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SUMMARY

A method for the calculation of maximum and minimum band boundaries of feasible solutions corresponding to
the species profiles estimated by multivariate curve resolution is presented. The method is based on a non-linear
constrained optimization of an objective function defined by the ratio of the signal contribution of a particular
species to the whole measured signal. Implementation of constraints such as normalization, closure, non-
negativity, unimodality and local rank/selectivity during the non-linear optimization and their effect on the
calculation of the feasible solutions are studied in detail. Calculation of the band boundaries is shown for
different simulated and real two-way data examples of increasing complexity. Copyright  2001 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Multivariate curve resolution techniques have been proposed for the recovery of the profiles (spectra,
pH profiles, time profiles, elution profiles, etc.) of more than one component in an unresolved and
unknown mixture when no prior information is available about the nature and composition of this
mixture [1–4]. Complete resolution of a two-way data set without ambiguities is only possible in
some favourable cases where selectivity [5] or local rank conditions [6] are present. When these
resolution conditions are not present in the system, resolution without ambiguities is not possible even
if constraints such as non-negativity, unimodality or closure are applied [7,8]. In these cases, instead
of unique profiles, a range or band of feasible profiles fitting equally well the experimental data and
fulfilling the physical and chemical constraints of the system has to be considered. Different
procedures have been proposed for the estimation of these bands of feasible solutions in the case of
mixtures of two and three components [1,2], and for more complex multicomponent mixtures using
different optimization strategies [9–11]. Recently, Gemperline [12] has shown that the calculation of
the band boundaries of feasible solutions for every species is possible when an objective optimization
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function is defined in terms of the ratio of the signal contribution of that species to the whole signal
contribution for the mixture of all species. Based on this proposal and on recent optimization
strategies, a procedure is described which attempts the calculation of the band boundaries of the
feasible profiles obtained by curve resolution of a two-way data matrix under non-negativity, closure,
unimodality and selectivity/local rank constraints. The method needs firstly the estimation of one of
the feasible solutions within the range of all possible solutions, for instance using alternating least
squares with constraints [5]. Secondly, once this feasible solution is available, a non-linear
constrained optimization is initiated looking for the boundaries of the whole set of feasible solutions.
The effect of applied constraints, in particular the effect of local rank and selectivity constraints, is
especially examined. The results presented in this paper should be compared with those found
previously by Gemperline [12].

Three examples are studied in detail. The first example is a simulated spectroscopic data set of an
equilibrium system with two components. The second example is a simulated chromatographic
coelution system with multiwavelength UV diode array detection and three highly overlapped
components. Finally, in a third example the experimental study of Cu(II) complexation by chloride is
carried out at two temperatures, 25 and 80 °C, and 5⋅0 M Na��ClO�

4 �Cl��. In this case the study
involved firstly the resolution of the unknown species and secondly the estimation of the band
boundaries of the resolved species profiles.

2. METHOD

2.1. Multivariate curve resolution, rotational ambiguities and feasible bands

In multivariate curve resolution a bilinear decomposition of the experimental data matrix is
performed using the model equation

D � CST � E �1�

where the dimensions of the matrices are D(NR,NC), C(NR,N), ST(N,NC) and E(NR,NC); N is the
number of considered components (chemical species contributing to the signal); NR is the number of
rows (for spectroscopic data, NR is the number of spectra) in the data matrix D; and NC is the number
of columns (for spectroscopic data, NC is the number of wavelengths) in the data matrix D. C is the
matrix describing how the contributions of the N species change in the NR different rows of the data
matrix (concentration profiles). ST is the matrix describing how the responses of these N species
change in the NC columns of the data matrix (pure spectral profiles). E is the residual matrix with the
data variance unexplained by CST.

The problem to solve in multivariate curve resolution may be stated mathematically in the
following way. Given the data matrix D: (1) find N, the number of chemical components or species
causing the observed data variance D; (2) find the (row) concentration profiles of these species, i.e.
matrix C; and (3) find the (column) pure response or spectral profiles of these species, i.e. matrix ST.
However, the solution of Equation (1) for C and ST is ambiguous if no additional information is
available; or, in other words, there is rotational and scale freedom in the solutions of Equation (1).
This problem is often called the factor analysis ambiguity problem [1–6].

Rotational and intensity ambiguities can be easily shown from the equation

D � ColdST
old � �ColdT��T1ST

old� � CnewST
new �2�

It is clear that if no constraints are considered, there is an infinite number of possible solutions of
Equation (2) for any non-singular matrix T, i.e. T should be invertible; but this is accomplished by an
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infinite number of matrices T. Interestingly, however, T is of reduced dimensions T(N,N), much
lower than the dimensions of C, ST or D.

It is usually possible to reduce considerably this infinite number of possible solutions by means of
constraints derived from the physical nature and previous knowledge of the problem under study. For
instance, only positive values for the concentrations of the chemical components in the mixture have
physical meaning; in many spectroscopies, only positive values are allowed in the spectra;
concentration profiles are often unimodal; and closure or mass balance equations should be fulfilled
for reaction-based systems. However, as already pointed out by various authors [1,5,6], the most
important constraints to limit drastically the number of possible solutions are the selectivity and local
rank constraints. Under these constraints, unique solutions can be obtained both if the data have such
a favourable structure and if a suitable method is used to detect and use such information. Methods to
detect and use local rank and selectivity structure for curve resolution have been proposed, based
mostly on evolving factor analysis [13,14]. For instance, if selectivity [5] or resolution local rank
conditions [6] are present in one of the two orders for every species of the unresolved mixture, the
correct recovery of the concentration and/or spectral profiles for all the different species is possible.

For a particular species profile the set of feasible solutions under constraints defines a range or band
of feasible solutions, and this band may be considered delimited by a maximum band boundary and a
minimum band boundary. These boundaries may be defined in different ways. One of the simplest
ways for their definition is that proposed recently by Gemperline [12] in terms of maximum and
minimum signal contributions of each species to the whole measured signal (see below). These
boundaries will be related to specific rotation matrices T for each species k, which will be called
Tmax,k and Tmin,k. Consider a particular set of solutions of Equation (1) fulfilling the constraints
defined by the problem, Cinic and ST

inic. The maximum band boundaries Cmax,k (for the concentration
profiles) and ST

max�k (for the spectral profiles) and the minimum band boundaries Cmin,k (for the
concentration profiles) and ST

min�k (for the spectral profiles) may be defined by the equation

D � CinicST
inic � CinicTminT�1

minST
inic � Cmin�kST

min�k � CinicTmax�kT�1
max�kST

inic � Cmax�kST
max�k �3�

The goal of the method described here is to find a way to calculate these values of Tmax,k and Tmin,k

which define the maximum and minimum band boundaries of feasible solutions for profiles of species
k under a set of constraints defined for a particular data set.

2.2. Description of the optimization problem and the optimization method

In this work the calculation of the maximum and minimum band boundaries of feasible solutions
defined by Equation (3) is considered in the frame of a constrained non-linear optimization problem
(NCP) [15,16]. This optimization problem is described mathematically using the equation

minimize
X

f �X� subject to ge�X� � 0 and gi�X� � 0 �4�

where X is a matrix of variables, f (X) is a non-linear scalar function of X, ge(X) is a vector of equality
constraints and gi(X) is a vector of inequality constraints. In the general framework, both ge(X) and
gi(X) will be considered non-linear functions of the matrix of variables X.

2.2.1. What are the X variables of the problem? The X matrix of variables to optimize will be
the elements of the rotation matrix T which give the band boundaries of feasible solutions of
Equation (1). For each set of species profiles (concentration and spectral), two matrices should be
obtained, the Tmax,k matrix which defines the maximum band boundary for this species profile and
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the Tmin,k matrix which defines the minimum band boundary for this species profile (see Equation
(3)). Therefore two optimizations each giving a rotation matrix T should be performed for each
species k of the unresolved mixture. The number of optimizations to be carried out increases with
the complexity of the problem. As pointed out previously, the number of variables in matrices T,
hence the complexity of the optimization, increases also with the number of species of the
problem. For k = 1,…,N species the number of variables in the T matrix is equal to N � N and the
number of optimizations will be 2N.

2.2.2. What is the objective function to optimize? The definition of the objective function is a
critical step in the implementation of the optimization algorithm. It should be a scalar function of
the variables, the optimization of which allows the calculation of the maximum and minimum
band boundaries of the feasible solutions. For a good performance of the optimization algorithm
the optimization function should be scaled, for instance between zero and one. Two functions are
proposed in this paper to define the function to be optimized and consequently to define also the
physical meaning of the band boundaries obtained in such an optimization. The first function is
the same as the one proposed previously by Gemperline [12] and gives the ratio between the
integrated signal contribution of a particular species and the integrated whole signal of all the
species present in the unresolved mixture. The equation for its evaluation for each species is

fk�T� �
�

i
ci�ksT

k�i

�
k

�
i

ci�ksT
k�i

� k � 1� � � � �N �5�

The second function is defined similarly using the Frobenius norm of the signal contribution of a
particular species with respect to the Frobenius norm of the whole signal for all the considered
species:

fk�T� � �cksT
k �

�CST� � k � 1� � � � �N �6�

Both functions will give identical results for positive concentration and spectral profiles. For some
spectroscopic signals giving negative values, Equation (6) should be preferred since it is valid also
for negative profiles.

The optimization of this objective function, either maximized or minimized, will give respectively
the maximum and the minimum boundary. For a particular species these boundaries will define the
feasible profiles (concentration and spectral) fulfilling the constraints of the problem and giving a
maximum and a minimum signal contribution.

The definition of both objective functions requires initial values of the variables in T and also
requires initial values for the species profiles, Cinic and ST

inic (see Section 2⋅2⋅5). When the
optimization is implemented as a minimization of the objective function as in Equation (4), Equations
(5) and (6) are appropriate to find the minimum band boundaries, whereas if the optimization is
implemented as a maximization of the objective function, the functions given in Equations (5) and (6)
should be changed in sign.

2.2.3. What are the constraints of the problem? Are they equality or inequality constraints? As
previously stated, the solutions of Equation (2) are unbounded if no additional constraints are
considered; there is an infinite number of possible solutions and it is not possible to find the band
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boundaries of the feasible solutions. The optimization of the functions defined by Equations (5)
and (6) without any additional constraints will not be possible under these circumstances.
Fortunately, in most curve resolution problems it is possible to constrain appropriately the set of
feasible solutions and allow the calculation of at least one of them using an appropriate algorithm
[5,7,8]. In this work it is shown that, using these constraints, it is also possible to find the band
boundaries of feasible solutions. The following constraints are considered.

2.2.3.1. Normalization and closure constraints. Intensity ambiguities arise because for any
scalar m and species k profiles ck and sT

k ,

ck m m�1 sT
k � cksT

k �7�

For a particular species k the concentration profile ck can be arbitrarily increased in an unlimited way
by multiplying it by an arbitrary scalar number m if at the same time its spectrum sT

k is decreased by
the same amount by dividing it by the same number m. It is possible to limit the size of ck or sT

k profiles
using appropriate normalization and closure constraints. A spectral normalization constraint may be
implemented using the norm of the species spectra, for instance forcing it to be equal to one, i.e.
�(sk(T))� = 1. This is an equality constraint and is implemented in Equation (4) by the equality
constraint function

gnorm�k�T� � 1 � ��sk�T��� � 0� k � 1� � � � �N �8�

If N species are present, this will give N equality constraints. Alternatively, other possible
normalization constraints can be applied by constraining the signal height or maximum intensity of a
profile to be equal to a constant value. Obviously this will also give N equality constraints
implemented in a very similar way to the one given previously in Equation (8).

A completely different constraint is the closure constraint, which is usually implemented on the
rows of matrix C. By this constraint the sum of the elements of each row of matrix C is equal to a
known constant. This is the case for instance in reaction-based systems, where a mass balance
equation is obeyed by the concentration profiles of the species present in the system, i.e.�N

k�1 ci�k�T� � TOTi. This closure constraint is implemented by the equation

gclos�i�T� � TOTi �
�N

k�1

ci�k�T� � 0� i � 1� � � � �NR �9�

where TOTi is the known total concentration of the species in the considered spectra (row of matrix
D). This will give NR equality constraints, one for each row of matrix C. The number of equality
constraints increases considerably with this constraint, decreasing the degrees of freedom of the
optimization.

Either a normalization or a closure constraint should be applied during the optimization of the
functions defined by Equations (5) and (6) to avoid scaling problems in the variables during the
optimization. If neither or both constraints are applied, the optimization will not work because of the
absence of scale boundaries. On the other hand, only one of the two constraints, spectral
normalization or concentration closure, is usually applied, otherwise the system becomes overly
constrained. Closure constraint can only be applied if this is the case for the data, otherwise the
solutions of Equation (5) will not be correct. Conversely, when there is no closure in the
concentrations, normalization of the species spectra ST is highly recommended to achieve a
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successful optimization and recover the shape of the species profiles, even if the true solutions are
obviously not fulfilling this normalization constraint.

2.2.3.2. Non-negativity constraints. Non-negativity constraints are probably the most com-
monly used constraints in curve resolution since the initial work of Lawton and Sylvestre [1].
Physical concentrations can be only positive or zero (C 	 0), and in many spectroscopies, spectral
values can also be only positive or zero (ST 	 0). Both constraints can be implemented as inequality
constraints:

gcneg�i�k�T� � �ci�k�T� � 0 �10�
gsneg�j�k�T� � �sj�k�T� � 0 �11�
i � 1� � � � �NR� j � 1� � � � �NC� k � 1� � � � �N

According to Equation (10) for non-negative concentrations, for each species there will be NR
inequality constraints, and for N species this will give a total of N � NR inequality constraints.
According to Equation (11) for non-negative spectra, for each species there will be NC inequality
constraints, and for N species this will give a total of N � NC inequality constraints. These two
constraints together with the normalization/closure constraints are the most frequently found and
easily applied in multivariate curve resolution problems. The number of inequality constraints given
by both equations is very high and limits considerably the size of the bands of feasible solutions.
However, they do not constrain the problem sufficiently to give unique solutions [1,5].

2.2.3.3. Selectivity, local rank and known value constraints. Two types of constraints are
distinguished here. The first type of constraints frequently used in curve resolution, allowing in many
cases the partial or even total elimination of rotational ambiguities, comprises the so-called
‘selectivity’ and ‘local rank’ constraints [5,6]. In all circumstances, selectivity and local rank
constraints have a tremendous effect of narrowing considerably the bands of feasible solutions,
eventually collapsing them in a unique solution. Selectivity and local rank constraints refer to the fact
that in certain windows or regions of the data matrix D a particular species is known to exist while
other species are known not to exist. For instance, in reaction-based systems it is a common situation
that some of the species are not present at the beginning or at the end of the reaction process. Also, for
spectroscopic signals it can happen that a particular species does not absorb in a particular spectral
range. In these cases it is extremely helpful to use this information as a constraint defining for each
species the concentration window where it exists and the concentration window where it does not (or
where it does exist only at very negligible concentrations), and the spectral window where it
contributes to the measured signal and the spectral window where it does not. As has been
demonstrated previously [5,6], when the resolution conditions are appropriate, the use of the local
rank information allows the recovery of the true species profiles without ambiguities. In practice,
however, this is not completely achieved in the general case, as in the case of embedded peaks in
chromatography [6], or when the species profiles are extremely overlapped as in kinetic reaction-
based systems. The two terms selectivity and local rank refer to the same type of constraints. Local
rank constraints identify some of the regions where different species do not exist, or better, regions
where different species are practically non-existent. Selectivity constraints are only the extreme case
of local rank conditions, when only one species exists or contributes to the signal in a particular
concentration or spectral window of the data matrix. Methods to detect and use local rank and
selectivity in the data have been proposed, such as those derived from evolving factor analysis
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[13,14]. Difficulties may arise because of noise, because of the difficulty of detection of low
concentrations and low contributions to the signal, because of the difficulty in defining precisely the
beginning and the end of the concentration and spectral windows, or because of rank deficiency
problems [17,18]. Apart from these sometimes important difficulties, the use of the local rank
information provided by these methods is extremely helpful for resolution of the system. Gemperline
[12] examined also the effect of measurement noise in the calculation of band boundary uncertainties.

Our experience indicates that selectivity/local rank constraints are better implemented in iterative
algorithms as inequality constraints than as equality constraints. Equality constraints are sometimes
too strong during the optimization and, in fact, in many circumstances we cannot be completely sure
that the values are exactly equal to zero or to another value in a certain data window. Usually what we
really know is that a particular species does not exist at appreciable concentrations or that it does not
contribute to the signal in an appreciable way. However, this does not mean that the concentration or
the signal should be exactly zero in that window, but better, below a threshold value. For this reason it
is usually better just to select a threshold value and to force the values of the profile in the window to
be equal to or lower than this threshold value. If that threshold value is equal to �, then the selectivity/
local rank constraints can be described as

gcsel�i�k�T� � csel�i�k�T� � � � 0 �12�
gssel�j�k�T� � ssel�j�k�T� � � � 0 �13�
i � 1� � � � � ncselk � j � 1� � � � � nsselk � k � 1� � � � �N

The number of inequality constraints will depend on the number of values included in the selected
windows, ncselk and nsselk, for each species k considered.

A second type of possible constraints would be those values in C or ST which were exactly known.
It may happen for instance that the spectrum of one of the species is known in advance. In that case
such information can be used to simplify the optimization problem through equality constraints such
as

gcknown�i�k�T� � ci�k�T� � cknown�i�k � 0 �14�
gsknown�j�k�T� � si�k�T� � sknown�j�k � 0 �15�
i � 1� � � � �NR� j � 1� � � � �NC� k � 1� � � � �N

If the whole concentration profile of one species is known, this gives NR equality constraints. If the
whole spectrum of one species is known, this gives NC equality constraints

2.2.3.4. Unimodality constraints. In a wide variety of situations, concentration profiles have a
unimodal shape, i.e. they only have a maximum. This is the case for instance for chromatographic
elution profiles and also for concentration profiles in reaction-based systems. In contrast, spectral
profiles are usually not unimodal in the general case. Some other types of instrumental signals may
also be unimodal, as in electrochemistry. Whenever the shape of the profiles is unimodal, an
additional constraint which may be useful is unimodality. In that case, what is intended is to avoid the
formation of secondary maxima. The way used to implement unimodality constraints has been
algorithmic. First the highest maximum is detected and then all the departures from the unimodal
condition are constrained, discarding left and right maxima: at the left of the peak maximum,
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gunimod�i�k � ci�1�k�T� � ci�k�T� � 0 �16�

and at the right of the peak maximum,

gunimod�i�k � ci�1�k�T� � ci�k�T� � 0 �17�

This constraint can include also a small local departure from unimodality tolerance because of noise,
which gives the amount of local increasing concentration tolerated at the right or at the left of the
maximum concentration. See References [8,19] for more detailed descriptions of the unimodality
constraint. The number of inequality constraints from Equations (16) and (17) will change during the
optimization depending on the shape adopted by the concentration profile c(T).

2.2.3.5. Set-up of the vector of constraints. Two vectors of constraints are finally built up, one
for the equality constraints,

geq � gnorm � gclos � gknown � 0 �18�

and the other for the inequality constraints,

gineq � gneg � gsel � gunimod � 0 �19�

2.2.4. Initial values of the variables. The constrained non-linear optimization described in
Equation (5) needs initial estimates of the variables T and of the profiles Cinic and ST

inic. An
obvious way to facilitate the optimization is that both Cinic and ST

inic be feasible, i.e. that they
already fulfil the constraints of the problem. In this way, if matrix T(N,N) is selected to be equal
to the identity matrix, the starting values of the variables will give feasible solutions of the
problem, and the initial optimization steps are facilitated. For simulated data, Cinic and ST

inic may
be chosen as those which are used to built up the data matrix D (see Section 3). Obviously, these
profiles already obey the constraints and fit the data appropriately. The goal of the optimization is
then to find the maximum and minimum boundaries of all the alternative solutions which fit the
data matrix D equally well and also fulfil the postulated constraints. In order to check that the
feasible solutions do not depend on the initial estimates, and also, more importantly, to have
starting profiles for real experimental data, the profiles obtained using an alternating least squares
procedure (MCR-ALS [5,7,8]), CALS and ST

ALS are also used as initial estimates. These profiles
fulfil the constraints of the problem and fit the data optimally. In fact, the MCR-ALS procedure
[5] was developed with this idea in mind, to find an optimal solution of the multivariate curve
resolution problem which optimally fits the data and also fulfils the constraints of the problem.
The MCR-ALS method has been described in previous works and applied successfully to different
data types [5,7,8,18], so it is not described further in the present work.

2.2.5. Optimization method and initial optimization parameters. The constrained non-linear
optimization problem described by Equation (5) is solved using a sequential quadratic
programming (SQP) algorithm with a mixed quadratic and cubic line search method. The
background of these methods is described in detail in the book by Gill et al. [15] and
implemented in the MATLAB [16] Optimization Toolbox [20], function constr.m (version 1.5.2,
1990) and, more recently, function fmincon.m (version 2.0, 1998). SQP methods are recognized as
the state of the art in non-linear programming optimization methods [21]. At each major iteration
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of the quadratic programming optimization procedure an approximation is made of the Hessian of
the Lagrangian function using a quasi-Newton updating method. The Lagrangian function is
obtained from the definition of the necessary and sufficient optimality conditions in constrained
optimizations derived from Kuhn–Tucker equations [15,20,21]. A quadratic programming (QP)
subproblem is generated iteratively whose solution is used to form a search direction for a line
search procedure. More details of the algorithms used in the SQP optimizations are given in
References [15,20–22].

The particular implementation flow chart of the algorithm developed in the present work to find the
band boundaries of feasible solutions is shown in Figure 1.

In step 1, feasible solutions Cinic and ST
inic are initially postulated or found using the MCR-ALS

optimization algorithm [5] under a set of preselected constraints. The rotation matrix T(N,N) is
initially set equal to the identity matrix of the same dimensions. In step 2 the objective function is
defined. Two objective functions should be set up for each species profile (concentration and
spectral), one to evaluate the maximum band boundary and the other to evaluate the minimum band
boundary. In step 3 the set of equality and inequality constraints is formulated. These constraints
should be in agreement with the initial feasible solutions postulated in step 1. Step 4 is the core of the
algorithm, where the maximum and minimum band boundaries of the feasible solutions are obtained
by minimization of the objective functions defined in step 2 under the constraints defined in step 3.
This non-linear optimization is carried out using the appropriate external subroutines. From the
output of these optimization subroutines the optimal values of the rotation matrix, Tmax and Tmin, are
obtained for the maximum and minimum band boundaries of the species profiles (concentration and
spectral). In step 5 these band boundaries are finally evaluated.

The correct implementation of the previously described optimization method requires that several
parameters be considered, such as the termination tolerance for the variables in the T matrix, the
termination tolerance for the objective function f(T), the termination criterion of constraint violation,

Figure 1. Steps of the optimization algorithm.
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the maximum number of iterations, the minimum and maximum changes in variables for difference
gradients and the initial step length. From our experience, usually for a well-defined problem with an
appropriate scaled objective function, default values provided by the MATLAB routine are adequate
(see MATLAB Optimization Toolbox). In some cases, however, if the optimization does not run
properly, changes in some of the default values may be attempted. This is largely problem-dependent
and no general rules can be given at the moment.

3. DATA

Three application examples are given showing typical situations and constraints found in curve
resolution problems.

Example 1. Mixture of a two-component equilibrium system

Figure 2 gives the first data example where the proposed method for the calculation of the band
boundaries of feasible solutions was applied. In this example the data come from a hypothetical
chemical equilibrium monitored spectrophotometrically, with two species contributing to the
measured signal with the concentration (C1) and spectral (ST

1) profiles shown in Figure 2. The data
matrix was obtained simply from D1 � C1ST

1 � N, where the noise N is Gaussian-distributed with a

Figure 2. Data example 1: simulation of a two-species (1 and 2) equilibrium system. Left: plot of 38 simulated
mixture spectra with 48 wavelengths (data matrix D1). Top right: plot of species distribution (concentration

profiles, C1). Bottom right: plot of species spectra (ST
1).
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standard deviation of 0⋅001 units. The dimensions of this matrix were 38 rows (spectra) � 48 columns
(wavelengths). The profiles used for the data generation had no selectivity either in the spectra or in
the concentrations. The system is closed, since the sum of the concentrations of the two profiles is
always equal to a constant value (mass balance equation). Pure species spectra were also normalized
to unit length. In this example the band boundaries of the feasible solutions were calculated
considering the following situations: (a) non-negativity and spectral normalization constraints; (b)
non-negativity and concentration closure constraints; and (c) selectivity constraints. Initial values of
the feasible profiles used for the calculation of the bands of feasible solutions were obtained from the
profiles used in the data simulation and/or from the profiles obtained using MCR-ALS.

Example 2. Mixture of three coelution chromatographic components (chromatographic coelution)

Figure 3 shows the simulated data matrix D2 obtained from the concentration/elution profiles C2 and
spectral profiles ST

2 corresponding to a mixture of three coelution compounds analysed using
chromatography with diode array UV detection. The noise N was also assumed to be Gaussian-
distributed with a standard deviation of 0⋅001 units. The dimensions of this matrix were 26 rows
(spectra) � 48 columns (wavelengths). The chromatographic elution profiles were poorly resolved at
all the wavelengths; only for the third species is there a small region at the end of the peak where this

Figure 3. Data example 2: simulation of a three-component chromatographic coelution system (data matrix D2).
Left: plot of 26 simulated chromatographic profiles at 48 different wavelengths. Top right: plot of elution profiles

(C2). Bottom right: plot of spectra of each component (ST
2).
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species is the only one present at low concentrations. This third species is also the species which has a
less overlapped spectrum, with a selectivity region at one of the ends of the absorption band (Figure
3). From this preliminary analysis it was clear that species 3 was the species which might be resolved
with fewer ambiguities and that the resolution without ambiguities of spectral and concentration
profiles of species 1 and 2 would be more difficult. For this example the following situations were
studied: (a) non-negativity and spectral normalization constraints; (b) unimodality constraint; (c)
local rank/selectivity constraints; and (d) initial estimates (from simulation and from EFA-ALS).

Example 3 (real data). Formation of Cu(II)–chloride complexes studied by UV Spectrometric
titration ([Cl� = 0⋅0–5⋅0 M, T = 25 and 80 °C)

The formation of relatively weak Cu(II)–chloride complexes in solution has been studied previously
by various authors [23–26]. Complex formation between Cu(II) and chloride ion takes place
gradually as the chloride concentration increases. There is still some controversy about the number
and nature of the species formed at high chloride concentrations. Various experimental methods have
been proposed to study this problem, including UV-vis spectroscopy. The UV region between 230
and 500 nm gives information about the evolution of complex formation and about its dependence on
the temperature, with complex formation being augmented by increasing temperature.

Figure 4 gives the plot of the two data matrices D3 and D4 obtained experimentally in the UV
spectrometric titration of samples of Cu(II) (Cu(ClO4)2) at a concentration of 2⋅5 � 10�5 M. The
chloride concentration was increased gradually in each sample from 0⋅0 to 5⋅0 M using NaCl. A total
of 20 spectra and 321 wavelengths were measured in each case. The ionic strength was kept equal to
5⋅0 M in all the samples using appropriate mixtures of NaClO4 and NaCl stock solutions. The data
matrix D3 was obtained at 25 °C and the data matrix D4 at 80 °C using a Peltier-based apparatus
(Perkin-Elmer). UV-vis spectra were measured for each sample between 230 and 550 nm using a
Perkin-Elmer Lambda-19 spectrometer.

Spectra at low chloride concentrations gave a low absorption, increasing considerably when the
chloride concentration was increased, especially in the 230–300 nm range. Spectral shifts to higher
wavelengths were also observed. When the two experiments are compared, it is clear that in the case
of the experiment at 80 °C the shifts are higher and that the complexation process at a particular
chloride concentration is more developed at 80 than 25 °C. Observe for instance the higher intensity
of the second band at 400 nm, scarcely visible at 25 °C but clearly apparent at 80 °C. All this
indicates that the complexation process is not the same at the two temperatures.

The constraints considered during the calculation of the species profiles and their band boundaries
were: (a) non-negativity for the concentration and spectral profiles; (b) closure for the concentration
profiles, since the sum of the concentrations of the species containing Cu(II) ion should be equal to the
known total concentration of Cu(II) (mass balance equation assuming that all species are
mononuclear in Cu(II) ion); and (c) selectivity and/or local rank constraints for those regions where
some of the species are or are not present.

4. RESULTS AND DISCUSSION

Example 1. Mixture of a two-component equilibrium system (Figure 2)

Figures 5A and 5B give the band boundaries of feasible solutions obtained using the optimization
algorithm previously described when non-negativity constraints were applied to both the
concentration and spectral profiles and the pure species spectra were also constrained to norm one.
Full lines give the maximum and minimum band boundaries. These band boundaries give the profiles
giving maximum and minimum signal contributions and, in this case, also the concentration profiles
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with maximum and minimum areas, since the spectra were always constrained to be of unit area.
Dotted lines give the initial profiles used in the optimization, which are in fact the same as those used
for the data simulation of Figure 2. These initial profiles were always within the calculated
boundaries. Also, observe that the maximum band boundary for the concentration profile of species 1
is a concentration profile which has full selectivity (only one species present) at the beginning of the
reaction experiment. The same happens for the minimum band boundary for the concentration profile
of species 2, which is a concentration profile which has full selectivity at the end of the reaction
experiment. When, instead of starting the optimization with the profiles used for the data simulation,
the optimization was started with an estimation of the species profiles obtained from the analysis of
the data matrix D1 using MCR-ALS (broken lines in Figures 5A and 5B), identical boundary solutions
were found. The corresponding spectral profiles estimated from MCR-ALS cannot be seen in Figure
5B since they are completely overlapped with the minimum boundary for species spectrum 1 and with
the maximum boundary for species spectrum 2. When, instead of spectral normalization, the closure
constraint was considered, the calculated boundary bands were only slightly different from those
previously found when the spectral normalization constraint was applied instead. This is logical,

Figure 4. Data example 3: experimental study of Cu(II)–chloride complexation system at different concentrations
of chloride (from 0⋅0 to 5⋅0 M NaCl). The concentration of Cu(II) in all the spectra was 2⋅5 � 10�4 M and the
ionic strength was kept to 5⋅0 M with an appropriate mixture of NaCl and NaClO4 5⋅0 M stock solutions. Left:
plot of 20 measured spectra (230–500 nm) at 25 °C (data matrix D3). Right: plot of 20 measured spectra (230–

500 nm) at 80 °C (data matrix D4).
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since for this particular case the data matrix D1 was in fact built up from concentration profiles
fulfilling the closure constraint and with spectral profiles normalized to unit length (Figure 2).

If data selectivity were present at the beginning of the equilibrium process (only species 1 present),
the band boundaries of feasible solutions would change to those shown in Figures 5C and 5D,
especially for the spectrum of the first species where the solution was obviously unique and the band
collapsed to a single curve (only one full line for species spectrum 1 is shown in Figure 5D).
However, there was still rotational freedom for the other concentration and spectral profiles as shown
by the other full lines in Figures 5C and 5D. The initial profiles used for the band calculations were
totally overlapped with the full lines and are not distinguished in these plots. If selectivity were also
considered at the end of the equilibrium process (absence of species 1 at the end of the equilibrium
process), all the feasible bands would collapse to a single line, since selectivity constraints for the two
species concentration profiles would force unique solutions. All this is in agreement with previous
studies on selectivity and local rank effects in factor analysis ambiguities [5,6].

Figure 5. Band boundaries calculated for the species profiles of example 1 (data matrix D1, Figure 2). Full lines
are the band boundaries obtained using the proposed procedure. Dotted lines are the ‘true’ profiles. Broken lines
are the profiles obtained using MCR-ALS. A: band boundaries of concentration profiles obtained under non-
negativity and spectral normalization and/or concentration closure constraints. B: band boundaries of spectral
profiles obtained under the same constraints as in A. C: band boundaries of concentration profiles obtained under
non-negativity, spectral normalization and selectivity constraints. D: band boundaries of spectral profiles

obtained under the same constraints as in C.
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Example 2. Mixture of three coelution chromatographic components (chromatographic coelution,
Figure 3)

Figure 6 gives the results obtained in the calculation of the band boundaries for the elution and
spectral profiles of example 2 (Figure 3) under different constraints. Full lines describe the band
boundaries when non-negativity constraints were applied to both elution and spectral profiles and the
spectral profiles were normalized to unit length. The broad separation between these boundaries
indicates that, using only these two constraints, the results obtained by curve resolution would be
rather ambiguous. The minimum band boundary of the feasible solution for the elution profile of
species 1 showed a double peak, i.e. the solution was not unimodal. When the unimodality constraint
was applied, during the optimization this band boundary was corrected accordingly and changed to
fulfil this unimodality constraint. This problem, however, may be better solved using appropriate
local rank/selectivity constraints.

Band boundaries obtained using local rank constraints (apart from non-negativity and normal-
ization constraints) are plotted using dotted lines in Figure 6. In this particular case the tails of the

Figure 6. Band boundaries calculated for the component profiles of example 2 (data matrix D2, Figure 3). Full
lines are the band boundaries obtained using non-negativity and spectral normalization constraints. Dotted lines
are the band boundaries obtained using non-negativity, spectral normalization and selectivity/local rank
constraints. Chain lines are the ‘true’ profiles. Broken lines are the profiles obtained using MCR-ALS. A–C:

elution profiles of species 1–3 respectively. D–F: corresponding spectral profiles.
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elution profiles for the first and second species were constrained to be below 0⋅01 units for the last
four points of the elution profile of the first species and for the last three points of the elution profile of
the second species (see Figure 3). Also, the first three points of the front of the elution profile of the
third species were constrained to be below 0⋅01 units. In this way the band of feasible solutions
corresponding to the spectral (Figure 6F) and elution (Figure 6C) profiles of the third species
collapsed to a unique solution, and the band boundaries of the spectral profiles of the first (Figure 6D)
and second (Figure 6E) species were now also narrower. The feasible regions for the elution profiles
of the first and second species, although narrower than when no selectivity/local rank constraints were
applied (full lines compared to dotted lines in Figures 6A and 6B), were still wide, showing that
rotational ambiguities were not totally solved for them yet. In Figure 6 the initial profiles used for the
optimization (chain lines) and the MCR-ALS solutions (broken lines) are also plotted. It is seen that
these lines appear in most cases to be within the calculated boundaries. It may happen, however, as in
Figure 6E, that feasible solutions appear outside the boundary plots. In this case the feasible solutions
are still numerically within the boundaries, but when they are plotted as in Figure 6E, they may appear
to be outside the boundary plots. The reason for this is that the boundaries give the maximum and
minimum of the optimization function defined in terms of signal contribution, but these numerical
limits may not coincide exactly with the physical limits in the graphical representation of feasible
solutions in two-dimensional plots such as those shown in Figure 6E. For instance, although the
boundaries define the maximum and minimum species signal contributions and all the feasible
solutions should be within these boundaries, the graphical representation of the boundaries for a
particular species in a two-dimensional plot could apparently appear to be outside the boundaries.
This is a problem related only to the graphical representation of the boundaries and not to their
intrinsic meaning and interpretation. Alternative ways of representation are outside the scope of this
work and are left for further discussion.

Finally, the band boundaries obtained for the second chromatographic elution profile using
different starting values are compared in Figure 7. This species profile was recovered with large
rotational ambiguities, giving wide boundary bands (see Figures 6B and 6E). Figure 7 gives the band
boundaries obtained under non-negativity and normalization constraints using the true solution as
initial estimates (full lines), as well as (lines with crosses) the band boundaries obtained using the
MCR-ALS solution as initial estimates. As can be seen, the band boundaries calculated using these
two initial solutions were very similar, thus reinforcing the reliability of the proposed method.
Finally, Figure 7 also gives the band boundaries obtained using the local rank constraints previously
described for this system (dotted lines).

Example 3 (real data). Formation of Cu(II)–chloride complexes studied by UV spectrometric
titration ([Cl�] = 0⋅0–5⋅0 M, T 25 and 80 °C)

Initial profiles for the optimization were obtained in this case from the application of MCR-ALS
[5,7,8] to the experimental data matrices D3 (25 °C) and D4 (80 °C). Three and four species
respectively were initially proposed for the resolution of these two data matrices using MCR-ALS.
Constraints applied in both cases were non-negativity, closure and selectivity. For data matrix D3

(25 °C) the first species (free Cu(II)) was considered to be the only species present in the first
spectrum (selectivity), since no chloride had yet been added. In contrast, this species was considered
not to be present in the last spectrum at 5⋅0 M [Cl�]. For data matrix D4 (80 °C) the concentration of
Cu(II) and also the concentration of the second species (first complex Cu–Cl species) were considered
negligible in the last spectrum at high chloride concentration. On the other hand, as for data matrix
D3, only the first species (free Cu(II)) was considered to be present in the first spectrum of the series,
since no chloride had yet been added. The results confirmed that the selection of the number of
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species in the two experiments was reasonable. A higher or lower number of species gave worse
results, both from a data fitting point of view and in terms of the shape of the concentration and
spectral profiles recovered in the MCR-ALS analysis. However, the presence at low concentrations of
a fourth species at the end of the first experiment at 25 °C cannot be totally excluded and is left for
further study. In Figure 8 the finally resolved profiles after the MCR-ALS analysis of the two data
matrices are shown as broken lines. The explained data variance was R2 = 99⋅79% and 99⋅98% for D3

and D4 respectively.
Using these initial MCR-ALS estimates and using the same constraints as in the MCR-ALS

analysis, i.e. non-negativity, closure and selectivity, the band boundaries obtained for the different
species profiles using the proposed procedure are given in Figure 8. For data matrix D3, unresolved
rotational ambiguities gave bands that were broader at higher chloride concentrations (Figure 8A),
especially for the concentration profiles of the second and third species. The spectrum for the first
species (free Cu(II)) is recovered without ambiguities (Figure 8B), since there is selectivity for this
species in the first measured spectrum. Moreover, the concentration profile of this first species was
also recovered without ambiguities because of the applied local rank constraints [6]. The feasible
band for the spectral profile of the second species (Figure 8B) was very narrow, giving a practically

Figure 7. Detail of band boundaries obtained for the elution profile of component 2 using different initial
estimates and different constraints.
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unique solution. The reason for this is also explained in terms of the local rank resolution constraints
[6], since the concentration profile of this species always had a region where the other two species did
not exist (the first spectrum did not have species 3 and the last spectrum did not have species 1).

Calculation of the band boundaries for species in data matrix D4 was more difficult owing to the
higher complexity of the system. In Figure 8C the band boundaries for the concentration profiles are
given. At high chloride concentrations the width of the bands for the third and four species
concentration profiles was large, since rotational ambiguities could not be solved for them. As for
matrix D3, the concentration profile for species 1 (free Cu(II)) was recovered without ambiguities.
The concentration profile for species 2 (first metal complex) still had some ambiguities, which were
not solved with the proposed constraints. The spectrum for species 1 was recovered without
ambiguities (Figure 8D), whereas some ambiguities still remained for the spectra of the second, third
(only a little) and fourth species. These results are in agreement with the applied local rank
constraints.

Comparison of Figures 8A and 8B with Figures 8C and 8D shows clearly the temperature effect in
the equilibrium study of the same system. Whereas at 25 °C only two complex species apart from the
free metal ion (three species in total) appear to be present at significant concentrations, at higher

Figure 8. Band boundaries calculated for the species profiles of example 3 (data matrices D3 and D4, Figure 4).
Full lines are the band boundaries obtained using non-negativity, closure and local rank/selectivity constraints.
Broken lineas are the profiles obtained using MCR-ALS. A, B: results at 25 °C (matrix D3). C, D: results at 80 °C

(matrix D4).

644 R. TAULER

Copyright  2001 John Wiley & Sons, Ltd. J. Chemometrics 2001; 15: 627–646



temperature (80 °C) the formation of a third complex (four species in total) is very significant, and the
formation constants of the different complexes increase considerably with the temperature. On the
other hand, the species spectra of Cu(II) and of the first complex (species 2) are very similar in
Figures 8B and 8D, whereas the spectrum of the second complex (species 3) appears to be slightly
different at the two different temperatures. This, however, needs further study considering the
possibility of the simultaneous analysis of the two experiments using MCR-ALS and an extension of
the proposed method to the simultaneous analysis of different data matrices (three-way data analysis).
Some work is planned in this direction.

5. CONCLUSIONS

Calculation of the maximum and minimum band boundaries of feasible solutions obtained by
multivariate curve resolution has been shown to be possible for different simulated and experimental
data. This calculation allows the assessment of the effect of constraints on decreasing the rotational
ambiguities associated with multivariate curve resolution solutions and allows their quantitative
calculation. This opens up the possibility for multivariate curve resolution solutions to be reported
accompanied by indeterminations associated with non-solved rotational ambiguities. From the
obtained results it is deduced that usual constraints such as normalization, closure, non-negativity,
unimodality and, especially, local rank/selectivity decrease considerably the extent of rotational
freedom (rotational ambiguities) in multivariate curve resolution solutions.
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7. Gargallo R, Cuesta-Sànchez F, Massart DL, Tauler R. Validation of alternating least squares multivariate

curve resolution for the resolution and quantitation of overlapped peaks obtained in liquid chromatography
with diode array detection. Trends Anal. Chem. 1996; 15: 279–286.

8. De Juan A, Vander H, Tauler R, Massart DL. Assessment of new constraints applied to the alternating least
squares (ALS) method. Anal. Chim. Acta 1997; 346: 307–318.

9. Henry RC, Kim BM. Extension of self-modeling curve resolution to mixtures of more than three
components. Part 1. Finding the basic feasible region. Chemometrics Intell. Lab. Syst. 1990; 8: 205–216.

10. Wentzell PD, Wang J, Loucks LF, Miller KM. Direct optimization of self modelling curve resolution:
application to the kinetics of the permanganate–oxalic acid reaction. Can. J. Chem. 1998; 76: 1144–1155.

11. Kim BM, Henry RC. Extension of self-modeling curve resolution to mixtures of more than three
components. Part 2. Finding the complete solution. Chemometrics Intell. Lab. Syst. 1999; 49: 67–77.

12. Gemperline P. Computation of the range of feasible solutions in self-modeling curve resolution algorithms.
Anal. Chem. 1999; 71: 5398–5404.

BAND BOUNDARIES FOR MULTIVARIATE CURVE RESOLUTION 645

Copyright  2001 John Wiley & Sons, Ltd. J. Chemometrics 2001; 15: 627–646



13. Maeder M. Evolving factor analysis for the resolution of overlapping chromatographic peaks. Anal. Chem.
1987; 59: 527–530.

14. Keller HR, Massart DL. Peak purity control in liquid chromatography with photodiode-array detection with a
fixed size moving window evolving factor analysis. Anal. Chim. Acta 1991; 246: 379–390.

15. Gill PE, Murray W, Wright MH. Practical Optimization. Academic Press: New York, 1981.
16. MATLAB, Version 5.3. The Mathworks: Natick, MA, 1999.
17. Amhrein M, Srinivasan B, Bonvin D, Schumacher MM. On the rank deficiency and rank augmentation of the

spectral measurement matrix. Chemometrics Intell. Lab. Syst. 1996; 33: 17–33.
18. Saurina J, Hernández-Cassou S, Tauler R, Izquierdo-Ridorsa A. Multivariate curve resolution of rank-

deficient kinetic spectrophotometric data from first-order kinetic decomposition reactions. J. Chemometrics
1998; 12: 183–203.

19. Bro R, Sidiropoulos N. Least squares algorithms under unimodality and non-negativity constraints. J.
Chemometrics 1998; 12: 223–247.

20. Optimization Toolbox, Version 2.0. The Mathworks: Natick, MA, 1998.
21. Schittowski K. NLQPL: a Fortran-subroutine solving constrained non-programming problems. Ann. Oper.

Res. 1985; 5: 485–500.
22. Dixon LCW. Non-linear Optimization. The English Universities Press: London, 1972.
23. Khan MA, Schwing-Weil M. Stability and electronic spectra of copper(II) chloro complexes in aqueous

solutions. Inorg. Chem. 1976; 15: 2202–2205.
24. Ashurst KG, Hancock RD. Characterization of inner- and outer-sphere complexes by thermodynamics and

absorption spectra. Part 2. Chloro-complexes of copper(II). J. Chem. Soc., Dalton Trans. 1981; 245–250.
25. Bjerrum J. Determination of small stability constants. A spectrophotometric study of copper(II) chloride

complexes in hydrochloric acid. Acta Chem. Scand. A 1987; 41: 328–334.
26. Tauler R, Rode BM. Reactions of Cu(II) with glycine and glycylglycine in aqueous solution at high

concentrations of sodium chloride. Inorg. Chim. Acta 1990; 173: 93–98.

646 R. TAULER

Copyright  2001 John Wiley & Sons, Ltd. J. Chemometrics 2001; 15: 627–646


