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Abstract

Ž .Multivariate Curve Resolution MCR is applied to the study of temperature dependent conformational multiequilibria
evolving processes. Experimental data sets are obtained by UV spectral monitoring of the melting behavior of the het-

Ž . Ž . Ž Ž . Ž .. Ž .eropolynucleotide poly adenylic acid–poly uridylic acid poly A –poly U and of the hompolynucleotides poly adenylic
Ž Ž .. Ž . Ž Ž ..poly A acid and poly urydilic acid poly U , i.e., recording UV spectra at different temperatures during the melting pro-
cess of these polynucleotides. Separate study of every individual melting experiment by MCR did not give a satisfactory

Ž . Ž .resolution of the heteropolynucleotide poly A –poly U melting process because of unresolved rotational ambiguities and
Ž . Ž .rank deficiency problems. Conversely, the simultaneous MCR analysis of the melting process of poly A –poly U het-

Ž . Ž .eropolynucleotide together with the separate melting processes of the poly A and poly U homopolynucleotides, allowed the
resolution of the species profiles and the elimination of the rank deficiency problems present in the individual analysis of the

Ž . Ž .melting behavior of poly A –poly U . q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a broad sense, chemical processes can be de-
fined as chemical systems which may evolve with the
change of a system variable. With this definition in
mind, the study of evolutionary chemical processes is
of interest in many different chemical fields, like
Chemical Engineering, Analytical Chemistry or Bio-
chemistry. Application of chemometric techniques to
chemical processes has been denominated Process

w xChemometrics 1 . Spectrometric monitoring of
evolving chemical processes like those occurred in
multiequilibria and kinetic reactions when a system
variable like pH or time is changed provide very rich
multivariate data describing the chemical changes
occurring during the process. The spectral data ob-
tained in one run of the process is organized in an
ordered data matrix, with as many rows as spectra
acquired along the process, and with as many
columns as wavelengths or spectral channels mea-
sured. Each one of these data matrices contains in-
formation about two vector spaces, defined by the
rows and the columns of the matrices. Row vector
space gives the description of the evolution of the
process, about how the concentrations of the differ-
ent chemical components change during the process.
Column vector space describes the spectral responses
of these components.

Hard-modeling methods, i.e., methods based on
the fulfillment of a chemical model like mass-action
or rate laws, can only be applied when the system
under study follows the proposed model, at least to
the extent that unexplained variance be small. There
are many cases where physical models cannot be ap-
plied in practice. One obvious case is when no physi-
cal model is known explaining the observed data
variance. A second case is when the model variables
cannot be fixed at the conditions where the model is
fulfilled. A third case would be when only a small
proportion of observed data variance can be de-

scribed correctly by the physical model, leaving a
major part of it, unexplained. In all these circum-
stances, soft-modeling methods provide a comple-
mentary and very useful tool of data analysis. Soft
modeling methods do not use and do not postulate
any a priori physical model to describe data varia-
tion; instead they rely on relatively some ‘soft’ as-
sumptions about data, like linearity, non-negativity

w xand others. Factor Analysis based methods, FA 2 ,
are among the soft modeling methods which are more
useful to model and analyze chemical data. Specially
suitable for the study of evolutionary processes are

w xmethods like Evolving Factor Analysis, EFA 3 . Ap-
plication of EFA to evolutionary processes, provides
information about the number of evolving compo-
nents, their appearance and disappearance, and about

w xthe local rank of the system 4 . One steep further in
multivariate process modeling is Multivariate Curve

w xResolution, MCR, methods 5–8 . MCR methods try
to obtain information about the identity of the com-

Ž .ponents spectra profiles of the system, and about
Žtheir concentration changes species concentration

.profiles . There are different variants of Multivariate
Curve Resolution algorithms which can be divided
roughly as iterative and non-iterative curve resolu-
tion methods. Non-iterative methods try to recover
the concentration andror spectra profiles of the com-
ponents of the system in one single step, using only
the information about the regions of existence of each

Ž .of them local rank , whereas iterative methods try to
recover the profiles in an iterative way, using an op-

w xtimization algorithm as alternating least squares 7,8
w xor iterative target factor analysis 9 . Iterative meth-

ods can easily include several constraints during the
optimization process, whereas in non-iterative curve
resolution methods such an inclusion becomes rather
difficult. Under selectivity or local rank favorable
conditions, mathematically formulated as resolution

w xtheorems 10 , the recovery of the correct profiles is
theoretically possible. If such resolution conditions
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are not fulfilled, the recovery of the species profiles
is more problematic and ambiguous and the extent of
this ambiguity depends on multiple factors, like data

Ž .complexity number of components overlapped and
data constraints. Although no general rules can be
formulated to recover the correct solutions in the ab-
sence of local rank conditions, the results obtained via

w xan alternating least squares iterative method 7,8 us-
ing natural constraints like non-negativity, unimodal-
ity, closure and others do fulfill most of the require-
ments for a semi-quantitative resolution of an un-
known system allowing its chemical interpretation. In
the case of monitoring an evolving process, such in-
formation would allow possible decisions about the

w xprocess to be taken in future runs 11 .
Additionally, MCR is easily extended to the si-

multaneous analysis of different correlated runs of a
w xchemical process 7,8,11,12 . Combining data from

different runs may contribute to improve data resolu-
tion because of different reasons. First, because the
simultaneous analysis of multiple runs of a chemical
process improves the stability and reliability of the
obtained solutions obtained; since the system of
equations to be solved is much more overdetermined
than the system of equations to be solved in case of
the analysis of a single run. Second, with an appro-
priate experimental design of data, resolution condi-
tions not achieved in the analysis of a single run of
the process, can be achieved instead, in the simulta-
neous analysis of different runs of the process. And
third, the simultaneous analysis of several correlated
data sets arranged in different data matrices, gives a
three-way data structure, which under trilinearity

w xconditions 13 , can be resolved without the rota-
tional ambiguities often present in resolution of two-

Ž .way one data matrix data sets. Trilinearity, how-
ever, is a condition difficult to be fulfilled for experi-
mental data in the general case, and three-way non-
trilinear data is a much more common situation in

w xpractice 6,14 .
An additional difficulty commonly present in pro-

cess analysis and in chemical reaction based systems
w xis rank deficiency 15 . In this case, the number of

linearly independent contributions to data variance is
less than the number of chemical components; this
situation is often present in reaction based systems

w xand in closed systems 15–17 when the number of
independent reactions is lower than the number of

chemical species involved in these reactions. Rank
deficient systems are obviously more difficult to re-
solve than full rank systems. However, simultaneous
analysis of different runs of a process under indepen-
dent conditions, may contribute to rank augmentation
and to break rank deficiencies, allowing the resolu-
tion of components which could not be resolved in the
individual analysis of each data set separately.

All these ideas have been used recently in the
species resolution of biochemical processes related
with the study of the solution properties of poly-

w x w xnucleotides 18–20 and proteins 21,22 when the
pH, the temperature or other variable of the system is
changed. Modeling these pH or temperature depen-
dent processes involving biomolecules is not usually
feasible at present by means of hard modeling meth-
ods based on physical laws. Soft modeling descrip-
tion of biomacromolecular processes like acid–base
macromolecular reactions, metal complexation reac-
tions by macromolecules or any other macromolecu-
lar interaction may be achieved easily by means of
MCR methods. Evolving processes like conforma-
tional changes or protein folding caused by different
physical or chemical agents like temperature, pH,
ionic strength or concentration of particular sub-
stances can be easily studied using MCR. MCR is
relatively simple to implement compared with hard
modeling methods, where all the chemical interac-
tions and sources of data variance should be pre-

Ž .cisely defined a priori model postulation by means
of a physical model. Soft modeling MCR is a much
more analytical way to model experimental data us-
ing only very weak and soft assumptions. From the
information gathered from MCR, the explanation of
what occurs in the process in terms of analytical

Žproperties concentration changes and spectra of the
.contributions allows the understanding of the sys-

tem from a chemical point of view, i.e., a chemical
model is deduced a posteriori.

In this paper, UV spectrometric process monitor-
Žing of a melting temperature dependent change of

.conformation experiment of the heteropolynucleo-
Ž . Ž . Ž Ž .tide poly adenylic –poly uridylic acid poly A –

Ž ..poly U is studied and compared with the melting
behavior of the homopolynucleotide constituents,

Ž .polyadenylic acid, poly A , and polyuridylic acid
Ž Ž ..poly U . Results obtained will be compared with
those previously obtained in the monitoring of poly-
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Ž Ž . Ž ..inosinic – polycytidylic acid poly I – poly C
w x22,23 . In both cases, rank deficiency problems are
present. Solution to this problem by means of matrix
augmentation is studied in detail. The ultimate goal
of the study is the modeling and description of the
process under study and the resolution of the chemi-
cal species responsible of the observed data variance
of the system, i.e., the extraction of the number of
species, the calculation of their melting concentration
profiles and of their pure spectra.

2. Experimental

2.1. Reagents and solutions

Ž .Sodium chloride Merck , potassium monohydro-
Ž .genphosphate Carlo Erba , sodium dihydrogenphos-

Ž . Ž . Žphate Panreac and poly uridylic acid, poly ade-
. Ž . Ž .nylic acid, poly adenylic –poly uridylic acid

Ž .SIGMA were used without further purification. So-
lutions of polynucleotides were prepared from a
known amount of the solid reagent and dissolution in
the ionic medium used in this study. A pH value of
6.9 was adjusted by means of the buffer solution
monohydrogenphosphaterdihydrogenphosphate. The
concentration of the synthetic polynucleotide solu-
tions was referred to the concentration of the cyclic
monophosphate nucleotides cAMP and cUMP, which
are the monomeric units in the polynucleotide chains.

2.2. Apparatus

UV absorption spectra were recorded on a
Perkin-Elmer lambda-19 spectrophotometer. Tem-
perature was adjusted with a Perkin-Elmer Digital
Controller, based on a Peltier device, model C570-
0701 with a rate of 18Crmin. Instrumental control,

data acquisition and spectra pre-processing were car-
ried out via personal computers. pH measurements
were performed with an Orion model 701A pHmeter
Ž .with a precision of "0.1 mV and a combined Ross

Ž .pH electrode Orion 81–02 .

2.3. Procedure

The melting experiments were performed by
Žrecording the UV spectrum 230–310 nm, 81 ab-

.sorbance values read at varying temperatures in the
Žrange 15–908C. A quartz cell Hellma, 1 cm optical

. wpath with a Teflon stopper was used in these ex-
periments. The experimental conditions of the melt-
ing experiments performed are given in Table 1. Four
melting experiments were analyzed at the conditions
given in Table 1. Ionic strength of the experiments

Ž .was 0.26 M and pH was set at 6.9 378C According
to previous studies of the acid–base properties of the

Ž w x.polynucleotides see Refs. 21,24,25 at this pH a
single acid–base species is present for these three
polynucleotides.

However, a single acid–base species can adopt
different molecular conformations. In biochemical
studies, the conformation existing at physiological
conditions is often defined as the native conforma-
tion. In the melting experiments, we will assume that
only one conformation is present at the beginning of
the experiment, before temperature is raised and con-
formational changes induced. In the case of pure ho-

Ž . Ž .mopolynucleotides, poly A and poly U , the confor-
mations at high temperatures are also considered

Ž .unique selective . On the contrary for the het-
Ž . Ž .eropolynucleotide, poly A –poly U , this last con-

straint is not considered, since a mixture of individ-
Ž .ual separated homopolynucleotides poly A and

Ž .poly U can evolve when the melting denaturation of
Ž . Ž .the heteropolynucleotide poly A –poly U occurs

Table 1
Experimental conditions of the melting experiments

Experiment Polynucleotide Concentration pH Temperature No. of
Ž . Ž .M range 8C spectra

y5Ž .A poly A 4.92=10 6.8 15–90 26
y5Ž .B poly U 4.87=10 6.8 15–84 24
y5Ž . Ž .C poly A –poly U 5.25=10 6.8 15–90 32
y5Ž . Ž .D poly A –poly U 4.73=10 6.8 15–90 36
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w x23 . These initial assumptions about the initial and
final conformations are specially relevant for the

Ž .elimination of the resolution ambiguities see below
and for the interpretation of results. All the detected
conformational changes will be relative to the initial
conformations present at the beginning of the experi-
ment. Low temperatures facilitates nucleic base
stacking and nucleic base pairing, the two main forces
in ordered conformations. In contrast, high tempera-
tures, breaks base stacking and base pairing inducing
disordered structures, and in the case of het-
eropolynucleotides, inducing separation of the con-

w xstituent hompolynucleotide chains 26 .

3. Method

3.1. Data pretreatment

When a single melting experiment is analyzed, no
data pretreatment is performed. In melting experi-
ments, the total amount of absorbing material is con-
stant, i.e., no addition nor subtraction of material oc-
curs during the experiment, and the system is consid-
ered ‘closed’. When the simultaneous analysis of
several melting experiments is carried out, the exper-
imental spectra were row-normalized to equal length
Ž .equal norm . This normalization is accomplished by
dividing each experimental absorbance value by the

Žlength or norm of the corresponding spectrum square
root of the sum of all the squared absorbance values

.of the corresponding spectrum . This normalization
eliminates the difficulties to know accurately the true
initial concentration of the absorbing bases as con-

Ž .stituents of the polynucleotide see Section 2 . Due to
the closure constrain, changes in intensity of experi-
mental spectra caused by normalization will not af-
fect the relative amounts of the resolved components
and will only affect the relative intensities of the
Ž .pure component spectra. The relative amounts of the
resolved components will only depend on the changes
of the shape of the experimental spectra. As a con-
clusion, when closure constrain is applied, the nor-
malization of the experimental spectra will not con-
volute the relative amounts of the components within
an experiment but the relative intensities of the pure
component spectra. When different melting experi-
ments are simultaneously analyzed, row-normaliza-
tion causes the loss of the quantitative information

between experiments, which could have been ob-
tained from the comparison of the spectra intensity
variations between different experiments. Since the
spectra are equally normalized for all the experi-
ments simultaneously analyzed, the same closure
constant is applied to all the measured spectra. How-
ever, the information concerning the relative concen-
trations of the different species within the same melt-
ing experiment is not lost. As the main goal of the

Žpresent study is the resolution of the system estima-
.tion of species spectra and of melting profiles , the

lost of quantitative information between experiments
is not relevant. Different tests performed with simu-
lated data showed that such an approximation is cor-
rect and that it will facilitate the analysis and inter-

Žpretation of results of the systems under study see
.Section 4 .

3.2. Data treatment

Data treatment starts with the estimation of the
number of independent contributions to data vari-
ance. In evolving processes this can be initially ac-
complished by visual inspection of eigenvalue, sin-

Ž .gular value or variance explained or residual prin-
cipal component analysis plots. These plots give a
first approximation of the major contributions to data
variance, commonly referred as ‘chemical rank’,
meaning by this, the number of chemical contribu-
tions evolving during the process. Evolving Factor

w xAnalysis 3 provides a more accurate way for visual
inspection of intrinsically ordered data such as that
occurring in the evolution of a chemical process. As
process analysis data is logically ordered by time or
by another variable which changes with time, like pH
in a spectrometric acid–base titration or temperature
in a melting experiment, EFA provides a powerful
way to distinguish the evolution of the independent
contributions or changes in concentration of the dif-
ferent components of the system along the experi-
ment. EFA provides a way to estimate the appear-
ance and disappearance of the different components
in the system, i.e., the range or windows of existence
of these compounds. EFA was initially proposed in

w x1985 27 and its use has been extended during the
w xrecent years 3,28–30 . One of the more interesting

features that EFA facilitates, is the estimation of how
the local rank evolves during the process, which is
extremely helpful for the assessment of resolution
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conditions for an unambiguous resolution according
w x Ž .to the Resolution Theorems 10 see below . It

should be noted, however, that the contributions de-
tected by EFA do not correspond always with the real
chemical contributions present in the system. On one
hand there is the possibility to underestimate the
number of chemical contributions because their con-
centrations do not change independently or because
the spectral responses of two or more components are
practically equal. And, on the other hand, there is the
possibility to overestimate the number of chemical
contributions because other undesired sources of data
variance are present in the process, like detector and
baseline shifts, background or solvent contributions,
etc. Moreover, an additional aspect to be taken into
account is the linearity of the spectral response.
Non-linearities will be accompanied with upsurging
of additional components in EFA plots. In conclu-
sion, EFA plots are a very useful tool to investigate
the evolution of a particular system, although they
should be used with caution.

Once the global and local rank analysis of an
evolving process has been performed, process model-
ing can be accomplished using Multivariate Curve

w xResolution 7,8 . The initial assumption is that the
data is bilinear, which can be described mathemati-
cally as:

DsCST qN 1Ž .
Ž .where D ns,nw is the experimental data matrix with

as many rows, ns, as spectra collected in the evolu-
tion of the process run and with as many columns,
nw, as wavelengths or spectral channels are mea-

Ž .sured; C ns,n is the matrix describing the evolution
of the n chemical contributions detected to be pre-

TŽ .sent during the process; S n,nw is the matrix of
pure spectra of these detected contributions. Matrix
Ž .N ns,nw is the residual or noise matrix with the un-

explained variance using the contributions in C and
ST. Self modeling curve resolution attempts to re-
cover the C and ST matrices from the analysis of the
original data matrix, D. In well defined evolving sys-
tems, EFA provides a good initial abstract estimation
of the matrix C, from which an alternating least

Ž .squares ALS non-linear optimization is started
solving iteratively the two following equations:

ST sCq D 2Ž .i iy1 PCA

and

qTC sD S 3Ž .Ž .i PCA i

where ST and C are the least squares estimations ofi i

these two matrices in the iteration i, and Cq is theiy1

best least squares pseudoinverse estimation of the
matrix C obtained in the previous iteration iy1.iy1

In the first iteration, C is the matrix initially esti-iy1
w x Ž T .qmated by EFA 3,27,28 . S is the best leasti

squares estimation of the pseudoinverse of matrix ST.i

D is the principal component analysis reproducedPCA

data matrix D for the selected number of compo-
nents. This matrix has been noise filtered and pro-
vides more stability to the calculations. Instead of
starting with EFA estimations of C, in cases where
the evolution of the concentrations follow complex
patterns not changing in a stepwise evolving way
during the process, it can be better starting the alter-
nating least squares optimization using an initial esti-
mation of the spectra, matrix ST, specially if the
spectra of the components have distinct features. In
these cases, methods based on the detection of pure

w xvariables, like those proposed in SIMPLISMA 31 ,
provide better and more reliable initial estimations to

w xstart the iterative optimization 32 .
As a general rule, the unconstrained iterative opti-

Ž . Ž .mization using Eqs. 2 and 3 will not necessarily
converge to the true solution because of the so called
rotational and intensity factor analysis ambiguities
w x w x5,7,33 . Manne 10 has stated mathematically the
conditions under which the components present in a
two-way data matrix can be resolved without ambi-
guities. These conditions have been postulated as
resolution theorems in a chromatographic resolution
context, but they can be easily extended to any evo-
lutionary chemical process. The conditions under
which resolution is possible can be tested using local
rank detection techniques, such as those derived from
evolving factor analysis techniques. If the local rank
conditions are fulfilled, in principle the resolution can
be obtained directly without imposing any additional
constraint using an appropriate algorithm, such as that
proposed in window factor analysis of Malinowski
w x34 . However, in practice and due to noise, it is bet-
ter to use an iterative algorithm where local rank
conditions are used as a constraints during an alter-
nating least squares optimization. In fact, EFA initial
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estimations do already contain the local rank infor-
Ž .mation necessary when present in the data for an

appropriate resolution, and this is the reason why their
w xuse has given good results in practice 3,7,27,28,30 .

Apart from local rank conditions, the sought solu-
tions are known to obey some other natural con-
straints like non-negativity, unimodality and closure.
An improved resolution algorithm should incorporate
the implementation of such constraints when the data
obey them. This is quite simple to implement exter-
nally in an alternating least squares algorithm such as

Ž . Ž .that previously described in Eqs. 2 and 3 . At each
new iterative recalculation of C and ST these con-i i

straints can be applied. Non-negative solutions of
Ž . Ž .Eqs. 2 and 3 can be found by non-negative least

w xsquares 35,36 ; recently, a similar approach has been
w xproposed for unimodality and non-negativity 37 . It

is found however that in practice, the way how these
constraints are applied affect mostly the number of
iterations in the non-linear optimization, but it affects
little the results; this is however a matter of discus-
sion at present and deserves a deeper study. When
local rank conditions for resolving rotational ambigu-
ities are not present, the effect of using these natural
constraints in the resolution of a two-way data ma-
trix will decrease the number of possible solutions of

Ž . Ž .Eqs. 2 and 3 , inside a narrower band of possible
w xsolutions 5,6 . The important thing to recognize in

such situations is that the found solutions although
having still some ambiguity, they fit and explain the
experimental data in a plausible way from a physical
point of view and fulfill the constraints imposed. It
should be recognised that in many contexts having
these still somewhat ambiguous solutions is much
better than having nothing.

Resolution of individual experiments or process
runs can be improved if several correlated experi-
ments or process runs are analyzed simultaneously.
Correlated experiments are those which have some
structure in common, for instance when some chemi-
cal species are common in the different experiments.
In this case, several advantages are obtained in the
simultaneous analysis. The first advantage is a signal
averaging one, i.e., the system of equations to be
solved is more overdetermined for the common
structure, and therefore, the noise effect is reduced.
Second, local rank conditions needed for resolution
without ambiguities in a single data matrix are ex-

tended to the simultaneous analysis of several data
matrices. If one species has a favorable local rank
condition in one matrix, this species can be correctly
resolved not only in this data matrix, but also in the
others simultaneously analyzed, even if this species
was not resolved in this matrix when it was analyzed
individually. A third advantage is that in the new
three way data structure obtained when several corre-
lated data matrices are simultaneously analyzed, the
rotational ambiguity present in two way data sets is
drastically reduced, specially if the new data struc-

w xture is trilinear 7,8,38 . In the proposed MCR-ALS
method, the simultaneous analysis of NR different
experiments or process runs is performed using an

Ž . Ž .extension of linear Eqs. 1 – 3 to augmented col-
umn-wise data matrices:

D C1 1

D C2 2 T TD s s S qNsC S qNaug aug
. . . . . .

D CNR NR

4Ž .
q

C D1 1

C D2 2T qS s sC D 5Ž .aug aug
. . . . . .

C DNR NR

C D1 1

q qC D2 2 T Ts S sD S 6Ž . Ž . Ž .aug
. . . . . .

C DNR NR

where the number of rows in D and in C is equalaug aug

to the total number of spectra collected in the differ-
ent NR process runs, run by run. In this column-wise
matrix arrangement, it is not necessary that all the
experiments have the same number of spectra. On the
contrary, the method allows that the number of spec-
tra in different experiments be different. The number
of columns in column-wise augmented data matrix
D and in spectral matrix ST is the same and equalaug

to the number of measured wavelengths, NW. The
number of columns of matrix C and of rows ofaug

matrix ST is equal to the number of species. The
augmented concentration matrix C has in itsaug

columns the concentration profiles of the different
detected species in the different runs. The spectral
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data matrix ST has in its rows the spectra of these
detected species.

Ž . Ž .The iterative solution of Eqs. 5 and 6 by ALS
optimization required initial estimates of the matrix
C if the first equation solved in the first iterationaug

Ž . Tis Eq. 5 , or of the matrix S if the first equation
Ž .solved in the first iteration is Eq. 6 . In both cases

initial estimates should be provided for each of the
species considered to be present. Usually initial esti-
mates are obtained via the previous individual analy-
sis of the different data matrices included in the aug-
mented matrix. In case a new species is proposed in
the simultaneous analysis which was not detected in

Žthe individual analysis as in the case of rank defi-
ciency problems in the analysis of individual matri-

.ces, see below , a new estimate of its profile has to
be proposed. There are several possibilities to do this
and the best approach is problem dependent. Apart

w xfrom EFA or pure variables 31 , an initial vector
having ones where the species is supposed to be pre-
sent and zeros where not, i.e., defining where exists
and where not, is good enough as an initial estima-
tion.

During the iterative ALS optimization using Eqs.
Ž . Ž .5 and 6 , the same constraints as in the analysis of
a single experiment can be applied to matrices Caug

T Ž . Žand S , selectivity in C , non-negativity in Caug aug
T . Ž . Ž .and S , unimodality in C , and closure in C .aug aug

Additionally, new constraints related with the new
data structure can be now applied. First, owing to the

Ž .column-wise data structure of Eq. 3 , the species
spectra of common species in different runs are equal
and correspond to the same row of matrix ST; sec-
ond, the concentration of those species known to be
absent in a particular experiment are forced to be zero
setting the corresponding rows in matrix C equalaug

to zero during the ALS optimization. Correspon-
dence between species in different experiments is
implemented in matrix C . Different correspon-aug

dences between species in the different melting ex-
periments will give different solutions and fitting
values. That correspondence between species giving
profiles with unreasonable shapes and unsatisfactory
data fitting values, will be rejected. The main goal of
the simultaneous analysis is to find a resolution of
species which on one hand fits adequately the data
Žlack of fit values at the level of experimental error,

.i.e., below 1% , and which on the other hand, finds a

chemically ‘sound’ resolution of the system. In con-
trast to the species spectra in matrix ST, the concen-
tration profiles of one species in different experi-

Ž .ments or process runs D in D are allowed to bek aug

different, in shape and in intensity. This property is
specially relevant in many chemical process systems,
where the equality of shape of concentration profiles
in the different runs cannot be accomplished, and
therefore, the three-way data structure is not trilinear.
In the particular case that the considered species ful-

Žfill this condition equal shape of its concentration
and spectrum profile in all the experiments simulta-

.neously analyzed an additional trilinearity can be
wapplied as described in previous publications 7,8,

x14,39 . In any case, calculation of pseudoinverses in
the least squares estimation of matrices C and ST

aug

is not problematic if these matrices are full rank ma-
trices.

Finally, an additional advantage of the simultane-
ous analysis of several experiments using column-

Ž . Ž .wise augmented data matrices and Eqs. 4 – 6 com-
pared to the analysis of individual data matrices and

Ž . Ž .Eqs. 1 – 3 , is that rank deficiency problems pre-
sent for individual matrices can be solved by matrix

w xaugmentation 15–17 in the simultaneous experi-
w xments data analysis. As stated by Amhrein et al. 15 ,

column-wise matrix augmentations helps solving rank
deficiencies present in the matrix of concentrations,
C, for reaction based systems, where the number of
independent concentration profiles can be lower than
the number of real species present in the systems due
to the reaction network constraints, mass balance,
mass action law, and closure of these systems. The
important thing to emphasize here is that, species
hidden in the analysis of a single experiment or pro-
cess run can be resolved in the simultaneous analysis
of several experiments or process runs using the col-
umn-wise augmented data matrix approach. The ex-
ample selected in this work shows clearly this situa-
tion.

4. Results and discussion

( )4.1. Analysis of the poly adenylic acid melting ex-
periment

Ž . Ž .In the poly A melting experiment A see Fig. 1
some spectral changes were observed when the tem-
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Ž . Ž Ž .. ŽFig. 1. Experimental UV spectra obtained for poly adenylic acid poly A at pH 6.8 and varying temperatures from 158C to 908C experi-
.ment A .

perature was changed. An isosbestic point is present
at 279.4 nm. Rank analysis of the corresponding data

Ž .matrix see Table 2 confirmed two major contribu-
tions with large singular values followed by much
lower ones related with experimental noise. In Table

3, PCA lack of fit for two components is only a
0.12%. Fig. 2 shows EFA plots where two major
contributions are observed, with log of singular val-
ues reaching values higher than y1. At the bottom
of the plot, singular values related with pure noise

Table 2
Rank analysis of the experiments

Singular Exp. A Exp. B Exp. C Exp. D Exp. A, B,
a bvalue no. C and D

10 0.0018 0.0016 0.0024 0.0026 0.0051
9 0.0018 0.0016 0.0025 0.0027 0.0098
8 0.0019 0.0017 0.0026 0.0030 0.0126
7 0.0021 0.0018 0.0031 0.0036 0.0212
6 0.0023 0.0019 0.0057 0.0078 0.0391
5 0.0035 0.0020 0.0211 0.0228 0.0738
4 0.0048 0.0030 0.0286 0.0290 0.1719
3 0.0071 0.0055 0.1492 0.1925 0.5889
2 0.2155 0.0364 1.0854 1.0597 1.6169
1 9.6942 7.6901 20.6542 21.4058 32.2077

aSingular values at increasing size order.
b Ž .Singular values of the augmented column-wise data matrix built up with the different experiments A, B, C and D .
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Table 3
MCR-ALS data fitting results

Matrix A Matrix B Matrix C Matrix D Augmented matrix
w xA;B;C;D

a bŽ . Ž . Ž . Ž . Ž .PCA lof 0.12 2 0.48 1 0.18 3 0.18 3 0.17 5
c Ž . Ž . Ž . Ž . Ž .ALS lof 0.27 2 0.48 1 0.43 3 0.36 3 0.43 5

a PCA lack of fit calculated by means of the equation:
2cd ydŽ .Ý i , j i , j

i , j
PCA lofs100 ,

2d) Ý i , j
i , j

d experimental values for spectrum i, wavelength j; dc PCA calculated values for spectrum i, wavelength j.i j i j
b In parenthesis, number of species considered in the calculations.
c Ž . a cALS lack of fit at convergence with a 0.01% of change of fit between iterations . The same formula as in , but with d are the ALSi j

calculated values for spectrum i, wavelength j.

with log values below y2.5 are shown. Three other
small contributions with log of singular values be-
tween y2.5 and y2 appear close to the pure error
ones. These contributions are related with non-ran-

dom noise contributions due to experimental uncer-
Žtainties of unknown nature detector drifts, non-lin-

.earities, solvent and medium spectral effects, etc. .
Unfortunately, these contributions are frequently and

Ž . Ž .Fig. 2. Evolving Factor Analysis EFA plot of experiment A Fig. 1 . Y-axis gives the log of the singular values found by EFA. 1f and 2f
are the lines corresponding to the first and second forward singular values found by EFA. 1b and 2b are the lines corresponding to the first

w xand second backward singular values found by EFA See text and Refs. 3,25,26 for interpretation.
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unavoidable present in experimental data making dif-
ficult the accurate assertion of the possible presence
of minor chemical contributions from EFA plots.
Considering the presence of two chemical contribu-
tions, an initial estimation of the two evolving pro-

Ž .files is obtained from EFA plots Fig. 3 . Resolution
of the two conformations associated with these two
contributions is achieved by MCR-ALS using the ad-
ditional assumption that selectivity is present at the
lowest and highest temperatures, where each confor-
mation is considered as the only one present at these
temperatures. Under these assumptions, ALS lack of

Ž .fit Table 3 was only of 0.27% and the resolution is
w xunique 7,10 . The plot shown in Fig. 4 gives the rel-

ative concentrations evolution from the conformation
present at the lowest temperature to that present at the
highest temperature. The resolved concentration pro-
files describe the thermal denaturation. of the
polynucleotide conformational structure. The species
resolved at lower temperature is mostly related with

Ž .a single-stranded helical ordered conformation
whereas that resolved at higher temperatures is mostly

Ž . Ž .related with the denatured disordered poly A con-
formation. The spectra of these two conformations are

shown in Fig. 5. As expected, the denaturation pro-
cess increases the absorbance values and shifts
slightly the absorbance band to higher wavelengths.

Ž .Both spectra cross isosbestic point at 279 nm and
Ž .have their maximum absorbance at 256 nm native

Ž .and 258 nm denatured .

( )4.2. Analysis of the poly uridylic acid melting exper-
iment

Ž . Ž .In poly U melting experiment 2 see Fig. 6 , very
small absorbance changes in the UV spectra were
observed between 15 and 908C, which indicates that

Ž .poly U is always present in the same conformation,
w xa single disordered random coil conformation 40 .

Rank analysis of the data matrix corresponding to
Ž .such experiment see Table 2 , gives a first singular

Žvalue which is much larger than the second one 211
.times . The second singular value is larger than ex-

pected for a system with a single species and proba-
bly describes small spectral changes and shifts due to
temperature which are not assigned to significant

Ž .conformational changes see below . PCA lack of fit
with a single component is, in this case, 0.49%, a lit-

Ž .Fig. 3. Initial estimation of concentration profiles obtained from EFA plot of experiment A Fig. 2 .
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Ž . Ž Ž ..Fig. 4. MCR-ALS optimized concentration melting profiles for the two species detected in experiment A poly A . Species 1 is the native
species at lowest temperature and species 2 is the denatured species at highest temperatures.

Ž Ž . Ž Ž ..Fig. 5. MCR-ALS optimized spectra profiles for the species detected in experiment A. Species 1 and 2 poly A and species 3 poly U .
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Ž . Ž Ž . ŽFig. 6. Experimental UV spectra obtained for poly uridylic acid poly U at pH 6.8 and varying temperatures from 158C to 848C experi-
.ment B .

Ž .tle higher than in poly A for two components. In Fig.
Ž .7, the EFA plot of the poly U melting experiment is

given. The second singular value reaches levels up to
log values of y1.5, one log unit below that the sec-

Ž .ond singular value in the poly A experiment. If the
resolution of a second conformation is attempted by
MCR-ALS, the species spectra of the two resolved
species are practically identical, with a correlation
value between them higher than 0.9999 and with only
a small difference at the lowest wavelengths, close to
230 nm, where solvent and salt medium contribu-
tions can be more important. Therefore, only one
component is considered for this system. No further
data treatment is necessary in this case since the same
single conformation is present along the whole ex-
periment. Its spectrum is given together with those

Ž .resolved for poly A in Fig. 5.

( ) (4.3. Analysis of the poly adenylic acid –poly uridylic
)acid melting experiment

Ž . Ž .Double stranded poly A –poly U melting experi-
Ž .ments C and D Fig. 8 showed significant spectral

changes between 158C and 908C. A first spectral
change is rather weak and occurs mostly between
408C and 608C, with an isosbestic point at approxi-
mately 276 nm and an small increase of absorbance
at 257 nm. This spectral change is difficult to detect
at the lower temperatures, below 358C, but it be-
comes more apparent at temperatures around 458C. A
second stronger spectral change is produced very fast,
in less than 108C, between 588C and 688C, with a
considerable increase of absorbance and a weak shift
to higher wavelengths. These fast temperature depen-
dent spectral changes are usually associated with

w xmelting processes 23,26,40 . Rank analysis of the
two data matrices obtained in experiments C and D
showed three main contributions with three large sin-

Ž .gular values Table 2 . In Fig. 9, the EFA plots with
Ž . Ž .a non-fixed 9a and a fixed 9b size window are

shown. In the first plot, Fig. 9a, three main contribu-
tions with log of singular values larger than y1.5 and
four intermediate contributions with log of singular
values between y2.5 and 1.5 are obtained. The first
contributions are related with three main chemical
changes, and the second contributions are related with
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Ž . Ž .Fig. 7. Evolving Factor Analysis EFA plot of experiment B Fig. 6 . 1f is the line corresponding to the first forward singular value found
w xby EFA. 1b is the line corresponding to the first backward singular value found by EFA. See text and Refs. 3,25,26 for interpretation.

Ž . Ž . Ž Ž . Ž .Fig. 8. Experimental UV spectra obtained for poly adenylic acid –poly uridylic acid poly A –poly U at pH 6.8 and varying temperatures
Ž .from 158C to 908C experiment D .
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Ž . Ž . Ž .Fig. 9. a Evolving Factor Analysis EFA plot of experiment D Fig. 8 . 1f, 2f and 3f are the lines corresponding to the first, second and
third forward singular values found by EFA. 1b, 2b and 3b are the lines corresponding to the first, second and third backward singular

w x Ž . Ž .values found by EFA. See Refs. 3,25,26 for interpretation. b Evolving Factor Analysis With a Fixed Size Moving Window FSMWEFA
Ž . w xplot of experiment D Fig. 8 . See text and Ref. 27 for interpretation.
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other sources of non-random error contributions. At
the bottom, with log values below y2.5, the pure er-
ror contributions appear. In the second plot, Fig. 9b,
local rank analysis with evolving factor analysis with
a fixed size moving window, showed two rank one
regions at the beginning and at the end of the experi-

Žment no important changes of speciation in this re-
.gions and one rank two region or even rank three

region at intermediate temperatures, between 50–
708C. This confirms that at this intermediate region,
significative changes in speciation occur, related with
a fast change of conformations.

Resolution of these three contributions using the
MCR-ALS procedure gave the three species melting
profiles given in Fig. 10 and the species spectra given
in Fig. 11. ALS lack of fit values for the two experi-

Ž .ments C and D, gave respectively Table 3 , 0.43%
and 0.36%. In both cases, these values are consid-
ered very low and close to the values found by PCA

Žanalysis for the same number of components PCA
.lack of fit 0.18% in both cases . The nature of the re-

solved species is difficult to be elucidated from the
analysis of this single data matrix. As it was previ-
ously indicated, fast increases of absorbance values
such as those detected around 658C at 257–259 nm
are usually associated related with conformational
changes giving disordered denatured molecular forms
of the polynucleotide. The two species spectra re-

Ž .solved for the two first species I and II in Fig. 11
have a band maximum at approximately the same

Ž . Žwavelength 257 nm ; the first species spectrum I in
.Fig. 11 has a weak shoulder around 278 nm that has

disappeared in the second species spectrum. The
Žspecies spectrum of the third resolved species III in

.Fig. 11 has a band maximum with a weak shift of
Ž .nearly 2 nm maximum at 259 nm and a higher in-

tensity. These resolved band shapes and maxima are
not coincident with those resolved in the melting ex-

Ž .periments of the homopolynucleotides poly A and
Ž .poly U . Experiments C and D, only differ in the to-

tal amount of polynucleotide initially present in the
melting process. When the MCR-ALS resolution re-

Ž . Ž .Fig. 10. MCR-ALS optimized concentration melting profiles for the three species detected in experiment D rank deficient data matrix
when temperature is changed. Species I is the native species at low temperatures, species II is an intermediate species and species III is the
denatured species at higher temperatures.
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ŽFig. 11. MCR-ALS optimized spectra profiles for the three species detected when temperature is changed in experiment D rank deficient
.data matrix . Species I, II and III the same as in Fig. 10.

sults of these two matrices are compared, no signifi-
cant differences were observed, with the same trends
in the description of the melting process evolution.

( )4.4. Simultaneous analysis of poly adenylic acid ,
( ) ( )poly uridylic acid and poly uridylic acid –

( ) (poly adenylic acid melting experiments A, B, C and
)D

As it was indicated in the data pretreatment sec-
tion, in the simultaneous analysis of several experi-

Ž Ž ..ments Eq. 4 , a row data normalization is first ap-
plied. In this way, problems associated with polynu-
cleotide concentration correspondences between dif-
ferent experiments and with the closure constraint are
eliminated. Moreover, this row-normalization facili-
tates the ALS optimization and the interpretability of
results.

When the individual melting experiments A, B, C
and D are all together simultaneously analyzed using

Ž Ž ..column-wise data matrix augmentation see Eq. 4 ,
rank analysis of this new augmented data matrix gave

singular values four and five larger than those found
in the individual data analysis of matrices C and D
Ž .Table 2 . This rank increase can be related with dif-
ferent hypothesis about the correspondence of the

Ždifferent species between experiments common
.species and also with the possible presence of rank

deficiency problems in some of the data sets, spe-
cially in experiments C and D when analyzed indi-
vidually. It should be noted first, that every common
species in the different experiments, should have a
rank one contribution in the column-wise augmented
matrix, and second, that the total number of different
species deduced from individual experiments is six:
in experiment A two species, in experiment B one
species and in experiments C and D three species.
However rank analysis of the augmented matrix sug-
gested a maximum number of five independent
species. This could be explained if some of the
species in experiments A and B were also present in
experiments C and D. In a previous study of the

Ž . Žmelting behavior of poly inosinic acid –poly city-
. w xdilic acid 23 , it was found that the melting of this
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heteropolynucleotide, gave an admixture of the dena-
Ž .tured constituent homopolynucleotides, poly I and

Ž .poly C . Therefore, it is also reasonable to expect a
similar situation in the melting experiments of

Ž . Ž .poly A –poly U , where at high temperatures the
Ž . Ž .double stranded poly A –poly U is converted to an

admixture of the homopolynucleotide denatured con-
Ž . Ž .formations of poly A and poly U . Following this

hypothesis, spectral initial estimates of the ST matrix
were available from the resolved spectra in the indi-

Ž . Ž .vidual matrices of poly A and poly U . A fourth
species spectrum was obtained from the first experi-
mental spectrum of the experiments C and D
Ž Ž . Ž . .poly A –poly U native form and a fifth spectrum
was obtained from the same experiments at the inter-
mediate region where strong spectral changes were

Ž .observed melting , selecting the one which is more
w xpure or selective 31 . This makes a total of five

spectra in ST, from which an initial estimation of Caug
Ž .is immediately available using Eq. 6 . Selectivity,

non-negativity, closure, and unimodality constraints
are applied to this augmented concentration matrix
C , whereas only nonnegativity constraint is ap-aug

plied to ST during the ALS optimization. Selectivity

at the beginning of experiments is justified from the
point of view of defining the initial state or confor-
mation of the system, which is postulated to be the
one present at the lowest temperatures of the study.
In all the experiments it was observed that the spec-

Žtral changes observed between 158C and 378C bio-
.logical conditions were small and that the more im-

portant changes, related with the denaturation of the
native conformations present at biological condition,
occurred at temperatures over 508C. It is between
508C and 708C where the more important spectral

Ž .changes are always observed Figs. 4 and 11 . Two
additional constraints related with the correspon-
dence of species between experiments and with the
equality of species spectra of common species in dif-
ferent experiments were applied.

Ž .Fig. 12 gives the best set of five concentration
melting profiles resolved by MCR-ALS for the het-

Ž . Ž .eropolynucleotide poly A –poly U in experiment D.
Of these five resolved species, two were coincident

Ž .with those found in the poly A experiment A and
another one was coincident with the only one de-

Ž . Ž .tected in the poly U experiment B. Lack of fit lof
Žvalues using five species were very good ALS lof

Ž .Fig. 12. MCR-ALS optimized concentration melting profiles for the five species detected when temperature is changed in experiment D
Ž Ž . Ž ..when it is analyzed simultaneously with experiments A, B and C, using full rank column-wise matrix augmentation Eqs. 4 – 6 . Species 1

Ž . Ž .and 2 refer to the same species as those resolved in the experiment A for poly A Fig. 4 and Fig. 5 ; species 3 refers to the single species
Ž . Ž . Ž . Ždetected for poly U in experiment B; species 4 and 5 are two new species detected only for poly A –poly U in experiments C and D see

.text for interpretation .
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.value of only 0.43% in Table 3 close to lof values
previously found in the individual analysis of experi-

Žments and also close to that obtained by PCA PCA
.lof value of 0.17% for the same number of compo-

nents. Both experiments C and D gave similar melt-
ing profiles. Postulation of other number of species or
of another correspondence between species gave
much worse data fittings and unreasonable shapes of
the melting profiles and of the species spectra. Two
new species not found in experiments A and B were

Ž .detected in experiments C and D Figs. 12 and 13 .
ŽOne of these new species number 4 in Figs. 12 and

.13 is the species present at the lowest temperatures
Žof the study. The other species number 5 in Figs. 12

.and 13 is a new species not found in the previous
studies. The other three species spectra correspond-
ing to species 1, 2 and 3 are identical to those given
in Fig. 3.

Rank deficiency found in the individual analysis of
matrices C or D was solved in the simultaneous
analysis of experiments A, B, C and D by column-
wise matrix augmentation. This is in agreement with

previous studies of reaction based rank deficient sys-
w xtems 15–17 . Comparison of resolved profiles in the

simultaneous analysis of experiments A, B, C and D,
with those obtained in the individual analysis of ex-
periments C or D, confirmed that data matrices cor-

Ž .responding to the melting experiments of poly A –
Ž .poly U , C and D, were rank deficient. This rank de-

ficiency was broken in the simultaneous study using
the corresponding column-wise augmented matrix
and MCR-ALS. This was possible because the dif-
ferent matrices included in the augmented matrices
gave independent information about the system. Res-
olution of the constituent species was possible be-

w xcause much better resolution conditions 10 were
present in the column-wise augmented matrix than in
the individual matrices. For instance, the three species
related with the individual homopolynucleotides

Ž . Ž . Ž .poly A and poly U species 1, 2 and 3 could not
be resolved in the individual analysis of the data ma-
trices C and D because these two matrices were rank
deficient and also because the melting profiles of
these three species were totally embedded inside the

Ž .Fig. 13. MCR-ALS optimized spectra profiles for the two new species 4 and 5 detected when temperature is changed in experiments C and
Ž Ž . Ž ..D, when they are analyzed simultaneously with experiments A and B using full rank column-wise matrix augmentation Eqs. 4 – 6 . The

melting profiles of these two species 4 and 5 are given in Fig. 12.



( )R. Tauler et al.rChemometrics and Intelligent Laboratory Systems 46 1999 275–295294

Ž .others Fig. 12 and they do not have any selective or
favorable local rank region needed for its resolution.
In contrast to this, in the augmented data matrix, these
three species fulfill the resolution conditions due to
the inclusion of the experiments A and B, where the
mentioned species have selectivity and favorable lo-

Ž . Ž .cal rank regions see Fig. 4 for poly A species, and
Ž .there is only one poly U species. Possible rotational

ambiguity in spectrum of species 4 is also solved by
the postulation of a single native conformation at the
beginning of the experiment. The only remaining ro-
tational ambiguity would be reduced to species spec-
trum 5. In Table 4, information about the resolved
profiles for each species is given. Whereas, the re-
solved species spectra are highly correlated, the re-
solved melting profiles are more different between
them, although they are embedded, specially in ex-
periments C and D, making more difficult their reso-
lution, specially in the analysis of the individual ex-
periments. Also in Table 4, the values of the absorp-
tion band maxima are given. Only seven nanometers
is the highest separation between band maxima. In
spite of all these difficulties, the proposed ALS-MCR
method provided a reasonable semi-quantitative de-
scription of the whole process under study.

In accordance with current biochemical literature
w x40,41 , a possible interpretation of the process shown

Ž .in Fig. 12 is given. At low temperatures, poly A –

Table 4
Correlation between spectra and melting profiles of the 5 MCR-
ALS resolved species

Ž .A Species spectra
a Ž .1 2 3 4 5 Wavelength nm

1 1 256
2 0.9972 1 258
3 0.9941 0.9958 1 260
4 0.9936 0.9881 0.9946 1 257.5
5 0.9826 0.9839 0.9792 0.9761 1 256.5

Ž .B Melting profiles
1 1
2 0.4567 1
3 0.0577 0.2025 1
4 0.1347 0.0580 0.0034 1
5 0.2272 0.2754 0.1121 0.7758 1

a Wavelength of the maximum absorption of the considered species
spectrum.

Fig. 14. Proposed scheme of base pairing explaining formation of
Žspecies 5 in melting experiments C and D see text and Refs.

w x .37,38 for interpretation .

Ž .poly U is present as a double stranded structure via
Ž .Watson–Crick base pairing see Fig. 14 , yielding a

structure similar to that found in natural polynucleo-
tides. This is the structure proposed for component 4
in Fig. 13. On the other hand, some authors have ob-
served that it is also possible to find ordered triple

w x Ž .stranded structures 40,41 between one poly A
Ž .strand and two poly U strands. In this structure one

Ž . Ž .of the poly U strands is linked to the poly A strand
Ž .via Watson–Crick base pairs while the other poly U

Ž .strand is linked to poly A via Hoogsteen-type base
Ž .pairs see Fig. 14 . This structure is possible because

the adenine heterocycle is simultaneously able to en-
gage in both Watson–Crick and Hoogsteen base pairs
since the functional groups in both processes are dif-
ferent. This triple helix conformation has been exper-
imentally obtained from disproportionation of the
double stranded Watson–Crick one as salt concentra-

w xtion is raised 40,41 . An increase of the temperature
facilitates also the disproportionation process, yield-
ing components 1 and 5 in Fig. 13, which can be re-

Ž .lated respectively with free single stranded poly A
Ž . Ž . Ž .and with the postulated poly U –poly A –poly U

Ž .helix. Thermal denaturation of free poly A gives
species 2, with a fast increase of concentration close

Ž . Ž .to the melting temperature of the poly A –poly U
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system. Simultaneously, the homopolynucleotide sin-
Ž .gle poly U species appears at the melting tempera-

Ž .tures between 60–708C . This description of the
Ž . Ž .melting process of poly A –poly U would confirm

Ž . Ž . w xthat, as in the case of the poly I –poly C system 22 ,
the melting of this heteropolynucleotide gave the two

Ž . Ž .separated homopolynucleotides poly A and poly U
in the same conformation as they were detected in the
individual melting experiments of these systems
Ž .species 1, 2 and 3 in Fig. 3 .
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