Scaling Please 

In the optimal scaling phase we wish to optimally scale the squared 
observations 0 to obtain the disparities D* which a) meet the selected measure 
ment restrictions, and b) are least squares estimates of the squared distances 
D, given the measurement restrictions. We call this the optimal scaling 
phase because it obtains a scaling of the raw observations that is optimal in 
the Fisher [1946] sense of optimal scaling. That is, it maximizes the correlation 
between observations and model while respecting the measurement charac- 
teristics of the observations. In this phase we assume that only the optimal 
scaling variables D* are free to vary; the stimulus configuration X and the 
subject weights W are held constant. Thus we solve the conditional least 
squares problem MIND,[+:(D* ] X, W)]. 

Compute distances. The first step in the optimal scaling phase is to 
compute the D~ from the current X and W by (1). 

Optimal scaling. The second step in the optimal scaling phase is to 
actually perform the optimal scaling. As we will see, for most of the data 
types discussed in Section 2 the optimal scaling procedure is quite familiar 
(linear or monotone regression), although some of the types result in rather 
novel procedures. However, all of the various types of optimal sealing trans- 
formation can be defined as a linear Cransformation of the squ~red distances. 
That is, 
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(20) d , Y  = l(d, ,2) ,  

where I indicates a linear transformation paralleling the measurement restric- 
tions used to define t earlier. Furthermore, 1 defines d~n .2 so that  SSTRESS 
(11) is minimized for fixed values of W and X, in a least squares sense. 

We will not discuss the specific features of these transformations here 
since a detailed account is already presented in an earlier paper [Young, 
de Leeuw & Takane, 1976]. Instead, we present a simplified characterization 
of l using matrix notation. Since we are regressing d~k 2 onto 0 , 2  in the least 
squares sense under the various measurement restrictions mentioned above, 
1 may be represented by a projection operator of the form 

(21) l :  E = Z ( Z ' Z ) - ' Z ' ,  

where Z is, in general, a matrix of vectors defining the space onto which the 
vector of d,~, 2 is regressed. 

For the ratio transformation t r, Z is simply the vector 0 of squared 
observations. For the interval transformation t ~, Z reduces to the ratio case 
after the appropriate additive constant is estimated. In both these cases 
the least squares estimates may be obtained by well-known regression tech- 
niques. In the ordinal and nominal cases Z is defined as a matrix of dummy 
variables indicating the distances which must be tied to satisfy the measure- 
ment restrictions. For the continuous-ordinal transformation to°, the elements 
to be tied involve order violations, whereas for the discrete-ordinal trans- 
formation t ~, the elements to be tied also involve observations which are 
categorically equivalent. Kruskal's least squares monotonic transformation 
[1964] defines t c° when the primary approach to ties is chosen, and defines 
t ~° when the secondary approach is used. For the discrete-nominal case the 
matrix Z indicates that  distances which correspond to categorically equivalent 
observations are to be tied. The obvious least squares estimates in this case 
simply involve category means. Finally, for the continuous-nominal case the 
matrix Z indicates those distances which fall outside of the desired interval. 
In this case the least squares estimates are the interval boundaries for those 
distances which are in violation, and the distances themselves for those which 
are not in violation. We use de Leeuw, Young and Takane's [1976] pseudo- 
ordinal procedure to determine the optimal boundaries. 

Note that  for some transformations Z is known before the analysis is 
made, and in other cases it is not. Specifically, for all discrete transformations 
except the discrete-ordinal transformation Z is known a priori, and for the 
remainder Z is only known after the analysis is made. Furthermore, in these 
cases Z varies from iteration to iteration depending on the nature of the 
distances. To be precise, we should indicate that  Z (and therefore E) is a 
function of d; but the notation Z(d) or E(d)  would soon become very cumber- 
some, and is thus suppressed. 
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The important thought at this point, however, is that for all four measure- 
ment levels, and for both measurement processes, we can represent the optimal 
scaling as a projection operator of the form shown by (21). This means that 
if we define a column vector d containing the N n ( n  - 1)/2 elements d , k  2 and 
another column vector d* containing the corresponding elements d , Y ,  then 
we can make the important observation that 

(22) d* = Ed. 

Furthermore, this equation, which is implicitly in terms of unconditional data, 
can be easily extended to conditional data. For matrix-conditional data we 
define Z~ for each individual separately and then construct a block-diagonal 
supermatrix Z with the Z / s  on the diagonal. For row-conditional data we 
define Z ,  for every row of every individual's data matrix and then construct 
the block-diagonal supermatrix Z with these Z , ' s  on the diagonal. In both 
cases E remains defined as before. Thus the projection operator notion and 
(22) apply for all three types of conditionality. Note that the various rows 
or matrices of conditional data may be defined with any mixture of measure- 
ment characteristics, as there is nothing requiring them to all be defined 
identically. Also, any other pattern of conditionality is acceptable. 

The chief importance of (22) is that we can now easily express SSTRESS 
entirely in matrix notation, and entirely in terms of the distances. If we define 
E.' = I - E, then SSTRESS (11) can be rewritten as 

('..)3) ¢2(X, W, D*) = d'Ed. 

In a parallel manner we can rewrite the normalized SSTRESS formula as 

(24) 4/~(X,  W ,  D*) = d ' ~ d / d ' d  

= d ' ~ ( d ' d ) - ' E d .  

Note that in this form SSTRESS involves only the distances and not the 
disparities, a point which has been discussed at length by Young [1975a]. 

The final issue to be raised in this section is the procedure for estimating 
the additive constant when the data are defined at the interval measurement 
level. (A similar problem has been solved by Messick and Abelson, 1956.) 
The problem is as follows. When we assume that the observations are defined 
at the interval level, then 

(25) d,~** = a (o ,k )  + b, 

for some unknown constants a and b. If we were optimizing STRESS, then 
the estimation problem would be a simple regression problem involving the 
distances d,~k and the observations o~k. However, the situation is complicated 
by the fact that we are actually optimizing SSTRESS. Instead of the simple 
linear relationship above, we are actually faced with the quadratic relationship 
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(26) d,ik .2 = a2(o,k)  2 -~ 2ab(o ,~)  + b 2. 

This is clearly different from the simple regression of d,~ 2 on o,k 2, which is 
implied by a linear relationship between d,k ~ and o~ik 2 (unless b = 0 as in 
the ratio case). 

While it is possible to directly solve (26), it is much simpler to redefine 
the problem as 

(27) d . J  2 = a + f l (o ,k)  + 7(o,ik) ~, 

for which we wish to obtain the best estimates of a, fl, and , ,  under the con- 
straint  tha t  

(28) ~2 = 4~% 

We now introduce three definitions. First, we define the parameter  
vector x '  = [a, /~, ~/]. Second, we define an N [ n ( n  - 1)/2] by 3 matrix of 
second degree polynomials of the observations (unities in Column one, obser- 
vations in Column two, and squared observations in Column 3). We denote 
this matrix 0 (note tha t  this is not the same 0 as used in other  sections of the 
paper). Finally, we define a column vector d having the N [ n ( n  - 1)/2] 
elements d,k 2 arranged in the same manner as the o~i~ in O. 

These definitions allow us to express SSTRESS in the interval measure- 
ment situation as 

(29) ~b2(x, X [0 ,  d) = (d -- 0x) ' (d  -- Ox) + X(/~ 2 -- 43~), 

which we seek to minimize by solving for x and h (the Lagrangian multiplier). 
The  least squares estimate for the constrainted parameters is 

(30) ~ = (O 'O) - 'O 'd  -t- hq. 

To solve for the Lagrangian multiplier, we define 

(31) (O'O)-~g = q2 , 

q3 

where g' = [ - 2 %  f~, - 2 3 ]  is the derivatives of (28). Then we must solve 

(32) (~ -}- hq2) 2 = 4(a -~ ),q~)(~ + ~q,~). 

We select the best of the two solutions (i.e., the one which minimizes 
SSTRESS) by evaluating the set of ~ corresponding to each root. 

Normal ize .  The  third and final step in the optimal scaling phase is to  
normalize the solution. There are two separate considerations at  this junc- 
ture, one concerning the normalization of the parameters (the configura- 
tion, weights and optimal scale values) and the other the normalization 
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of the loss function. While the normalization of the loss function must be 
performed on every iteration and must be performed in a specific manner 
in order to avoid certain kinds of degenerate solutions, the normalization of 
the parameters need only be done prior to printing the final solution. In 
this way the numbers displayed to the user are in some standard units that 
enable comparison with other solutions the user may have. 

Carroll and Chang [1970] have discussed the relevant issues concerning 
normalizing the parameters. As they pointed out, two of the three aspects of 
the problem represented by (1) and (11) (the data, the weights, and the 
configuration) must be normalized, with the remaining aspect being left 
unnormalized. While the choice and the actual details of the normalization 
are arbitrary, we choose to continue the conventions adopted by Carroll 
and Chang. Specifically, the configuration is normalized so that the mean 
projection on each dimension is zero and the variance of the projections 
on each dimension is unity. However, whereas Carroll and Chang nor- 
mMize the data, we must normalize the optimally scaled data. After all, 
we cannot normalize qualitative data, whereas we can normalize the optimally 
scaled data even when the data themselves are qualitative, since the optimally 
scaled data are always quantitative. I t  is interesting to note that there is a 
subtle reason which disallows normalizing the distances D instead of the 
optimally scaled data D*, even though it has been argued by Kruskal and 
Carroll [1969] and Young [1972] that the choice is arbitrary. While the argu- 
ments of Kruskal and Carroll and Young apply for a single matrix of uneon- 
ditional data, or even for several matrices of either matrix conditional or 
unconditional data, they do not apply to row conditional data. The problem 
is that the distances for a particular subject are all jointly determined up to 
a single multiplicative constant. They are all defined on a single measurement 
scale at the ratio level of measurement. Thus, in the case of row conditional 
data, it is not possible to adjust the distances in one row of the matrix by one 
multiplicative constant, and the distances in another row by another constant. 
Since we are not allowed to apply different multiplicative transformations 
to each row of the distance matrix, we are forced (at least in the row condi- 
tional case) to normalize the optimally scaled data (which may legitimately 
be subjected to different transformations as discussed in Section 2). Thus, 
for each partition (row, matrix, or whatever) of optimally scaled data, we 
normalize so that the sum of squares of the squared optimally scaled data 
is a constant. 

There is one final consideration in the normalization of the parameters. 
One of the conventions adopted by Carroll and Chang [1970] was to normalize 
the "pseudo" scalar products so that their sums of squares was constant. 
They chose to do this (instead of normalizing the sums of squares of the 
raw data) for a number of reasons, one of which is highly relevant here. They 
showed that if one were to set the total sums of squares of an individual's 
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pseudoscalar products equal to one, then the individual's sum of squared 
weights could be interpreted as indicating, roughly, the proportion of variance 
in the pseudoscalar products which is accounted for by the model. (The word 
"roughly" can be eliminated from the previous sentence when it is true that 
X ' X  = I ,  which is not usually the case.) There is, unfortunately, no corre- 
sponding procedure which allows for the sum of squared weights to be inter- 
preted as indicating the proportion of variance accounted for in the optimally 
scaled data. Thus, when the analysis is completed, we perform one final 
normalization which involves computing the pseudoscalar products from the 
optimally scaled data, and then setting each individual's sum of squared 
pseudoscalar products equal to unity. This allows for the interpretation 
that an individual's sum of squared weights roughly indicates the proportion 
of variance in his pseudoscalar products which is accounted for by the solution. 
This is the same interpretation as afforded by Carroll and Chang's procedure. 
Note, however, that the conditionality of the data and the resulting dif- 
ferences in normalization have certain implications for interpreting the 
weights. These implications are discussed in Section 5. 

We now turn to the second normalization consideration, that of normal- 
izing the loss function. Although we actually perform the optimization 
relative to the unnormalized loss function stated in (11), we carl indirectly 
optimize a normalized function if suitable steps are taken, as has been dis- 
cussed by de Leeuw, Young and TM~ane [1976]. This characteristic is very 
convenient, since we do not have to deal directly with the normalized function 
(which is the ratio of two quadratic forms) whose partial derivatives are 
considerably more complicated than those of the unnormalized function. 
We only gain this simplicity, however, if we normalize the function relative 
to the optimally scaled data. No gain is made if we normalize relative to the 
distances. This is important to note since normalization is commonly relative 
to the distances, and since the arguments of Kruskal and Carroll [1969] and 
Young [1972] would again lead one to suspect that the choice is arbitrary. 
The reasoning given in the previous paragraph which led us to conclude that 
the choice is not arbitrary is the same reasoning which leads to the same 
conclusion here. 

Thus, we normalize the loss function relative to the optimally scaled 
data D*. There are two more considerations, however. One is a point empha- 
sized by Kruskal and Carroll [1969] and Roskam [Note 16] which leads to 
the conclusion that the normalization must be within partitions (to use the 
terminology of Young, 1973). That is, for unconditional data, where all of 
the data form a single partition, we compute a single normalized SSTRESS: 

(~u 2 
E E E .2 - d, , :)  2 

{ i k 

E E Ed,.,k*' 
{ i k 
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whereas for matrix conditional data, where each matrix forms a separate 
partition, we must compute a normalized SSTRESS value for each matrix, 
and then obtain their average: 

1 i i , 

Finally, for row conditional data, where each row is a partition, we compute a 
normalized SSTRESS for each row and then average: 

\ (~i ik  - -  i i k  J | 

(Note that we use the sum of squares of the squared optimally sealed data, 
since the loss is defined on squared distances and squared optimally sealed 
data. This is the reason for the appearance of the fourth power in the denom- 
inator.) We can summarize the above formulas in a single formula by intro- 
dueing a new symbol ~,~ which has a value of 1 if d,k* is in partition l and 
a value of zero otherwise. We can then write the above formulas as 

which is the complete expression for the normalized SSTRESS function being 
optimized by ALSCAL. 

The remaining point to be considered is whether we should actually 
normalize by the sum of squares of the squared optimally scaled data, as 
in (33), or by the variance of the squared optimally scaled data. This question, 
which has also been addressed by Kruskal and Carroll [1969] and Roskam 
[Note 16], is probably best answered by saying that for row conditional data 
we should probably use the variance, whereas for the other types of data we 
should use the sums of squares. In this paper, however, we use only (33) 
given above. We do plan on incorporating both types of formulas into the 
ALSCAL program, however. 

Finally, if we are solving the unnormalized problem represented by (11) 
(as we are), and we actually wish to optimize the normalized problem repre- 
sented by (33) (as we do), then it can be shown that all we have to do is solve 
the unnormalized problem and adjust the length of the vector of squared 
optimally scaled data by multiplying all of its elements by the ratio of the 
sums of squares of the squared distances to the sums of cross products of the 
squared distances and squared optimally sealed observations: 

E E 
i i k 

i f k 
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Termination Phase 

The termination phase is extremely simple. We must only determine the 
value of SSTRESS on the current iteration (11) and compare this value with 
the previously determined value. If the amount of improvement is less than 
some arbitrary criterion, then we terminate; if not we continue. The simplicity 
of this phase is due to one of the characteristics of an ALS procedure, namely 
that an ALS iteration never worsens the value of SSTRESS (a proof of this 
characteristic may be found in de Leeuw, Young and Takane, 1976). 

Model Estimation Please 

In the model estimation phase we solve two conditional least squares 
problems successively. The first subphase solves the conditional least squares 
problem MINw[O2(W I X ,  D*)], whereas the second subphase solves the prob- 
lem MINx[~b:(X I W, D*)]. In this section we discuss both of these problems. 

Compute weights. To estimate W we obtain the partial derivatives of (1l) 
with respect to the elements of W and set the derivatives to zero. This system 
of homogeneous equations is then solved with respect to W. To simplify 
the derivation we define an order n(n - 1)/2 by t matrix Y, where the columns 
of Y contain all interpoint distances as projected onto each dimension (i.e., 
each element of column a of Y is (x~o -- x i J ,  the dimension-wise squared 
difference between stimuli i and j). We also define an order N by n(n - 1)/2 
matrix D*, whose rows contain the n(n - 1)/2 optimally scaled observations 
for each individual, with the elements arranged to correspond with Y. (This 
D* contains the same information as the D* used in earlier parts of this paper, 
but organized differently. In this section we refer to this organization of the 
information when we use the symbol D*.) These definitions allow us to 
write SSTRESS as 

(35) ~2(y, W, D*) = tr(D* - W Y ' ) ' ( D *  -- W Y ' ) ,  

from which we see that the least squares estimates of W ~re 

(36) W = D * Y ( Y ' Y ) - ' .  

Nonnegativity weight constraint. There is one difficulty in using the regres- 
sion approach just outlined for obtaining W: The non-negativity constraints 
placed on the weights (1) may be violated. Thus we now discuss a method of 
incorporating this constraint (or any other linear inequality constraint) 
which is strictly within the ALS framework. 

An observation basic to the procedure to be presented is that the esti- 
mation process presented in (36) is independent for each individual. That is, 
the values estimated for the weights for one individual do not affect the 
estimated values of the weights for any other individual. This can be seen 
from the fact that SSTRESS (35) can be decomposed into a summation of 
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separate components, each of which is a function of only a single subject. 
Since the weights for one subject are independent of those for the others, 
we can impose a non-negativity constraint on subjects with negative weights 
without having to modify the weights for other subjects. Note, however, that 
the weights for a given subject are not independent of each other, which means 
that we cannot simply set a subject's negative weights to zero and leave his 
positive weights unchanged. If we do this we destroy the least squares 
properties of the weight estimates. 

Our solution to this problem is as follows. First, we obtain the uncon- 
strained least squares estimates of W by (36). We use these estimates for 
those subjects with non-negative weight vectors. For the other subjects we 
set one of the negative weights to zero, which is the constrained least squares 
estimate under the condition that all the other weights are constant. Then 
we re-estimate the value of another weight under the assumption that all 
other weights are constant. The conditional least squares estimate for a single 
weight is 

(37) wi~ = (d,* -- ~ w, byb)'yo/(y~'ya), 
b # a  

where y, is the aPth column of matrix Y (35) which contains the squares of 
the interpoint distances as projected onto the a'th dimension. If this uncon- 
strained conditional least squares estimate is negative, we set it to zero. We 
then repeat this process for each dimension until all weights for the subject 
s,re non-negative. 

Compute coordinates. The second subphase of the model estimation phase 
is to determine the stimulus coordinates X. This subphase is somewhat more 
complicated than the weight estimation subphase, since the partial derivatives 
of SSTRESS with respect to the elements of X are not linear in the xio's. 
Rather, SSTRESS is quartic in the xi,'s, so the derivatives are a system of 
cubic equations. There are several ways of solving such a system. We first 
review some of the possibilities, and then present the method we have adopted. 

Perhaps the most elegant solution, at least for a theoretical point of view, 
would be to analytically solve the system of m = n*t simultaneous cubic 
equations for the m unknowns. This has been suggested by Oberchain [Note 
15]. I t  is possible to do this by either Euclid's or Kronecker's elimination 
method [BScher, 1907], in which the system of m simultaneous polynomial 
equations is eventually reduced to a single polynomial equation in one 
unknown and m - I linear simultaneous equations in m - 1 unknowns. The 
problem is then reduced to finding the numerical solutions to a simple poly- 
nomial equation and, after substitution of the solution into the remaining 
linear equations, finding the solution to a system of m -- 1 linear equations 
[Wilf, 1960]. The method is particularly favorable in our situation since we 
have only to solve cubic equations, and there is an analytic solution for a cubic 
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equation with one unknown. While this approach has theoretical beauty, 
it is impractical due to the number of equations in our case (as many as 
500 or 600). 

The opposite extreme is to solve for only a single coordinate xio at a 
time, with a total of m such solutions on each iteration. That is, we could use 
the analytic solution to a cubic equation with one unknown to obtain the 
conditional least squares estimates for a single coordinate, under the assump- 
tion that all other coordinates (and of course all the W and D*) are fixed. 
The previous estimate for this coordinate is then immediately replaced with 
the new estimate. Note that after m such estimations we have obtained new 
estimates for all of the coordinates, but that these are not the same as those 
obtained by the simultaneous method discussed in the previous paragraph. 
This is the case despite the fact that the two procedures will eventually 
converge on the same estimates. For any given iteration the simultaneous 
method achieves the most improvement in fit, but takes the most time 
to do it. 

Of course we are not limited to only these two choices; the quickest 
method probably lies somewhere in between the two extremes. That is, it 
may be best to estimate a block of x~'s simultaneously, making sure that the 
number of coordinates being simultaneously estimated is no t  so large that 
it slows down the entire process to the point where it cancels the benefits 
derived from simultaneous estimation. 

Optimizing the efficiency Of our algorithm is a difficult yet crucial prob- 
lem. After several trials and errors we have found a method which appears 
to be more efficient than any other currently available algorithm (some 
sketchy evidence on this point will be presented later). We apply a modified 
Newton-Raphson method to obtain a new set of conditional least squares 
estimates for all of the coordinates of a single point simultaneously, success- 
ively solving for each point in turn. Thus we estimate x;~ (a = 1, --- , t) 
simultaneously for a specific j and successively for each stimulus j 
(j = 1, - . .  , n). This is the approach taken by Yates [1972]. 

The Newton-Raphson method is well-known, of course, but our applica- 
tion of it is unique. We use it to obtain conditional least squares estimates 
which solve the problem MINx, [~(xi I xk, W, D*), (j ~ k)]. Thus our approach 
is to place the Newton-Raphson method within the ALS framework to solve 
a system of cubic equations in t unknowns. This demonstrates again the 
flexibility of the ALS approach. The use of Newton-Raphson in conjunction 
with ALS is particularly attractive in the present context because the function 
being optimized is smooth and the evaluation of the function requires very 
few computations. Thus the approach should be quick and robust, as indeed 
it is. 

We actually use a recent modification of the Newton-Raphson pro- 
cedure developed by Gill and Murray [Note 8] which ensures the positive 
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definiteness of the Hessian at  the current point. This guarantees tha t  we are 
proceeding in a downhill direction. Since the Hessian is always positive semi- 
definite at  a minimum, it is desirable to ensure that  it is so during the entire 
estimat!on process. If it is not "sufficiently" so (in a complex sense discussed 
at  length by Gill and Murray) ,  deliberately chosen values are added to the 
diagonal to force i t  to be positive definite. This avoides convergence to a 
maximum or to some other  stat ionary point tha t  is not  a minimum. 

We now provide the first and second derivatives of SSTRESS with 
respect to x i .  for fixed j and a = 1, . . .  , t. To simplify the derivation, we 
note tha t  

a 2 (38) d , k  .2  - -  ,ik = d , ~  .2  w , . ( x i .  - -  xk°) ~, 
a 

t 

----- d i ik*2  - -  ~-~ WiaXia2 JI- 2 Z ~{)iaXiaXka - -  ~ WiaXka 2 , 
a a a 

and we introduce several definitions. First, we collect the terms which do ~ot 
involve xi. (the fixed terms) and define them to be 

t 

(39) h .~  = d , i Y  - ~_, w,.z~°L 
a 

We organize these terms into a vector h; which contains all h ,k  for fixed j 
and for lc ~ j (this vector has N ( n  - -  1) elements). We also define a super- 
matrix G = [Ga , G2], with N ( n  - 1) rows and 2t columns. The two sub- 
matrices are defined as follows: 

W I l X l l  

~YllXkl 

(40) G, = - 2  
Wl 1Xn t 

and 

(41) 

.WN 1X,l I 

~V 11 u • . . ~.Vl tU l 

G2 ~ 

LWNI~t • • • WNtUA 

~0t ~ Xl t 

~)J~Xkt 

Wl ~Xnt 

WN~Xn~_ 

, k ~ j ,  

where u is an n - 1 component column vector of unities. We also define a 
2t component supervector a~ , consisting of a vector x; of coordinates of 
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stimulus j on t dimensions and a vector whose elements are the squares of 
the elements in xi • Since i t  is possible to express the squared elements as the 
product of a diagonal matrix and a vector, we further define Xi to be an 
order t diagonal matrix with the coordinates of stimulus j on its diagonal 
(do not confuse this with the entire matrix of coordinates denoted X). Then 

( 4 2 )  '~i = " 

Xix~ 
We can now define SSTRESS as 

1 (4a) ,~(x ,  w ,  D*) = ~ , 

(The 1/2 is present since the summation is over all N.n ~ elements d,k*", 
whereas in previous definitions of SSTRESS the summation was over only 
the lower triangular portion of each matrix.) 

The gradient vector (first derivatives of SSTRESS with respect to x~) 
can be expressed as 

(44) g = --[I, 2Xi]G'h, + [I, 2Xi]G'Gai 

= [G~'G~ + 2X~G2'G~ + G/G2X~ + 2X~G2'G2X~]xi 

- [G~hi + 2XiG2hi]. 

The off-diagonal elements of the Hessian (matrix of second order partial 
derivatives) are (for a # b) 

(45) h . b =  [e.', 2x~e.']G'G I eb 1'  
Lxibeb,.J 

where e. is a vector with unity in the a ' th  position and zeros elsewhere. 
The a ' th  diagonal element of the Hessian is 

(46) ho. = --[o, 2e.']G'hi + [e,,', 2x~.eo']G'G~, e. ? + [o', 2e']G'G f x, ?. 
L2xioeo.J [_Xixi...] 

We use the gradient and Hessian with Gill and Murray 's  [1974] procedure 
for the Newton-Raphson method. With this procedure one obtains t h e / ' t h  
estimate of x j ,  which we denote x~ "), according to 

(47)  xi (z) = x /~ -"  - -  OfI"-J)-~g ( t - ' ,  

where 0 is a stepsize determined to ensure that  ¢2.) < 4)2(,-~), where / t  = H 
when H is positive definite, and where/]¢ = H + F for F, a diagonal matrix 
with positive diagonal values when H is not positive definite. The matrix F 
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is determined according to Gill and Murray's developments. While it is the 
case that SSTRESS must be evaluated several times in determining the 
estimate of x, each point's coordinate vector, it is a very simple and quick 
evaluation since the optimal scaling D* is fixed during the evaluation. Thus, 
we do not have to perform this time-consuming operation, which is one of the 
:nice features of the ALS approach. If we were using the more standard gradient 
approach we would have to perform the optimal scaling for each evaluation 
of SSTRESS, and the algorithm would be very slow. (This may account for 
the inefficiency of Yates' [Note 17] procedure which performs the optimal 
scaling after each point's coordinates are estimated.) 

Once we have minimized SSTRESS relative to a single point, we repeat 
the procedure for another point, until all points have been subjected to the 
process. This defines a single iteration. The entire process is repeated until 
convergence is obtained. Note that once a point's coordinates have been 
estimated, the old coordinates are immediately discarded and the new esti- 
mates are inserted before the next point's coordinates are estimated. This 
prompt replacement is mandatory since each suboptimization is not inde- 
pendent from the others. 

There is one minor theoretical problem with the procedure just proposed. 
The function being minimized (43) is a quartic function; therefore its gradient 
(44) is a system of cubic equations. This system of cubic equations has, at 
most., 2 t minima, of which not more than 2 t -- 1 are loeM minima, and 1 is 
the global minimum (these assertions will be supported in Section 5). Thus, 
in one dimension there may be one local minimum in addition to the global 
minimum, in two dimensions there may be as many as three local minima, 
in three dimensions up to seven local minima, etc. The procedure we have 
proposed converges on one of the minima without ensuring that it is the global 
minimum. While numerical analysis results indicate that we will most often 
converge on the optimal minimum (especially if we have a good initial esti- 
mate, as we do, and if the optimal minimum has a rather better value than 
the local minima, a situation which may or may not exist here), we will at 
least occasionally converge on non-optimal minima. An alternative procedure 
which is free of this problem will be proposed in Section 5. Regardless, we 
are of the opinion that this theoretical difficulty with the proposed procedure 
will have little practical effect, an opinion supported by the results presented 
in the next section. When we recall that the present part of the estimate 
process seeks the optimal location of a single point, we see that there are many 
self-correcting opportunities built into the overall estimation process. This 
may be the reason that the theoretical difficulty has little practical effect. 
Finally, we note that with previous nonmetrie procedures the local minimum 
problem was so complicated that it defied analysis. We believe that our 
procedure, while not totally free from local minimum problems, is dearly 
superior to previously proposed procedures in this regard. 
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4. Examples 

In this section we present examples of the use of ALSCAL to demon- 
strate its efficacy. The first examples utilize the weighted Euclidian model, 
and the last the unweighted model. For the weighted model we first perform 
a small Monte Carlo study which allows us to compare the structures obtained 
by ALSCAL with the true structures which were used to generate the arti- 
ficial data. We further evaluate the performance of ALSCAL in the weighted 
Euclidian case by comparing the structures obtained by ALSCAL with those 
obtained by INDSCAL when both are used to analyze the same real (not 
arti'ficial) data. For the unweighted model we evaluate ALSCAL by com- 
paring the structures it obtains for sets of real data with those obtained by 
other investigators using the standard MDS algorithms for applying the 
unweighted model. Finally, we evaluate the ability of ALSCAL to analyze 
nominal data by comparing the structure obtained from a set of data which 
has been previously analyzed under the assumption that the measurement 
level is ordinal. It  is not possible to compare these results with other algorithms 
designed to multidimensionally scale nominal data since no such algorithms 
have been proposed previously. 

We believe that the reader will conclude, from tile evaluations outlined 
in the previous paragraph, that ALSCAL is very robust in all the situations 
for which it was designed. 

Monte Carlo Study 

The general outline of the Monte Carlo study is as follows. First, we 
generate an arbitrary "true" configuration and "true" weights, which together 
we call the "true" structure. We then determine the dissimilarities by com- 
puting distances (according to the weighted Euclidian distance formula) 
and introducing either random or systematic error, or both. We then submit 
these errorful dissimilarities to ALSCAL to obtain the "derived" structure 
(stimulus configuration and weights). Finally, we compare the derived 
structure with the true structure in order to evaluate how robust ALSCAL 
is to random and systematic error. 

Actually, the purpose of the experiment is twofold. First, it should be the 
case that analysis of dissimilarities which contain no random error but which 
are systematically distorted monotonically should, if we assume that the 
data are ordinal, produce a derived structure which is identical to the true 
structure no matter how severely we distort the true distances. Furthermore 
it is anticipated that if we analyze these same systematically distorted dis- 
tances while inappropriately assuming that the data are interval, then a 
systematic bias should be found in the derived structure. Of course, the degree 
of bias should be a function of the degree of distortion. 
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The second purpose of the Monte Carlo study is to determine the 
robustness of ALSCAL in the face of random error. Ideally, ALSCAL should 
be able to recover the true structure when there is a moderate degree of 
random error no matter what measurement assumptions we make about the 
data (at least when there is not much systematic error). Note that this point 
relates not only to the ALSCAL algorithm, but also to the weighted Euclidian 
model itself. To the authors' knowledge there has been no Monte Carlo study 
which evaluated the effect of error (either random or systematic) on the 
recovery of the true structure, and which attempted to evaluate the goodness 
of recovery to such aspects of the model as the number of points or subjects, 
the number of true and recovered dimensions, the amount of error, etc. 
(Note that Jones and Waddington [Note 13] have investigated the effect of 
subjects who use only a subset of the dimensions.) Our study is by no means 
a complete or exhaustive study of these variables. Nonetheless, we believe 
that such a study needs to be done and that ours may be viewed as a precursor 
to such comprehensive studies. 

We hypothesized the "true" structure shown in Tables 1-a and 1-b. 
We chose a small two-dimensional structure for ease of presentation, with the 
actual numbers arbitrarily assigned. 

We emphasize that our results are not independent of this particular 
structure, particularly with respect to the number of stimuli (which is rather 
snmll compared to most empirical studies using this model), the number of 
subjects (which is also on the small side), the number of dimensions, and the 
actual structure. The configuration of stimuli is shown in Figure 1 by the 
black circular dots (the lines connecting the dots differentiate the true con- 
figuration from several other configurations also presented in this figure). 
The "true" subject weights are given by the black circular dots in Figure 2. 
Note that these weights, which are equally spaced along a straight line, 
indicate that the subjects are "moderately" heterogeneous in terms of their 
relative weighting of the dimensions. This situation, in our experience and 
in the experience of Carroll (personal communication), is optimal for obtaining 
a robust and meaningful analysis with INDSCAL. Note also that subjects 
generally attach relatively more importance to Dimension I than to Dimension 
II. 

Weighted Euclidian distances were calculated from these stimulus 
coordinates and individual weights. While computing these distances random 
error was introduced. I t  is debatable when and where the error component 
should be added (i.e., to the distances, to the coordinates, or to the weights; 
before or after the systematic monotonic distortion; etc.). We arbitrarily 
chose to follow the procedure of Young [1970] in which independent random 
normal error is added to the stimulus coordinates. Such error is generated 
anew for each pair of stimuli. Thus d~ i~ ~, under the/ th degree of error perturba- 
tion, is generated by 
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Table l-a Hypothesized stimulus configuration 

37 

Stimulus Dimension I Dimension II 

1 1.37198 1.36082 
2 0.77174 1.36082 
3 0.77174 -1.49691 
4 -1.02899 0.40824 
5 -1.62923 -0.54433 
6 -0.42874 -0.54433 
7 0.17149 -0.54433 

Table l-b Hypothesized weight configuration 

Subject Dimension I Dimension II 

1 0.40917 0.01805 
2 0.36371 0.03610 
3 0.31824 0.05415 
4 0.27278 0.07220 
5 0.22731 0.09025 
6 0.18185 0.i0831 
7 0.13639 0.12636 
8 0.09092 0.14441 
9 0.04546 0.16246 

Table l-c Values. of y(£) 
Error Level Dimension 

£ I II 
! 0 0 
2 .180 .286 
3 .6OO .953 

I ~1/2 
/ z \ ( l ) \21  d x , .  + j , (48) ,ik = -- 

affi| 

where z~ko = zii. - ziko , where z,i~ ~ N(0,  1)(i, j = 1, - - -  , 7), (a = 1, 2) 
and  where vo (z) is a pa ramete r  specifying the  var iabi l i ty  of the  errors. No te  
t h a t  d~k (z)2 does no t  follow the  noncent ra l  chi-squares dis tr ibut ion (as i t  does 
in Young,  1970) since the  variabi l i ty is different across dimensions (~,~(~) 
depends on dimensions and moreover ,  dimensions are differentially weighted).  
No te  also tha t  the  same z ~ ' s  are used for different error levels. The  values 
of vo(z) are shown in Table  1-c. Since z ,~ and Z~k~ ar~ independent ,  the var iance 
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Dimension I 

Y 
X 

x J  

\ 

Dimension 2 

0 t  f '  

SStress o . ~ /  Legend 

• .0041 • o r i g i na l  & 
,, . 1519  e r ro r  f ree 

x .3591 A moderate er ror  

x large e r ro r  

F~GUaE 1 
Monte Carlo study: Effects on the stimulus configuration when the data are assumed 

to be ordinal. 

of (z,~,)~,o (~) is 2('~o")). No te  t h a t  the  s t imulus  conf igura t ion  xi~'s are  s t a n d a r d -  
ized so t h a t  t h e y  have  un i t  va r i ances  for b o t h  d imensions .  We refer  to t he  
case when  l = 1 as t he  er ror  free case, l = 2 as  the  m o d e r a t e  error  case, and  
l = 3 as the  large er ror  case. (For  l = 3 t he  er ror  va r i ance  is .720 for D i m e n s i o n  
I and  1.816 for D imens ion  I I ,  which is much  la rger  t h a n  the  error  va r i ance  
used in mos t  M o n t e  Car lo  s tudies . )  
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Dimension 1 

39 

z~ X 

X 

.1 .2 
FIGURE 2 

Monte Carlo study: Effects oil the weight space when the data are assumed to be ordinal. 
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Dimension 2 

Next we introduced systematic monotonic error by either squaring the 
randomly perturbed distances in (45), or by raising these distances to the 
fourth power. Thus we have three levels of systematic error: No distortion 
(the error perturbed distances themselves), moderate distortion (the squared 
perturbed distances), and high distortion (the perturbed distances raised to 
the fourth power). 

Finally, these systematically and randomly distorted distances served 
as the dissimilarities input to ALSCAL for analysis. The derived structures 
are displayed in Figures 1 (the stimulus configuration) and 2 (the weigilts). 
First of all, the algorithm perfectly recovered the true structure form the 
error-free dissimilarities. The structure, which is indistinguishable from the 
true structure, is presented in these figures as the black circular dots. The 
structures, resulting from the moderate and high degrees of systematic 
(monotonic) distortion when there was no random error in the data are also 



40 PSYCHOMETRIKA 

:indistinguishable from the true structure when the assumption is (correctly) 
:made that the data are measured at the ordinal level. Thus the dots in Figures 
1 and 2 represent four structures: The true structure and the structures 
derived by ALSCAL for three levels of monotonic distortion when there is 
no random error in the data and when the data are assumed to be ordinal. 
We will discuss what happens when these data are assumed to be metric 
in a moment. 

Figures 1 and 2 also display the structures derived by ALSCAL when 
there is moderate random error (the triangles) and When there is large random 
error (the squares). Note that there is, once again, no discernible effect for 
systematic distortion when the data are assumed to be ordinal, with all three 
levels producing identical structures. The effect of random error shows up in 
these figures in a very interesting and somewhat surprising way. As the level 
(if error increases, the actual structure of the stimulus configuration (as 
evidenced by the interpoint distances) is relatively unaffected. However, the 
entire configuration changes from the true orientation towards an orientation 
which is more nearly like the principal components fo the group space (i.e., 
the variance on the first dimension is increasing and that on the second 
decreasing, a change which is reflected in the overall magnitude of the weights). 
This effect is most pronounced for the highest amount of error. However, 
considering i~ particular that the same z~;k, is added across different error 
levels, we refrain from definitive comments at this stage of investigation. 

The weights, on the other hand, simply show a nonsystematic deteriora- 
tion as the amount of error increases. Although the relatively heavier weight- 
ing on Dimension I is preserved, the order of individual subjects along the 
dimensions of the weight space is destroyed, let alone the ratio of an indivi- 
dual's weights to each other. Note also that the weights on the second dimen- 
sion (which suffers from relatively more random error) tend toward their 
mean as the error increases. These results appear to the authors to be very 
provocative and worthy of systematic study. However, since the main intent 
of this paper is not to perform a systematic investigation, we will not dwell 
on the matter any further, although we will examine a possible cause in the 
discussion section. Finally, let us emphasize that these results are identical 
for all levels of systematic monotonic distortion when the data are assumed 
to be ordinal. This shows that the theoretical invariance of the results over 
monotonic distortion is also an empirical invariance. 

This is not to say that systematic monotonic distortion has no effect 
when we (incorrectly) assume that the data are metric. The fact that does can 
be seen in Figures 3 and 4. These figures show the effects of assuming that the 
data are ratio when there is systematic monotonic distortion. The results 
are shown separately for each level of random error since there is a substantial 
interaction between the effect of systematic and random error in this case. 
Thus we have Figures 3a, 3b, and 3c for the stimulus configurations obtained 
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by ALSCAL for the three levels of random error, and Figures 4~, 4b, and 4c 
for the corresponding subject weights. 

Figures 3a and 4a present the results from data with no random error. 
In these figures there are three points plotted for each stimulus and individual, 
one for the "true" and "no distortion" configurations (which are identical), 
one for the "moderate distortion" configuration, and one for the "high 
distortion" configuration. The effect of monotonic distortion of the data is 
smM1 (though obvious) upon the stimulus configuration (Figure 3a), the 
general configural relations among the stimuli remain intact (though modified). 
When we recall that there was no effect of systematic monotonic distortion 
when the ordinM measurement assumption was made, and when we compare 
those results with the present results, we see that appropriate measurement 
assumptions can in fact improve the descriptive quality of the weighted 
Euclidian model. Note that the effect of systematic error on the configuration 
is random (there is no discernible pattern of point displacement). There is, 
however, a systematic effect of systematic error, but it is now contained in 
the weight space (Figure 4a). There seem to be two general tendencies. First, 
as the distortion increases the weights tend to show less variance on Dimension 
II. Second, as distortion increases the configuration of weights becomes 
slightly concave upward (in contrast to the true linear, equal-spaced weight 
configuration). We find it very difficult to rationalize these effects. 

We now turn to the worst possible case, that involving systematic mono- 
tonic error when the wrong measurement level is assumed and when there is 
random error as well. The results are presented in Figures 3b and 3c (stimuli) 
and 4b and 4e (weights). Each of these figures contains four plotting symbols 
for each stimulus (or weight), one for the true value and one for the observed 
values under the three levels of systematic error (the "no distortion" and 
"true" values no longer coincide due to the presence of random error). As 
opposed to previous results there seems to be very little systematic effect 
of both kinds of error combined, except to say that increasing error yields 
further deterioration of both stimulus and weights spaces. I t  appears to be 
the case (though we may be stretching it a bit) that the effects are more 
pronounced on Dimension II  than on Dimension I. Specifically, the variance 
of a point's projection on Dimension II is larger than on Dimension I in 
Figures 3b and 3c (and even perhaps in 3a), which indicates that a point is 
more poorly determined on Dimension II and on Dimension I. Correspond- 
ingly, we see in the weight space that the variance of weights decreases 
faster on Dimension II than on Dimension I as error increases. This suggests 
that our hypothetical subjects are becoming less differentiated by Dimension 
II more quickly than by Dimension I. 

This small and admittedly very incomplete Monte Carlo study tells us 
several important things. First, ALSCAL recovers a known configuration 
when there is no error, for ordinal measurement assumptions as well as 



t~
 

i\ *\
 

$S
tr

es
$ 

• 
4

0
8

4
 

4
1

8
8

 
•4

4
9

3
 

D
~

m
en

sl
on

 I
 

~ 
"o

 

\ 
\ 

, 

D
~m

en
s~

o~
 * 2

 

'~ 
i 

0/
 

L
e

g
e

n
d

 
~ 

° 
tr

u
e

 
~ 

.~
76

7 
: 

• 
• 

h
n

e
o

r 
• 

4
1

1
6

 
~ 

sq
u

o
re

 
• 

.3
~1

0 
q

u
o

rf
 ~

¢ 
~

e~
0t

 
fr

e
e

 
o 

sq
u

a
re

 

~
rt

,c
 

m
od

e~
o~

a 
e

tr
o

~
 

(a
) 

(b
) 

(e
) 

Fm
U

R
E

 3
 

M
on

te
 

C
ar

lo
 s

tu
dy

: 
E

ff
ec

ts
 

on
 t

he
 s

ti
m

ul
us

 
co

nf
ig

ur
at

io
n 

w
he

n 
th

e 
da

ta
 

ar
e 

as
su

m
ed

 t
o 

be
 r

at
io

. 

L
e

g
e

n
d

 
~

tr
u

e
--

li
n

e
a

r 
sq

u
o

re
 

• 
q

u
a

ct
ic

 

0 



%
 

I 
t 

(a
) 

2 
t e

ge
rld

 
L

e
g

e
n

d
 

tr
u

e
 

~
ru

e 
m

od
er

o~
e 

e
rr

o
r 

. 
Ji

ne
or

 
hn

eo
~

 
. 

~q
vc

Jt
e 

~
 s

q
u

o
re

 
~

q
u

a
rt

,c
 

x
q

u
o

rt
ic

 

.4
 

.I 

e
rr

o
~

 
fr

e
e

 

(b
) 

F
m

u
~

E
 4

 
M

o
n

te
 C

ar
lo

 s
tu

d
y

: 
E

ff
ec

ts
 o

n
 t

h
e 

w
ei

g
h

t 
sp

ac
e 

w
h

en
 t

h
e 

d
a

ta
 

ar
e 

as
su

m
ed

 t
o

 b
e 

ra
ti

o
. 

(c
) 

i,,
,,,,

,,,,
, 

2 Le
ge

nd
 

. 
tr

u
e

 
~J

i~
eo

~ 

sq
~

oe
e 

x 
q

u
o

r t
ic

 

5~
 

©
 

5O
 

©
 

Z
 

Z
 



44 PSYCHOMETRIKA 

interval. Second, ALSCAL is robust in the face of monotonic transformations 
of ordinal data. Third, the recovery of the structure of the stimulus configura- 
tion in the face of large amounts of random error remains surprisingly accurate 
when the appropriate (or weaker) measurement assumption is made. Fourth, 
the weight structure is degraded by the presence of random error. And fifth, 
the combination of monotonic and random error is totally detrimental when 
the measurement level is assumed to be ratio. 

Real Data and the Weighted Model 

We now investigate the behavior of ALSCAL with real data appropriate 
to the weighted Euclidian model. We choose data which have been previously 
analyzed so that we can compare our results with those already published. 
Specifically, we employ data gathered by Jones and Young [1972] who suc- 
cessfully employed the weighted model to describe the social structure of a 
small, intact, and naturally occurring task-oriented group (the staff, students, 
and faculty of a university-based teaching and research laboratory). They 
used Carroll and Chang's INDSCAL algorithm to obtain three dimensions 
which, with the help of additional data and analysis, they interpreted as 
representing the status, political persuasion, and professional (task) interests 
of the members of tile group. They were able to interpret detailed charac- 
teristics of both the stimulus and weight spaces with great success. 

When we analyzed these data with ALSCAL under the assumption that 
they were measured at the ordinal level, we obtained a solution whose stimulus 
was essentially identical to that obtained by Jones and Young (who used the 
ratio assumption). However, the ALSCAL weight structure was more 
homogeneous than the one found by Jones and Young. When these data were 
reanalyzed under the ratio assumption, the stimulus configuration was 
essentially unchanged, but the weights were more heterogeneous. In both 
cases the weight structure was interpretable in a manner similar to the Jones 
and Young interpretation, even though it was not identical. Although the 
homogeneity of the weights is partly a function of measurement level, more 
homogeneous weights can be expected with ALSCAL than with the INDSCAL 
method, as will be discussed in Section 5. Finally, we note that these analyses 
assumed the data were matrix-conditional, which is, implicitly, the assumption 
made by Jones and Young in their use of INDSCAL. When the analysis is 
performed with the unconditional assumption, the results are quite different, 
and not easily interpretable. 

The second set of real data analyzed with the weighted Euclidian model 
was collected by Jacobowitz [Note 12; Young, 1975b]. These data are partic- 
ularly suited to our purposes since they are row-conditional data, and since 
there havd been no previously developed algorithms for applying the indivi- 
dual differences model to such data. (There are, however, several algorithms 
for fitting the simple Euclidian model to conditional data.) 
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The stimuli forming the basis of these data are fifteen names of body 
parts. Each subject was presented with a single one of these fifteen stimuli 
and was asked to raIik order the remaining fourteen stimuli in terms of their 
similarity to the fifteenth (called the standard stimulus). Another stimulus 
was then selected to be the standard and the process was repeated. The 
subject was required to produce fifteen such conditional rank orders, each 
a rank order of fourteen stimuli with respect to their similarity to the fifteenth. 
(The study also involved three other sets of s t i m u l i . . ,  kinship terms, color 
terms, and "have" v e r b s . . ,  wi~ich we do not cover.) 

There were fifteen subjects at each of four age levels, the ages being 
6 year olds, 8 year olds, 10 year olds and adults. In our analysis we included 
only the youngest and oldest groups since if there are any reliable individual 
differences (which Jacobowitz found by analyzing each age group separately 
with the Euclidian model), they should most certainly appear betweeii the 
two most extreme age grotips. • 

ALSCAL obtained three dimensions which were similar to those obtained 
in Jacobowitz's previous analyses with the simple Euclidian model (see 
Figures 5 and 6). Dimensio.n I (vertical) is interpreted as face terms vs. limbs 
(both upper and lo4¢er) with "body '' in between. Dimension II (horizontal) 
contrasts upper limbs with lower limbs, with face terms and "body" in 
between. Dimensioi~ III  (front-to-back) represents "body" vs. everything 
else (or more precisely, whole vs. parts hierarchy). In Figure 6 we present the 
associated weight configurations in which the weights for adults and children 
are indicated by different symbols. (Zero weight on all dimensions is at the 
lower back corner of the cube; the further away from this corner, the heavier 
the weight.) We observe a clear distinction between the two groups of subjects; 
the groups are almost perfectly separated. Every child puts more weight on 
Dimension II (horizontal) than each adult, whereas adults are nearly always 
better represented by the combination of Dimensions I and III. In light of 
the previous interpretation this indicates that 6 year old children are relatively 
homogeneous (they uniformly emphasize the second dimension), whereas 
adults are more heterogeneous (they split between Dimensions I and III). 
No adults evaluate Dimension II highly, but three of them are inclined to 
emphasize Dimension III  rather than I. We do not have any further evidence, 
however, concerning which factors distinguish Dimension III  adults from 
Dimension I adults (who are in the majority). The clear distinction between 
younger children and adults in their way of evaluating dimensions of body 
parts seems very interesting and of empirical importance. 

Real Data and the Unweighted Model 

The evidence supporting the robustness of ALSCAL in the unweighted 
case is clear and abundant. We have analyzed Funk et al.'s ethnic data [1975], 
McGuire's size confusion data [Shepard, 1958, p. 511], Ekman's color data 
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FIGURE 5 
Jacobowitz Body parts data: Three-dimensional stimulus space. 

[].954, p. 468], Miller and Nicely's sound data [1953], Peterson and Barney's 
vowel data [1952], Green and Rao's breakfast menus data [1972], and 
Hayashi's rice data [1974] among others. In all cases the obtained stimulus 
configuration was virtually indistinguishable from the published results, even 
though the latter were obtained by a variety of MDS algorithms. 

We do not present any of the above results in detail. Instead we present 
some of the results we obtained under measurement assumptions weaker than 
those made by the above authors. Hayashi [1974] analyzed the dissimilarity 
of various rice strains by his recently proposed MDS method, which makes 
the assumption that the dissimilarities are defined at the ordinal level. We 
reanalyzed his data with ALSCAL under the assumption that they are defined 
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at only the nominal level, a particularly weak assumption in this case since 
there are only four observation categories. Our results are in close agreement 
with Hayashi's (see Figure 7). Note that the (nominal) observation categories 
are ordered, at the conclusion of the analysis, in the fashion assumed by 
Hayashi. We obtained these results from (ordinally incorrect) initial category 
values which were generated randomly, as well as from the (ordinally correct) 

I 
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tu 

=1 Adults 
[] Children 

FXOURE 6 
Jacobowitz Body parts  data:  Three-dimensional weight space (C for children, A for adults) 
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FIGURE 7 
Hayashi's rice-strain data: Stimulus space (unweighted model). 

i .o 

values used by Hayashi. Thus, we see that ALSCAL converges to the same 
solution independently of the initial category values, though the number of 
iterations required to reach convergence is of course larger for the random 
values. 

We reanalyzed Ekman's color data using the nominal measurement 
assumption, and collapsing the number of observation categories to nine by 
combining them. We analyzed the collapsed observation categories under 
both ordinal and nominal assumptions and in both cases obtained essentially 
the same color circle as Ekman (see Figure 8 where the numbers indicate 
color wavelength). This is in spite of the fact that the data are similarities 
(not dissimilarities), which means that the order of the values assigned to the 
observation categories is the reverse of the order of the desired distances. 
For the ordinal assumption, the user informs ALSCAL to compensate for 
file reversal, of course. However, for the nominal assumption the initial 
category values, being equal to the raw observations, are in the worst possible 
order relative to the desired distances. They are worse than randomly gen- 
erated values. Even so, ALSCAL is able to overcome this very poor initiali- 
zation and obtain the desired configuration (at the cost of a number of 
iterations). Finally, it should be pointed out that the quantification of the 
category values which was obtained was essentially the same for both measure- 
ment assumptions, implying that the ordinal assumption is appropriate. 

For the unweighted Euclidian model we conclude that a) ALSCAL 
reveals the same stimulus structure as other algorithms; b) ALSCAL is able 
to obtain identical solutions under the nominal measurement assumption as 
under the ordinal assumption when the stronger assumption is appropriate; 
and c) the obtained stimulus structure is uneffected by choice of initial 
category values when the nominal assumption is used. 
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5. Discussion 

Having completed the presentation and evaluation of the model and 
method, we now turn to a discussion of some related issues. 

Interpretation o] X and W 

We will not dwell at length on the interpretation of X and W since 
Carroll and Chang [1970] have already done so. The interpretation of X is in 
every way identical to the interpretation given in the earlier work (X repre- 
sents the stimuli as points in an unrotatable Euclidian space with dimensions 
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of unit length). However, there are three subtle differences in the interpreta- 
tion of W, although its general nature is unchanged (W represents the subjects 
as vectors whose direction indicates the relative importance of each dimension 
to each subject). 

The first difference in the interpretation of W is that with unconditional 
data it is permissible to make direct intersubject weight comparisons, whereas 
for conditional data (of either type) and for Carroll and Chang's method 
(which is tacitly matrix-conditional), inter-subject comparisons can only be 
made indirectly via within-subject weight ratios (a point often overlooked 
with the earlier procedure, by the way). For example, if Subject A has weights 
of .80 and .60 oil the two dimensions of a configuration, then for any type of 
data we may say that Subject A places 1.33 = .80/.60 more weight oll Dimen- 
sion one than on Dimension two. Similarly, if Subject B has weights of .40 
and .60 on the same two dimensions, then we may say that he places .67 as 
much weight oll Dimension one as he does on two. Such within-subject 
comparisons are straightforward. However, with between-subject compari- 
sons we must be careful, as it is only for unconditional data that we can make 
the simple statement that Subject A finds Dimension one twice as relevant 
as Subject B does, and that they both find Dimension two to be equally 
relevant. For conditional data, on the other hand, we must say that Subject A 
emphasizes Dimension one relative to Dimension two twice as heavily as 
Subject B does (since 1.33/.67 = 2). I t  is the case, however, for all types of 
data that the magnitude of the weights (the length of the weight vector, say) 
indicates in a general way the degree to which the subject's data are repre- 
sented by the solution obtained by ALSCAL. We discuss this topic next. 

The second difference is in the interpretation of the length of the weight 
vectors. The general interpretation is the same for both procedures; it is said 
that they loosely represent the goodness of fit of the model to the data obtained 
from the individual subject. More specifically, for both procedures it can 
be said that the length of the weight vector (sum of squared weights) roughly 
represents the proportion of variance accounted for in the subject's scalar 
products. The difference is that in the Carroll and Chang approach this 
"variance accounted for" is being optimized, whereas in our procedure it is 
not. As was noted by Carroll and Chang, the "variance accounted for" 
notion is only precisely true when the configuration is exactly orthonormal 
( X ' X  = I ) .  When the configuration is only approximately orthonormal, as 
is the usual case, then this interpretation of the length of the weight vector 
is only roughly true. Note carefully that the weight vector length does not 
represent the proportion of variance (or of anything else) accounted for in 
the subject's judgments. 

The third difference in weight interpretation is in the meaning of a vector 
of zero weights when the data are assumed to be at the ratio level of measure- 
ment. In the Carroll and Chang situation, zero weights for a subject means 
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tha t  the model of his judgments consists of a scalar product matrix which 
is entirely zero. In our situation, however, the same subject would have a 
distance matrix which was entirely zero. Now in the Carroll and Chang 
approach the model's zero scalar products matrix is fit to a set of (pseudo)- 
scalar products (those computed from the data) which have a zero mean. 
Thus the mean of the two matrices is the same. However, in our approach 
the zero distance matrix is fit (in the ratio case) to the raw data. The data  do 
not have a zero mean, and thus the means of the data and distances are not 
the same. Therefore, in our approach a vector of zero weights is going to 
contribute relatively more to the apparent  lack of fit than in the Carroll and 
Chang approach. In  a practical sense this means that  for ratio data, zero 
weights are tess likely to occur with our approach, and that  the weight struc- 
ture obtained with our approach may be similar to the Carroll and Chang 
weights, but  certainly not identical (except in certain unlikely situations). 
In particular, we expect that  our weights should tend to be more nearly 
homogeneous than those obtained from the Carroll and Chang procedure, 
when the data are assumed to be measured at  the ratio level. Thus, we caution 
the user to be careful in opting the ratio assumption, due to the effect of the 
weigh{~s. (Carroll, in a personal communication, also warns of the use of the 
ratio assumption with his procedure, but  for different reasons.) 

Individual Differences 

As was briefly mentioned in the introductory section, there are several 
different multidimensional scaling models realizable within the ALSCAL 
framework. The models are obtained by combining either the weighted or 
unweighted Euclidian model with one of the three types of conditionality, 
and with either one or more than one subject (several of the combinations 
are either impossible or nonsensical). We discuss the meaningful models 
briefly in this section. 

While most of the models call be collectively referred to as individual 
differences models, there are two distinct types of non-individual differences 
models. One of these is the standard unweighted Euclidian model applied 
to a single matrix of data (i.e., when N = 1). Clearly this is not an individual 
differences model since there is but  one individual. The other non-individual 
differences model is obtained when one analyzes several matrices of data with 
the unweighted Euclidian model under the assumption that  the data are 
unconditional. While it might appear that  this is an individual differences 
model (since there are several matrices), the reasons that  we view it as a 
non-individual differences model will become clear after the discussion of 
individual differences in the next  few paragraphs. 

There are three psychologically distinct individual difference models 
realizable within the ALSCAL framework. Individual differences call be 
allowed only in the response process (i.e., response bias), only in the judg- 
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mental process (including perceptual and cognitive processes), or in both the 
response and judgmental processes. It should be clear by now that individual 
differences in judgmental processes are reflected by the weights of the weighted 
Euclidian model. Thus we must choose this model if we are interested in 
allowing for the Horan [1969] and Carroll and Chang [1970] type of individual 
differences. I t  may not be so clear, however, that by assuming the data are 
conditional we are implicitly allowing for individual response bias differences, 
the type allowed for by McGee's [1968] developments. Thus, if the data are 
measured at the ordinal level, each individual is allowed to have his own 
unique monotonic response transformation, while if the data are interval, 
each individual has a unique linear response transformation. Note that this 
type of individual differences results from either type of conditionality, since 
for row-conditional data each individual has a unique set of response trans- 
formations, while for matrix-conditional data each has a single unique trans- 
formation. However, if we make the assumption that the data are uncondi- 
tional, then we are assuming that all individuals have identical response 
biases, and thus tacitly assuming that there are no individual differences 
in this regard. 

Thus, we can allow for two types of individual differences via either the 
model weights or the data conditionality. Obviously, we can permit both 
types of individual differences to occur by simply applying the weighted 
Euclidian model to conditional data. But what happens if we apply the 
unweighted model to unconditional data? Then we have the second type of 
non-individual differences model discussed above. This model allows for 
replicated data, but assumes that the replications arise from subjects with 
identical judgmental and response processes. 

Oblique Axes and Individual Rotations 
Several weighted models have been proposed which are more general 

than the one discussed here. Among these are IDIOSCAL, a model which 
allows for individual differences in the orientation of axes [Carroll & Chang, 
Note 2]; PARAFAC, a model which permits individuals to have weighted 
oblique dimensions [Harshman, Note 10]; and an extension of Tucker's 
three-mode factor analysis [Tucker, 1966; Levin, 1965] to multidimensional 
scaling [Tucker, 1972]. All of these models have been proposed in the scalar 
products framework. Thus they optimize the STRAIN index (8) with the 
definition of the weights matrix changed in different ways for the different 
models. 

As has been discussed by Carroll and Chang [Note 2], the distance 
version of these models (as well as the models covered by our previous develop- 
ments) are alt special cases of the following distance model: 

(49) d,~," = ~ ~ (x,. - Xi.)rko,(X,b - Xi,,), 
a = I  b ~ l  
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or, in matrix notation, 

(50) d , i ~  ~ = ( x ,  - x i ) ' R ~ ( z ,  - x i ) .  

Here x~ is a column vector of coordinates for point i, and RI0 is a square sym- 
metric matrix of inter-dimension relations for subject k. The relationship 
of this model to the one treated by ALSCAL is that ALSCAL restricts Rk to 
be a diagonal matrix. 

The other models mentioned at the beginning of this section are obtained 
as follows. For Carroll and Chang's model we obtain the spectral decomposi- 
tion of Rk • 

(51) Rk = U~WkUk', 

where Uk is orthogonal and W~ is diagonal; where Uk can be interpreted as a 
subject's orthogonal rotation of the original coordinatesX to a new orienta- 
tion; and where his weights W~ are applied to the rotated configuration. Thus 
this model allows for individual differences in the orientation of axes as well 
as the types of individual differences discussed in the preceding section. 
(Note that the orientation of X is not unique.) 

For Harshman's model we decompose R,, so that 

(52) Rk = WI~CW~', 

where WI, is diagonal, and C is square symmetric with unit diagonals; where 
C is interpreted as a matrix of cosines of angles between oblique dimensions; 
and where Wk is a subject's weights on the obliquely transformed dimensions. 
Thus this model allows for the same types of individual differences as discussed 
in the previous section, but makes the fundamentally different assumption 
that  the axes which are being weighted are oblique transformations of the 
stimulus space X (whose orientation is uniquely determined). Note that all 
subjects weight the same oblique dimensions. 

For Tucker's model we decompose Rk So that 

(53) R~ = WkCkWk', 

where the matrices have the same nature as in Harshman's model, with the 
essential difference that each subject Ic has his own oblique transformation C~, 
as indicated by the subscript. Thus Tucker permits a type of individual 
difference not covered by the previous models, namely that each individual 
has his own personal oblique transformation of the coordinate space, as well 
as his own weighting of the dimensions of his space. (Note that the orientation 
of X is not unique here.) This decomposition of R~ is the most general of those 
presented in this section, including all of the models previously discussed 
in this paper. 

ALSCAL can be easily extended to cover any of the models treated in 
this section by modifying the weight estimation phase (Section 3). The 
modification is to redefine the matrix Y so that all pairs of dimensions are 
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present as well as all pairs of points. Thus, if we define Y to be an order 
n(n - 1)/2 by t(t + 1)/2 matrix with general element (x,a - x~o)(x~b - xib), 
and then apply (36) we would obtain least squares estimates of the Rk , 
which can then be decomposed in the desired way. 

M inlcowski Spaces 

One of the limitations of the work presented here is that it only encom- 
passes Euclidian coordinate spaces and does not include other Minkowski 
spaces. Such a generalization, which is very simple with the standard gradient 
approach [Kruskal, 1964; Lingoes, 1973; Young, 1972], is annoyingly difficult 
ill the ALS approach. In fact, the extension is impossible within the ALS 
framework unless we adopt a different optimization criterion. If we defined 
/STRESS on the/-power weighted Minkowski distances, i.e., 

(54) d,~kz = ~_, w, .  Ixi~ -- x,oI z, w, .  < O, 1 < 1 < oo, 
a = l  

so that /STRESS would become 
i - 1  

(55) ¢2(X, W,  n*)  = ~ ~ ~ (d,,~ *Z - d,,k*) 2, 
i k 

then with some rather minor modifications in Section 3 we could extend our 
developments to other Minkowski spaces. However, this proposal is not 
entirely meaningful, especially when the value of 1 is at all large. I t  is interest- 
ing to note, though, that for City Block (I = 1) /STRESS is identical to 
STRESS. Thus it would be both simple and meaningful to extend ALSCAL 
to include City Block space. Such an extension would also be rather useful 
since City Block space is probably the most commonly used non-Euclidian 
coordinate space in applications of multidimensional scaling to social science 
data. However, this extension might not be robust due to the well-known 
frequency of local minima in City Block space. 

Weighted Unlolding Models 

A further limitation of the work discussed in this paper is that it does not 
apply to Coombs's unfolding model [1964]. This model can easily be incor- 
porated into nonmetric multidimensional scaling programs as has been 
discussed by Young [1972], and carried out by Kruskal, Young and Seery 
[Note 14], Lingoes and Roskam [1973] and Young [1973]. I t  would be possible 
to incorporate the unfolding model within the ALSCAL framework by using 
t:he notions discussed by these authors. If this were done, then the full model 
(incorporating the oblique axes and individual rotations notions as well as 
the Minkowski notions discussed in Section 5) would be 

(56) d,~  ~ ~_. ~ tx,~ ~/2 -- -- Yi. rk.b IX, b -- yibl z/'2, 
a = l  b ~ l  
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where the new terms yi~ and Ylb are coordinates of the "ideal point," in 
Coombs's terminology. We obtain Coombs's unfolding model by assuming 
that the space is an unweighted Euclidian space (i.e., I = 2, and the matrices 
Rk are identity matrices). When these restrictions are placed on (56) we 
obtain Coombs's method for modeling individual differences, as has been 
discussed extensively by Coombs. We also obtain a way of modeling any 
second set of objects as points in the Euclidian space, as has been discussed 
by Young [1972] among others. For example, if we have a matrix of judgments 
concerning the degree to which each of several American Ethnic subgroups 
can be described by each of several adjectives, ~then we can use the unfolding 
model to develop a "joint" Euclidian space containing points representing 
both the Ethnic groups and the adjectives. Precisely this approach was taken 
by Funk, et al. [in press]. If the ALSCAL procedure were extended to incor- 
porate the model implied by (56), then we could also perform an individual 
differences unfolding analysis of the type of data gathered by Funk, et al. 
Whereas Funk, et al. had to average the data they gathered from 50 subjects 
to obtain a single matrix to be "unfolded," it would be possible to avoid 
this averaging procedure and adopt a model incorporating the Carroll-Chang 
type of individual differences weights (or indeed, any of the other types of 
weights discussed in Section 5). This approach would be particularly ideal 
for the Funk, et al. study, since it is reasonable to assume that the particular 
Ethnic subgroup to which the judge belongs affects his judgments of the 
degree to which certain adjectives describe certain Ethnic groups. We issue 
a note of caution, however, as there are some well-known degeneracies which 
occur with the unfolding model, and we might expect that this extension of 
the ALSCAL procedure would not be any more robust to these problems 
than preceding procedures. 

Measurement 

Within our framework one can obtain empirical information about the 
measurement level of his raw data, at least within the context set by the 
MDS model. All that has to be done is to analyze the data several times, 
making different measurement level assumptions each time. If two (or more) 
of these anMyses yield precisely the same results, then the appropriate 
measurement level is the highest one used for the several equivalent analyses. 
He can then conclude that within the MDS situation the true measurement 
level is that highest one, and that this is not simply an assumption of the 
appropriate level, but an empirically determined level. 

The reasoning behind these statements is as follows. If a set of raw data 
is analyzed twice, and if the only difference in the two sets of analysis options 
is the assumed measurement level, and if the obtained results (X, W, D*, and 
SSTRESS) are identical for both analyses, then the lower measurement level 
(which places relatively weak restrictions on the optimal scaling) is yielding 
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exactly the same transformation as the higher measurement level (which 
enforces stricter conditions). That is, if the two analyses involve nominal 
ancl ordinal assumptions and yield identical results, then in the nominal case 
tile transformation actually satisfies the ordinal requirements. When this 
occurs it is appropriate to conclude that the data are in fact measured at least 
at the higher of the two levels of measurement when these data are analyzed 
with the chosen model. 

Note that the view of measurement implied by the preceding statements 
is not the common view. We do not adopt the commonly held position that 
measurement level is a characteristic of data i n  vacuo. Rather, it is our view 
that the measurement level of a particular set of data is dependent on the 
interaction of that data with the model chosen to describe the data. When 
a set of data is analyzed by some model, the method of analysis necessitates 
assuming that certain types of data transformations are permissible. These 
transformations, and the operations they entail, imply that a certain level of 
measurement has been assumed to exist in the data. If one carl vary the types 
of allowable transformations, and only perform operations oll the data which 
are commensurate with the transformations, then one can determine how well 
the data "measure up", as it were, to the requirements of each measurement 
level. This is the approach taken here. Note ,however, that this cannot be 
done outside of the context created by the chosen model , as should be clear. 
I t  may be that a set of data is monotonically (but not linearly) related to the 
d~stances of an MDS model, but it would not be correct to conclude that they 
are ordinal for it may be the case that they are linearly related to some 
other model. 

I t  may appear to be the case that the argument is purely academic, and 
that the situation will never arise in practice. After all, we are requiring that 
the results of the several analyses be exactly equivalent. However, the situa- 
tion actually occurred in one of the examples given above. For the Hayashi 
[1974] data the nominal and ordinal results were precisely identical, allowing 
us to conclude that the raw data that we analyzed were at least ordinal in 
the MDS context. We do believe ,though, that our requirement of strict 
equivalence is overly stringent, and we would prefer to develop a test to 
indicate how well a particular set of data approximates a particular measure- 
ment level. We have not yet done this, however. 

Our view of measurement differs from the common view in one more 
fundamental way. As was implied by the end of the previous paragraph, 
we do not view measurement as being at one of a set of discrete levels. Our 
view is that measurement level is a continuous notion, not a discrete one. 
While it is obviously the case that only certain discrete points on the measure- 
ment level continuum can be axiomatized, it is not our understanding that 
these are the only measurement levels. The intermediate measurement levels 
between the various axiomatizable points represent levels of measurement 
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which approximate, to a greater or lesser degree, the next higher axiomatized 
level. Thus, if we analyzed a single set of data under nominal, ordinal and 
interval assumptions, and we discovered that the results were identical for 
the nominal and ordinal cases, and "very similar" in the interval case, then 
we would conclude that the measurement level of the data when analyzed 
by the chosen model is somewhere between the ordinal and interval points, 
and perhaps nearer the interval point. The most critical feature of the analysis 
for deciding how nearly one approximates a particular measurement level 
is the investigation of the nature of the optimal scaling D*. In the example 
just given, to conclude that the results were "very similar" in the interval 
case, we would have to go back to the ordinal case and determine how fax the 
optimally scaled data (D*) deviate from linearity. Formally, we might 
obtain the Pearson correlation between D* and the set of data 0, as a descrip- 
tive indication of deviation from linearity (note that this is obtained for the 
ordinal level analysis for which the Spearmen rank order correlation between 
D* and 0 is perfect). While this is an adequate descriptive device, clearly 
we cannot use it for formally testing a measurement level hypothesis, which 
is what we would most like to do. 

This notion of a measurement continuum is involved in another important 
aspect of our situation. I t  is commonly stated that nonmetric procedures 
quantify qualitative data. Indeed, one of the main reasons for the popularity 
of nonmetric procedures is this magical conversion of measurement level. 
Strictly speaking, such a conversion of measurement level only occurs, in 
our view, when the quantitative model perfectly describes the qualitative 
data. Thus in our situation it is necessary to obtain a zero SSTRESS value 
in order to precisely quantify qualitative data. The degree to which SSTRESS 
is not zero indicates the degree to which we were unable to quantify our data 
with the MDS model. Rephrased in the terms used in the preceding para- 
graph, the SSTRESS value indicates how far along the measurement level 
continuum we have moved from the assumed measurement level towards the 
ratio measurement level (which is the level of the MDS model). Perhaps a 
more useful index of quantification would be the Pearson correlation between 
the optimally transformed data D* and the distances D. Note that if the same 
set of data is analyzed under several different measurement level assumptions, 
then the SSTRESS (and quantification correlation) will be best for the weakest 
assumption, indicating, as it should, that we have moved further along the 
measurement continuum. However, this is not due to the fact that we have 
reached a higher degree of quantification, but to the fact that we assumed a 
lower degree of qualification, as it were. 

Finally, these two uses of the measurement continuum, and the two 
descriptive correlation indices proposed, are perfectly commensurate with 
each other. For the Hayashi [1974] data analyzed in the previous section, a 
Spearman rank order correlation performed between 0 and D* for the nominal 
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analysis would be unity, indicating that the data are actually ordinM when 
analyzed by the chosen model. The Pearson correlation between D* and D 
would be the same for the two analyses (as in the SSTRESS), meaning that 
no more quantification was possible under the nominal assumption that under 
the ordinal assumption. This implys that the data are ordinal. Finally, the 
Pearson correlation between D* and D is not unity (nor is the SSTRESS 
~,,ero), indicating that the data are not perfectly consistent with the model, 
and therefore that the model has not been able to perfectly quantify the data. 
Please keep in mind that we only use the correlations descriptively, and that 
the main weakness of our proposal to use such indices to investigate measure- 
ment level is that we have no formal methods for deciding when a goodness 
of fit measure is significant. 

E~ciency 
The last topic we take up is the efficiency of ALSCAL, both in terms of 

speed and memory requirements. The memory requirements of ALSCAL are 
most easily discussed, so we take them up first. As compared with the metric 
INDSCAL, only about one-half of the amount of data may be accommodated 
in the same amount of space. This follows from the fact that with a nonmetric 
program, one must store both the original data and the optimally scaled data, 
whereas with a metric program, one only needs to store the data. Thus twice 
the core storage is required with a nonmetric program. In most other regards 
ALSCAL and INDSCAL are comparable in terms of storage requirements. 
Of course, the storage requirements of ALSCAL are roughly comparable to 
those for other nonmetric MDS programs, with the added storage for subject 
weights being balanced by the lack of a gradient matrix. 

Turning now to the speed of ALSCAL, we first discuss the manner in 
which the speed is a function of various aspects of the analysis situation. Note 
that there are four separate computational sub-problems: a) solving for 
initial values; b) obtaining the optimal scaling transformations; c) computing 
the weights; and d) determining the configuration. Of these four problems 
all except the weight problem are adversely effected by increasing the number 
of points. On the other hand, if the number of subjects is increased only 
two phases, the optimal scaling and weight phases, will be slower. If we 
increase the number of dimensions then all phases should be slower except 
the optimal scaling phase which will be uneffected (except in the ordinal case 
where increasing dimensionality will improve efficiency, due to the likelihood 
that the order will be more nearly correct). Finally, the ordinal measurement 
level should take noticeably longer than any of the other levels, due to the 
sorting. In Table 2 we present the times required to analyze the Jones and 
"Young [1972] data as a function of dimensionaiity and measurement levels. 
These times are CPU time only, with no I/O time included. We have set the 
convergence criterion to a value of ~ = .001 where ~ is the improvement in 
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TABLE 2 
CPU t ime/mtmber of iteratiotls required for program cotlvergeuce. 

(The CPU units are arbitrary.) 

Dimensionality Measurement Level 

nominal ordinal interval ratio 

i 5.2/4 22.1/4 6.4/4 6.0/4 

2 7.8/4 16.7/4 8.2/4 6.4/3 

3 13.4/5 21.6/5 11.7/4 11.9/4 
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SSTRESS from one iteration to the next. (Note we use ¢, that is, the square 
root of [11]). We also present the number of iterations to convergence. 

Evaluating an algorithm's speed relative to another algorithm is a difficult 
problem, as has been stressed by Spence [1972] and Lingoes and Roskam [1973]. 
Here the main source of difficulty is the fact that ALSCAL optimizes a 
different function than any of the other routines, so it is difficult to ensure 
that the various programs are obtaining equally precise solutions. We follow 
the lead of Spence and simply use the default termination values associated 
with each program. While this does not get around the precision problem, it 
does at least correspond to the likely state of affairs in the real world. In 
Table 3 we present the CPU times required to analyze the Hayashi [1974] data 
in two dimensions by ALSCAL, KYST and POLYCON, and the CPU times 
required to analyze the Jones and Young [1972] data in three dimensions by 
ALSCAL and INDSCAL. (KYST and POLYCON were both optimizing 
Kruskal's second STRESS formula whereas ALSCAL was not, which accounts 
for the larger stress value obtained from ALSCAL.) We also present the 
value of Kruskal's first STRESS formula for comparison. (Note that none of 
the programs optimized this formula but perhaps STRESS 2 is closer to 
STRESS 1 than SSTRESS 1.) Finally, we have also presented the last im- 
provement in the function being optimized as a rough precision indicator. 
We believe it is fair to conclude that ALSCAL is more efficient in terms of 
computation time than other currently available programs. 

We must admit that the relative speed of ALSCAL is a fortuitous rather 
than an anticipated result. Perhaps the speed of ALSCAL is related to a fact 
recently reported in the numerical analysis literature. There is a class of 
algorithms, called nonlinear block successive overrelaxation algorithms 
[Hageman & Porsching, 1975] which are very closely related to ALS al- 
gorithms, and which are currently quite popular among numerical analysts. 
These algorithms are like an ALS procedure in that they divide the estimation 
problem into a series of conditional estimation problems (successive blocks), 
each of which has all analytic solution. These algorithms differ from an ALS 
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TABLE 3 
Comparison of the efficiency of several scaling algorithms. 

CPU Itera- STRESS STRESS Improve- Data 
time tions 2 1 ment 

ALSCAL 6.3 6 .476 .251 .0001 Hayashi 
(nominal) 

ALSCAL 5.7 6 .476 .251 .0001 Hayashi 
(ordinal) 

KYST 15.1 16 .429 .211 .OO01 Hayashi 

POLYCON 56.8 25 .455 .225 .0001 Hayashi 

ALSCAL 11.9 4 - .302 .0003 Jones & Young 
(ratio) 

INDSCAL 63.4 a 17 - - .0098 Jones & Young 
(ratio) 

aAnother run with a different random start took 73.5 CPU seconds. 

procedure in that they do not go precisely to the minimum in each subproblem, 
but overstep the minimum. The overstepping is referred to as overrelaxation. 
I t  has been found that these procedures are fastest when the several sub- 
problems involve approximately the same number of parameters. This 
condition holds, roughly, in ALSCAL. I t  has been found with these procedures 
that overrelaxation improves the efficiency of the algorithm. Thus we may 
be able to further improve the efficiency of ALSCAL by this technique. 
(We are currently looking into this possibility.) 

Finally, it should be noted that the order in which the three conditional 
minimization problems are solved is not very critical in terms of the parameter 
values eventually obtained at convergence. Nor indeed does it appear that 
the initialization procedure is very critical in this regard, although other 
procedures may evidence more frequent incidents of local minima solutions 
(which are seldom, if ever, obtained with the initialization used here). Further- 
more, no matter how frequently we solve one of the subproblems relative to 
another one (within reasonable limits, of course), we eventually obtain the 
same estimates. Thus, the ALS approach is somewhat arbitrary in these 
terms. However, it is the case that the speed of convergence is heavily affected, 
and our particular choice of flow was strongly related to this concern. From 
our experience with ALS procedures, it seems that the most efficient procedure 
is the one in which each subproblem is solved the same number of times in an 
iteration. Thus, it is usually more efficient to solve each subproblem once per 
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iteration than to solve for X, say, three times and the other aspects once. 
This experience is probably closely related to the numerical analysis result 
reported in the previous paragraph. 

Local Minima 

As was mentioned at the end of the section on computing coordinates 
(Section 3), a theoretical difficulty was found to exist in the proposed method. 
(This difficulty was first pointed out to us by Robert F. Baker, and was 
independently noted by J. Douglas Carroll, to both of whom we owe our 
gratitude.) In this section we discuss the issue fully, and propose a revised 
procedure which is free from local minima problems. I t  should be emphasized 
at this point that the theoretical problem appears to have no practical 
consequences, as should be clear from the evaluation presented in Section 4. 
Furthermore, the procedure to be proposed, while having a certain theoretical 
beauty, is of unknown efficiency, and may prove to be less rapid than the 
procedure evaluated above. 

Recall that the function being minimized (43) is a quartic function, 
and that its gradient (44) is a system of simultaneous cubic equations. Let 
us simplify the situation by considering the form of the quartic equation 
when there is only a single variable; i.e., for a single coordinate instead of 
for all t coordinates of a point. Since SSTRESS can never have a value less 
than zero, the quartie equation (which is SSTRESS) must always have a 
positive value. This implies that it has at most two minima and one maximum 
(is " W "  shaped) and cannot have two maxima and one minimum (cannot 
be "M"  shaped). (We must say "at most" because it will not Mways be the 
case that these minima and maxima will all be distinct.) If we now consider 
the case of t coordinates varying simultaneously (as was done in Section 3), 
we will come to the conclusion that there are at most a total of 3' roots to 
the system of simultaneous cubic equations forming the gradient of the 
function. Geometrically, these 3' roots correspond to a single maximum, 
2' minima (of which at least one is the overall minimum), and 3' - 2' - 1 
saddle points. The Gill and Murray variation of the Newton-Raphson 
procedure which we use to locate the minimum is designed to avoid all saddle 
points (and to avoid the maximum, of course), but it cannot distinguish 
between the 2' minima. It  simply goes to the "nearest" one. This is the 
theoretical problem with our procedure. In fact, in a technical sense, the 
procedure we have proposed should not be called an alternating least squares 
procedure, since we are not assured of always finding the conditional minimum 
in each phase, which is the defining characteristic of such an ALS procedure. 

If we consider exactly what happens to each coordinate, one at a time, 
we can develop a modification of the proposed algorithm which is truly an 
alternating least squares procedure. These are two basic types of situations 
which can occur in the solution of a single cubic equation in one variable. 
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Type I: 
Type  Ia: 
Type Ib: 
Type  Ic: 
Type  II:  

The cubic equation has three real roots. 
All three roots are distinct. 
Two of the roots are equal. 
All three roots are equal. 
The cubic equation has one real root and two imaginary roots. 

(I t  is not  possible for a cubic equation to have two real roots and one imaginary 
root.) When all three roots are real and distinct (Type Ia), the  cubic equation 
can be written (in general form) (x - a)(x -- b)(x - c) = 0, where a, b and c 
are the roots and we can assume, for the sake of simplicity, tha t  a < b < c. 
In this case the minima of the quartic function will necessarily correspond 
to roots a and c, i.e., to the smallest and largest roots (recall the W shape of 
the quartic). When either a = b < c, or a ~ b = c (Type Ib), the cubic 
equation can be writ ten as either ( x  - c ) ( x  - b )  2 - -  0 or as ( x  - a ) ( x  - b )  2 

= 0. I t  can be shown in this case tha t  the distinct root corresponds to the 
minimum, and tha t  the non-distinct roots correspond to a stationary point 
which is neither a minimum nor a maximum, but  a level (plateau) point. 
I:n the case where a = b = c (Type Ic), tl~e cubic equation can be writ ten 
( x  - a) a = 0, and all three real roots correspond to the single minimum of 
the (degenerate) quartic (which also has no other stat ionary points). Finally, 
let us consider the case of one real and two imaginary roots (Type II).  In this 
case the cubic equation can be written ( x  - a ) ( x  2 .-P 2 d x  ~- e) = 0, where 
(d 2 - e) < 0. (Note tha t  when d ~ - e = 0 we have cases Ib or Ic, and when 
(d 2 -- e) ~ 0 we have case Ia.) In this case the quartic function has only one 
minimum and no other stat ionary points, as in Type  Ic. (The difference 
between Types Ic and II  is tha t  in the former the quartic is symmetric, 
whereas in the latter it is not.) Note that  it is not possible to have a quartic 
which has one minimum and two plateau points since the first derivative 
of such a function is not  cubic. 

Based on the above analysis of the various types of situations which 
can occur in the solution of a cubic equation, we notice tha t  we need either 
two or zero evaluations of the objective function to locate the global minimum. 
For the Type  Ia  situation we need to evaluate only the smallest and largest 
root, since the middle root corresponds to the maximum. For the Type  Ib 
situation we do not  need to evaluate the function at  all since the distinct 
root will necessarily correspond to the minimum. Similarly, for the Type  Ic 
and Type  I I  situations we also do not  need to evaluate the function since 
there is only one minimum (for Type  Ic we can select any root, and for Type  I I  
we select the positive root). 

I f  we wish to have a t ruely ALS procedure (which is in itself a debatable 
point), we can, then, switch to a procedure which estimates coordinates one 
at  a time. In fact, this would probably not  increase the computation time 
since the computations in (44), (45) and (46) (which lead up to [47]) are more 
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time consuming that the computations involved in (47) or in the procedure 
suggested here. We plan on investigating the efficiency of this new approach 
in the near future. 

It  sounds as though the approach just discussed has no local minimum 
problems~ and is thus the first procedure for nonmetric multidimensional 
scaling to guarantee obtaining the global minimum. Unfortunately, this is 
not quite the case. While it is true that once the process is started there would 
be no local minimum problems, it is obviously the case that the final solution 
point is dependent on the initial solution point. Thus, it is more accurate to 
state that the solution obtained is the conditional global minimum, since it is 
conditional on the values used to start the entire process, but is in every other 
way free of local minimum problems. One now understands why such effort 
is spent on obtaining a good starting point. 

6. Conclusions 

We conclude that ALSCAL is the first viable algorithm for nonmetric 
individual differences multidimensional scaling. 

ALSCAL is robust. As has been shown, ALSCAL can recover the true 
underlying structure in the Monte Carlo situation, at least when the measure- 
ment assumptions are appropriate and when there is not too much error 
introduced into the data. Furthermore, ALSCAL obtains the same structure 
as that obtained by other algorithms in those special cases for which algorithms 
have been previously developed. 

ALSCAL is flexible. Most of the currently popular individual differences 
models and the widely used simple Euclidian model fall within the ALSCAL 
framework, thus ALSCAL is flexible with regard to the models which can be 
fitted to the data. Furthermore, ALSCAL is flexible with regard to the data 
since essentially all of the commonly discussed types of data (and some types 
not previously discussed) fall within ALSCAL's province. 

ALSCAL is rapid. While there are difficulties associated with evaluating 
the rapidity of one algorithm relative to another, we tentatively conclude 
that ALSCAL is more rapid than previously developed algorithms. 

The viability of ALSCAL leads us to feel very encouraged about the two 
keystones of our work, namely alternating least squares, and optimal scaling. 
Our previous work [de Leeuw, Young & Takane, 1976; Young, de Leeuw & 
Takane, 1976] has shown that these two keystones yield viable results with 
linear models. The current work extends this viability to quadratic models. 

Note that the viability of our research is not bought without cost. 
Perhaps the main cost is that a separate, highly specific algorithm must be 
constructed for each class of models, thus eliminating the possibility of 
developing one very general algorithm for all situations. 

An indirect cost associated with our work is that the alternating least 
squares approach to solving least squares problems, namely dividing the 
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problem into a series of simple subproblems, is only as simple as the simplest 
subproblem. In  our previous work with linear models each of the subproblems 
was very simple. However, with the current work one of the subproblems, that  
of obtaining the best coordinate values, was not very simple, and the resulting 
algorithm is rather complex. Note tha t  the derivation of the solution to a 
subproblem, which must be strictly least squares, may sometimes be difficult, 
as was the case here. 

However, we believe that  the costs of our approach are outweighed by 
the benefits. We are confident tha t  the alternating least squares and optimal 
scaling keystones will provide a viable approach to other models in addition 
to the linear and quadratic ones investigated so far. 
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