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A method for extracting information from spec-
troscopicdata gathered during process monitoring
is described and applied to an industrial problem.
The method allows the estimation of the changes
in the concentrations of the components in the
process as well as their pure spectroscopic re-
sponses. Three key aspects of the new method are
as follows: (1) the use of evolving factor analysis
to have an initial estimation of how the concen-
trations of the constituents change during the
process; (2) the implementation of an alternating
and constrained least-squares method to optimize
both the spectra and the concentrations of the
components in the process; (3) the development of
a new approach for the simultaneous analysis of
various runs of the same process to estimate the
ratio of concentrations between the common com-
ponents in the different runs.

INTRODUCTION

Recent advances in process instrumentation and in data
collection techniques have resulted in a rapid increase in the
amount of data that can be acquired from chemical processes.
Extracting the significant information from the data produced
by modern instrumentation is in many circumstances a
nontrivial task. The description and modeling of the evolution
of a chemical process is important for both practical and
economicreasons. The present work concerns the application
of new tools for process monitoring and modeling. These
tools can be used to extract all of the useful chemical
information from process monitoring data.

The development and application of first and higher order
multivariate calibration and standardization methods have
allowed the solution of many problems in real-world process
analytical chemistry, and much attention has been given to
these methods in the field of chemometrics in recent years.!
There are, however, important cases where these methods
cannot be applied because there is no previous information
available to perform a calibration of the system. Examples
of this situation in process analysis are abundant and include
monitoring the evolution of chemical processes where one or
more parameters are changed, such as time, temperature,
pH, the concentration of a reagent, or any other parameter,
and there is no previous quantitative information about the
evolution of the process. The multivariate data acquired with
spectroscopic probes produce continuous data which can be
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arranged in an ordered data matrix according to the variation
of the parameter changed during the process.

One way to address this problem is by curve resolution
methods.2? Inthefactor analysis framework, curve resolution
decomposes a bilinear data matrix into the product of two
simpler matrices which are related respectively to each one
of the two orders of the original data matrix. The goal of the
curve resolution methods is the determination of those
decompositions which have physical and chemical meaning.
In the case of process analytical chemistry, the final goal is
the estimation of the matrix containing the concentration
profiles of the constituents as a function of time and
simultaneously the estimation of the unit responses (pure
spectra) of those constituents.

To have a meaningful solution from the curve resolution
decomposition, it is necessary to make some assumptions
about the signals obtained such as bilinearity, nonnegativity,
unimodality, and closure. Examples of such treatments with
more or less success can be found in the literature.+” However,
in general, such treatments do not guarantee unique solutions
because the rotational and intensity ambiguities inherent to
curve resolution decompositions can still be present after
applying the above-mentioned constraints. As it isshown in
the present work, these ambiguities can be partly overcome
with the use of some special techniques. One of the most
interesting techniques, which has not received much attention
in the field of process analysis, is evolving factor analysis
(EFA).%-12 Taking advantage of the ordered structure of the
acquired data, evolving factor analysis provides valuable
information concerning the windows of existence of every
component in the unknown mixtures existing at any time
during the process. When evolving factor analysis is applied
to cases where selectivity for some component is present in
any of the two orders, the determination of the concentration
profile and spectroscopic response of such component can be
estimated at least qualitatively without any other additional
requirement. Therefore, it is especially important to detect
such selectivity regions.
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In addition, if several process runs of the same process are
available and as usually, at least one of the two orders is
common between them (e.g., the spectral range scanned), the
intensity ambiguities associated with the analysis of a single
process run can be resolved. Assuming that the same
component in the mixture has the same unit spectrum in the
different process runs, the simultaneous analysis of different
process runs gives the concentration ratios between the
common components in the different runs of the process.

Finally, in the case where both orders are in common
between different process runs, it is conceptually and math-
ematically better to take advantage of the second-order
structure of the data and use multivariate higher order curve
resolution methods like generalized rank annihilation method
(GRAM),!8 residual bilinearization (RBL),!¢ or other three-
way data analysis methods.!® However, the requirement of
having the two orders coincident (synchronization) in different
experiments is too strict for many practical situations in
process analysis. The present work is addressed to such
situations.

Data for the present work are spectra obtained from
successive runs of an industrial chemical process. Thespectra
are evenly spaced in time, but may represent different elapsed
times from beginning to end from run to run. The spectral
intensities are stored in a matrix D with one spectrum per
row. The dimensions of D are the number of spectra by the
number of spectral channels (e.g., wavelength). The goals of
the present work are (a) to determine the number of unique
chemical components included during the full process; (b) to
estimate the pure (unit) spectra of these components; and (c)
to estimate how the concentration profiles of these compo-
nents change within a run of the process, and how they differ
between different runs of the same process.

METHODS

To achieve the goals mentioned above, different multi-
variate data analysis techniques have been implemented and
assembled in a single method. The different parts of this
method are as follows:

Principal Component Analysis and Curve Resolution.
Principal component analysis!® gives a decomposition of a
data matrix:

D=UVI+E=D+E 1)

where U and V are respectively the score and loading matrices
obtained for the selected number of principal components,
E is the residual error or noise matrix not explained by them,
and D is the reproduced data matrix. The decomposition
obtained by principal components gives orthogonal U and
VT matrices.

The difference, E, between the original data matrix D and
the reproduced matrix D is calculated to know the level of
residual variance not explained by the number of deduced
components. For a complete bilinear data matrix, E should
be at the level of noise or experimental error for the correct
number of components.

Assuming that the spectroscopic data matrices obtained in
the process analysis experiments are bilinear:

D=CA 2

dij = Zcikakj

where D is the data matrix which contains the spectraacquired
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in an ordered way along the process, for instance along the
time axis. C and A are respectively the matrices of the
concentration profiles in the process and the unit pure
chemical component spectra for the set of components
spectroscopically active in the range studied. The dimensions
of these matrices are C (NS X NC) and A (NC x NW),
where NS is the number of spectra acquired, NW is the
number of spectroscopic channels, and NC is the number of
chemical components in the mixtures.

The goal of curve resolution methods is as follows: given
D, obtain the real physically meaningful C and A. Obviously
such a task cannot be achieved directly from the principal
component analysis decomposition if no additional infor-
mation is provided since the equation

D=UVT=UTT VT =CA @)

has an infinite number of solutions for any arbitrary trans-
formation matrix T. There is a rotational and an intensity
ambiguity to solve for C and A if no more information is
provided to constrain the number of possible solutions. This
is the task, in general, of the curve resolution methods and,
in particular, of the proposed method.

Intensity Ambiguity. There is an intrinsic intensity
ambiguity in all curve resolution solutions since for any scalar
m

dy = Zcikakj +ey 4)
Cilyy = (cikm)(l/makj) = c’ika’kj

This means that the estimated concentrations and spectra
will be scaled by some unknown factor m indigenous to each
component. This is not a serious problem in qualitative
analysis (spectral identification, fingerprinting), but it is a
serious problem in quantitation.

Rotation Ambiguity. More important is the rotation
ambiguity inherent in curve resolution solutions which always
occurs when there are two or more linearly independent
overlapped components. The estimated spectrum for any of
these components will be an unknown linear combination of
the true components

a’ = Ztkak (5)
where t; are unknown rotation constants; a, are the true unit
pure spectra of the components; and a)’ are their estimated
pure unit spectra.

Selectivity. Conversely, for those time windows during
a process run where there is only one component, there is no
rotation ambiguity. This means that the principal component
analysis or any other solution gives the correct shapes for the
concentration profiles and unit spectra. Only the intensity
ambiguity will still be present.

Toremove the rotational ambiguity, it is important to detect
the regions where selectivity is present, because in these
regions the unit spectra and unit concentration profiles have
the correct shapes.

Determination of Number of Components in Mixture.
As theinterest is centered on the investigation of the changes
in the concentration of the chemical components present in
the system as well as in the nature of these unknown
components, the first thing that must be done is to estimate
how many different components are in the data set. The
determination of this number is related to the determination
of the level of variance which is caused by other variance
sources (e.g., light scatter). Methodssuch as cross validation!?
or the theory of error in factor analysis!® will not work here
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because they provide the total number of contributions to
the data variance, chemical and nonchemical baseline changes,
and the background absorption.

If the chemical components have a larger contribution to
the data variance than the noise, background, and baseline
changes, the number of chemical components can be initially
estimated simply from the comparison of their respective
singular values. Singular values related to the background
absorption and baseline changes are obtained in the analysis
of the spectral regions where the chemical components do
not absorb. Singular values related to the chemical compo-
nents of interest are obtained in the analysis of the spectral
regions within the absorption bands. The number of com-
ponents estimated in this way is tested aftewards using
evolving factor analysis (see below) and during the alternating
least-squares optimization (see below), looking for those
solutions which best fit the data and have physical meaning,
i.e., give reasonable shapes in the concentration profiles and
unit spectra.

Determination of Selectivity of System and Initial
Estimation of Concentration Profiles by Evolving Factor
Analysis. Evolving factor analysis (EFA)8-12has been applied
mostly to the study of spectroscopic experiments of multi-
equilibria systems!®-22 and to liquid chromatography with
diode array detection.2324 The basic idea of this procedure
istoprovide aninitial estimation of the concentration profiles,
examining how the singular values associated with these
components evolve and change in magnitude along the
process. Inthis procedure, the detected presence of selectivity
ranges can solve the rotational ambiguity. Other methods
used for detecting the selectivity of the system are local rank
analysis,?® window factor analysis,? and fixed-size moving
window evolving factor analysis.?’

Constrained Optimization of Concentration Profiles
and Unitary Spectra by Alternating Least Squares. From
the results of evolving factor analysis, the window or range
of existence of each component as well as its concentration
profile can be obtained. These concentration profiles are
used asinitial values in a constrained alternating least-squares
optimization procedure. Ateach iteration of the optimization,
a new estimation of the matrix of spectra A and of the
concentration profiles C is obtained successively using the
two following equations:

A=C'D (8)
C=DA* )

where the matrix C* is the pseudoinverse of the matrix C,
and the matrix A* is the pseudoinverse of the matrix A.
Obviously the selection of the correct number of components
in the calculation of D is essential. The use of this matrix
instead of the experimental data matrix, D, improves the
stability of the calculations, since D is noise-filtered.

In order to limit the number of possible solutions to these
equations, the following set of constraints can be applied:

Constraints on Concentration Profiles. (a) Nonnegativity.
The concentration profiles are positive.

(b) Shape. When the shape characteristics of the con-
centration profiles of the different components in the process
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are known, they can be used as a constraint. A typical example
is unimodality (only one peak per profile). In the present
case, the shapes of the concentration profiles were allowed
to have some small local departures from the unimodality
condition.

Constraints on Unit Spectra Values. (a) Nonnegativity.
The spectral values are forced to be positive. This condition
is not applicable to derivative spectra.

Testing the Number of Components. If the number of
components is uncertain, the complete iterative alternating
least-squares optimization is performed for the different most
plausible number of components. The correct number is
considered to be the one which gives the best fit to the
experimental data matrix D and physically meaningful
solutions: This means solutions with reasonable shapes for
the unit spectra and concentration profiles.

Uniqueness of Alternating Least-Squares Solutions
and Simultaneous Analysis of Several Runs of the
Process. As pointed out above, the rotational ambiguity
associated with the alternating least-squares solutions can
be solved for those components which have selectivity
associated with at least one of the orders (spectral or time)
of measurement. However there is still no guarantee that for
these components the intensity ambiguity is removed. How-
ever, we have learned that the intensity ambiguity in the
alternating least-squares solution can be solved by the
simultaneous analysis of two or more process runs at different
experimental conditions (e.g., different starting concentra-
tions of the constituents).

Suppose there are NP different process runs of the same
chemical process studied at different initial conditions or
starting concentrations of the constituents. For each run of
the process, a bilinear data matrix D; is obtained:

D;=CA i=12,.,NP 8)

C; is the matrix of the concentration profiles of the chemical
components in that particular run of the process, and A is the
matrix of the unit or pure spectra of these components. In
general, since the different process runs are obtained at
different conditions, the concentration profiles of the different
components in each process run C; will differ not only in
intensity but also in shape. Indeed, it is important to point
out here that the procedure proposed in the present work
allows the concentrations profiles of the constituents to change
from process run to process run not only in intensity but also
in shape. However, the spectra of the common components
in the different process runs are considered to be equal and
described in a unique matrix (see below for the case of
noncommon components). This assumption is true whenever
the external conditions like temperature and solvent com-
position are kept constant.

Because the number of columns (wavelengths) is the same
for all the D; matrices analyzed simultaneously, the complete
data set can be arranged in a single augmented data matrix
with the columns (wavelengths) in common and with a number
of rows equal to the total number of acquired spectra in all
the different process runs:

Dl Cl
D2 CZ
D=|" =1"" | A=CA ©)
DNP CNP
D=CA (10)

Similarly to what is done in the case of the analysis of the
individual process runs, the augmented data matrix D can be



decomposed using principal component analysis
D=UVT+E=D+E (11

where now U and VT are respectively the score and loading
matrices of D for the preselected number of components, E
is the residual error matrix containing the variance not
explained by these numbers, and D is the reproduced data
matrix. Under the assumption of linearity, the number of
correct components will give a residual error matrix close to
the noise or experimental error.

As a first step in the curve resolution method, the matrix
of the concentration profiles C is estimated from the initial
estimation of the C,, C,, ..., Cnp submatrices obtained by
evolving factor analysis of the D;, Dy, ..., Dnp submatrices,
as described before. An initial estimation of the augmented
C matrix is then obtained simply by setting the estimation
of the C; matrices one on top of each other in the same order
as they are in D.

Asdoneinthesingle-process data analysis, at each iteration
of the alternating least-squares method, a new estimation of
the matrix of spectra A and of the concentration profiles C
is obtained. The same procedure is used but is now applied
to the augmented matrix obtained by principal component
analysis for the considered number of components, D. In
addition to the constraints present in the single-process
analysis, in the multiple-process analysis there are two more
constraints to apply:

(a) Common Components Have Unique Spectra in All
Process Runs. When the set of unit spectrain A are obtained
for the different process runs analyzed, the components which
are in common in the different process runs are forced to
have the same unitspectra. This constraint hasanimportant
effect on resolving the concentration profiles and unit spectra
in terms of quantitation. The scale and intensity ambiguities
can be removed in this way.

(b) Zero Concentration Components. When a component
is known not to be present in a specific run, then the
concentration of such component in C is forced to be equal
to zero. The question about the presence or absence of a
certain component in a run can be answered by looking at the
pseudorank of the associated data matrix and also by looking
at the results of the individual analysis over that particular
run to see whether there is coincidence between the shapes
of the recovered spectra (fingerprint matching). Visual
inspection by the analyst is required in this step.

The alternating least-squares procedure is repeated until
convergence is achieved or until a predetermined number of
cycles has occurred.

Determination of Global Equation To Describe the
Process at Any Point in Time During Process Run. The
procedure described above explains how the process evolves
in the several runs analyzed. However it is also of great
practical interest to have a simple way to describe the process
just from its spectrum at any time and use such a method to
predict the state of the process in future process runs.
Assuming that the conditions of the process will be similar
to the ones analyzed (which is reasonable because they are
supposed to represent the different situations found in
practice), it is possible to provide a set of coefficients which
can be used on line to give the concentrations of the
components at any time during the process. These coefficients
are found from the pseudoinverse of the unit spectra obtained
in the least-squares optimization. As will be shown later,
better results are obtained when the experimental spectra
are subtracted by the first spectrum at time zero, because
then baseline differences between runs are partly removed.
The equations to obtain these coefficients are derived from
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Figure 1. Example of the spectra acquired in one process run.

the bilinear model defined in eq 2.

K=A" (12)
Fy=Tri—Ty (13)
¢, =rK (14)

where K is the matrix of coefficients, A* is the pseudoinverse
of the unit spectra matrix, r, is the spectrum at any time of
the process, ro is the first spectrum at time 0, r, is the
subtracted spectrum, and c; is the calculated concentration
of the components at any time of the process.

EXPERIMENTAL SECTION

Eight different runs of the same industrial chemical process
at different days of production were analyzed. Every run
generated between 75 and 125 spectra, 795 in total, measured
along a selected IR spectral range of 66 channels. An example
of the data collected in one of the runs of the process is given in
Figure 1. The entire IR spectrum was not used because it
contained information on process components that were not of
interest to this study. The spectra change with time, starting
from a very weak and flat background absorption, increasing the
absorption togive two main absorption bands at channel numbers
of 10-20 and 50-60 and a broader absorption band around channel
number 30, and finally decreasing the absorption very rapidly on
all bands when the process is terminated. All runsshow asimilar
pattern but withslight differencesin the timing and in the position
of the maxima (shifting), which show that there are some
differences in the chemistry of the different runs of the process.
The problem to solve is as follows: Given the set of spectra
collected along the different runs of the process determine (a)
how many chemical components are responsible for the observed
spectral changes; (b) how the concentrations of these components
change within every run of the process, and also how these
concentrations differ from one run to another; (c) what are the
spectral features of these components; and (d) what the method
is that describes the process on line, at any time during a future
process run.

The background absorption and baseline can also change
during the process and are different for different runs. Therefore,
some pretreatment of the data is needed. Two methods were
used.

First, to account for the differences in the initial baseline
absorption among different process runs, subtraction of the first
spectrum of each run from the following spectra in the same run
removes these differences. This is true because in the first
spectrum only the baseline or initial background absorption is
present and the spectral bands of interest have not appeared.
With this treatment the first spectrum in each run will be zero.

Second, to account for the changes in the baseline or back-
ground during a particular run, the first and second derivatives
of the raw spectra are calculated. That pretreatment allows the
minimization of the contributions which are constant along a
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Figure 2. Second derivative spectra of one process run.

Table I. Comparison of Reduced Singular Values*
795 spectra, 64 channels 795 spectra, 5 channels

1.5381559 x 108 1.4242273 X 1077
4.4253437 X 1077 1.1659144 X 107
1.3784506 X 107 1.3244814 x 107
9.2429634 X 108 1.6341295 X 10-7
4.8231603 x 108 2.0548819 x 10-7

¢ Obtained in the analysis of the complete second derivative data
set to the reduced singular values obtained in the analysis of the
spectral regions where there is no contribution of the components of
interest.28

particular spectrum (first derivative) as well as those contributions
which produce constant slopes within every spectrum (second
derivative). In Figure 2, the second derivative spectra of the
data set in Figure 1 are given. Most of the baseline changes are
now removed.

Both pretreatment, second derivative, and subtraction of the
first spectrum were analyzed by the methods described herein
and also compared with the analysis of the raw experimental
spectra without any pretreatment.

RESULTS AND DISCUSSION

(1) Determination of Number of Components. The
estimation of the singular values related to noise is performed
using the first channels of the second derivative spectra where
no band is present (see Figure 2). As mentioned before, in
the second derivative spectra, the background and baseline
contributions to the data variance are considerably dimin-
ished. The singular values obtained in this narrow spectral
range are estimated for all the process runs together toinclude
the variation between process runs. At the same time, the
singular values of the complete data set comprising the 64
channels of measurement (process runs individually, and all
together) are also calculated. For the comparison (Table I),
the dimensions of the data matrix in one case and another
were not the same, and therefore the reduced singular values?
were used. When the complete set of runs and spectra are
analyzed, the maximum number of different chemical com-
ponents was estimated as either two or three, since the value
of the third singular value is similar to the first singular value
associated with the noise in the nonabsorbing parts of the
spectra. When the analysis is performed over the individual
process runs, it was found that the number of chemical
components was always between two and three.

The number of components obtained in this way is used
only to start the procedure. Three components were con-

(28) Malinowski, E. R. J. Chemom. 1987, 8, 33-40.
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Figure 3. Reproduced second derivative spectra of the process rur.
given in Figure 2 using three principal components.

Table II. Standard Deviation of Residuals Obtained in
Data Analysis*
2 components

3 components 4 components

exp - PCA® 2.82 X 103 1.18 X 103 1.16 X 10-3
PCA - calce 5.50 X 10-3 3.30 x 103 6.76 X 10-2
exp — calcd 6.19 x 103 3.80 x 10-3 6.86 X 10-3

¢ Results are given for two, three, and four components in the
simultaneous analysis of the eight runs of the process. ® Standard
deviation of the residuals between the experimental data matrix and
the principal component analysis reproduced data matrix. ¢ Standard
deviation of the residuals between the principal component analysis
reproduced data matrix and the calculated data matrix using the
optimized set of unit spectra and concentration profiles given in
Figures 7 and 8. ¢ Standard deviation of the residuals between the
experimental data matrix and the calculated data matrix using the
optimized set of unit spectra and concentration profiles given in
Figures 7 and 8.

firmed from evolving factor analysis and the alternating least-
squares optimization procedures (see below).

(2) PCA Analysis. Figure 3showstherecalculated spectra
shown in Figure 2 using principal component analysis. The
principal components used in reproduction are the three more
significant found by the principal component analysis of the
whole augmented data matrix. Comparison of Figures 2 and
3 shows that most of the dominant spectral features are
described by the three principal components obtained in the
analysis of the 795 spectra from the eight different runs from
the process. Noise filtering is also achieved, and very little
information is lost by using only three components. If only
two components were used, a poor reproduction of the original
data is observed. Four components yield very little improve-
ment. The standard deviations of the residuals between the
eight-run experimental matrix and the reproduced matrix
considering two, three, and four principal components are
given in Table IIL

(3) Evolving Factor Analysis. Figure 4 is a plot of the
concentration profiles from evolving factor analysis (see refs
8-12, and above) applied to one run of the process. From
evolving factor analysis, three components are detected and
differentiated from the other contributions. The fourth and
fifth components emerge significantly from the error con-
tributions only at the very end of the process when the reaction
was terminated and are, therefore, not of interest for the
present study. Similarly, the evolving factor analysis of each
of the eight other process runs provides an initial estimation
of the concentration profiles of the components in each process
run. These concentration profiles are used as initial values
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Figure 8. Unit (pure) spectra calculated by constrained alternating
least squares of a single-process run.

in the alternating least-squares optimization. They can be
used in the individual analysis of each set of data, or better,
to build up the initial estimation of the augmented concen-
tration matrix to be used in the simultaneous analysis of the
eight runs of the process.

(4) Alternating Least-Squares Optimization Applied
to Data from Single-Process Run. Figures 5 and 6 give
respectively the optimized concentration profiles and unit
spectra obtained in the analysis of an individual process run.
These concentration profiles and unit spectra are obtained
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Figure 7. Concentration changes calculated by constrained alternating
least squares of eight process runs. X-axis is a time axis and gives
an Indication of the spectra number within the total number of spectra
analyzed (795 in total).

after applying the constrained optimization described before
when data from a single-process run are analyzed. For this
process run, some selectivity exists for both the first and third
components and because of the effect of the applied con-
straints.

(5) Alternating Least-Squares Optimization Applied
To Simultaneous Analysis of Data Acquired from Eight
RunsoftheProcess. Thealternating and constrained least-
squares optimization method was applied to the augmented
data matrix containing the eight runs of the process arranged
in the three following forms: (a) without any pretreatment,
(b) with the first spectrum of each run subtracted from all
spectra, and (c) to the second derivative augmented data
matrix. The concentration matrix used initially in the
optimization was the augmented concentration matrix con-
taining the concentrations obtained in the individual evolving
factor analysis of each run. Of the three arrangements of the
data matrix, the one which gave the best results is the second
case where the spectra of each run are corrected by subtracting
thefirst spectrum of thesame run. Thereason for the superior
results in this case is that the subtraction of the first spectrum
of each run removes the arbitrary offset between data from
different process runs. When the optimization is performed
using the second derivative spectra, the nonnegativity con-
straint is lost and cannot be applied over the unit spectra.
While the results are still in agreement with those obtained
with the subtracted data matrix, the shapes of the recovered
concentration profiles and unit spectra are less reliable. Of
the three cases, the poorest results were obtained when no
pretreatment was performed. Thereason for this degradation
of the resolution is because of the effects of the baseline
(background absorption) differences between process runs.

In order to summarize the large amount of calculations
performed during the present work, only the results obtained
from the simultaneous analysis of the eight runs of the process
will be given. In the alternating least-squares optimization
of the complete data set, the number of three components is
againreconfirmed. If another number of components is used,
not only is it the fit worse, (see Table II) but also the shapes
of the recovered unit spectra and concentration profiles do
not make chemical sense.

Figure 7 shows the concentration profiles obtained in the
analysis of the eight runs of the process after applying
constrained alternating least-squares optimization. Com-
ponent one (solid line) rises very fast at the beginning of the
process, decreases a bit afterward, and then remains stable
until the process is terminated. Component two (dashed line)



2046 ¢ ANALYTICAL CHEMISTRY, VOL. 85, NO. 15, AUGUST 1, 1883

7

6F

sk

absorbance (arbitrary units)

Figure 8. Unit {(pure) spactra caiculated by consirained alternating
lsast squares of sight process runs.

does not appear at appreciable concentrations in all the runs.
It is nearly nonexistent in process runs 1, 2, and 3, but it is
the dominant contribution in process runs 4, 7, and 8.
Component three is always present except in process run 8,
showing always the same pattern of growth. The reason why
this component does not appear in procees run 8 is because
the data analyzed pertain only to the first part of the process
before it becamé present in appreciable concentrations.

The two oonstraints applied to the shape of the eoncen-
tration profiles, nonnsgativity and unimodality, have an
important role during the optimization. It wasmore difficult
to apply the unimodality constraint because of small random
oscillations and changes in the concentration of the compo-
nents during the procees. This means that although the global
shape must be unimodal and smooth, locally some small
oecillations of the unimodality condition had to be allowed
(see the concentration profiles of Figures 5 and 7).

Figure 8 shows the unit spectra of the three common
components deduced from the analysis of the eight runs of
the process. The shapes obtained for these three unit spectra
explain very well the changes observed in the shapes of the
raw process experimental spectra of every run. For instance,
the first component only has the band around channels 50
60; this is in agreement with the first experimental spectta
of every run which only show that band. Conversely, the
second and third components have two bands approximately
in the same locations but shifted between them. The strong
absorption around channels 10-20 is more important for the
third component than for the second, but the later becomes
the dominant contribution in some experiments. This is in
agreement with what is ebserved from the detailed comparison
of the spectra of the different runs. Moreover, the recovered
unit spectra show different baseline as a consequence of the
observed baseline changes in the experimental spectra.

When the analysis is performed using the second derivative
spectra, the results are very similar to the ones given in Figures
7 and 8, but with a poorer description of the concentration
profiles in some parts of the process, especially for component
2 in the first three runs. The reason for this degradation of
theresolution is because the nonnegativity constraint cannot
be applied over the second derivative unit spectra.

In Figures 9 and 10, the relative standard deviation of the
residuals along both axes of measurement, spectra number
and spectral channel, are given. These residuals correspond
to the difference between the experimental data matrix and
the recalculated data matrix using the set of concentration
profiles and unit spectra derived from the alternating least-
squares optimization (Figures 7 and 8). In order to get the
relative values, the standard deviations of the residuals were

0.9

08+

07t

061

time

Figare 9. Relative standard deviations of the time residuals between
the experimental data of the eight prooses runs and the recaiculated
vaiues using the concentration changes and unit spectra given in Figures
7and 8. X-axis is a time axis, and t gives an indication of the spectra
number within the total number of spectra analyzed (795 in total).
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Figure 10. Relative standard deviations are given of the spectra channel
residuals between the experimental data of the eight process runs and
the recalculated valuss using the concentration changes and unit spectra
given In Figures 7 and 8.
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Figure 11. Prediction coefficients for the estimation of the changes
in concentration of the three cormponents during the process.

divided by the maximum absorbance for every particular
spectrum (Figure 9) or for every spectral channel (Figure 10),
respectively. From Figure 9, it is seen that the fitting error
is larger at the two extremes of every process, which is in
agreement with the fact that at that point the conditions of



the process are less under control (the process is terminated
orinitiated with a low absorbance value) and are not of interest
for the present work. The spectral channels with larger
relative standard deviations are the ones where thereis almost
no absorption of interest (Figure 10). This means that the
experimental spectraare described appropriately by the three
unit spectra obtained in the constrained least-squares opti-
mization.

(6) Determination of Concentrations of Components
at Any Stage of the Process from Its Time Spectrum. In
Figure 11, the three sets of coefficients calculated from the
unit spectra are plotted. The three have a spectral shape,
each one with independent features. They do not describe
the noise but the relevant changes in the spectra. When they
are applied, the concentrations at any time of the process can
be determined. In particular, if they are applied to the
augmented data matrix with the eight process runs, the
concentration profiles of Figure 7 are obtained. The con-
centrations predicted from these coefficients when applied
to new spectra not used in the building of the model have to
be compared in relation to those given in Figure 7 and not
in absolute terms. In order to have absolute values, external
calibration information must be provided.
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CONCLUSIONS

The proposed method allows the description of the chemical
changes produced during process runs. The method issuited
tothose cases where no previous information about the system
is available and only a model-free approach can be used. The
method takes advantage of the selectivity present in the
system, as well as the information gained when several runs
of the process under different conditions are analyzed
simultaneously.

From the results obtained from the analysis of a selected
group of process runs, it is possible to predict the course of
future similar process runs in real time, thereby allowing
optimal control.

At the present time, the method used requires decisions
regarding noise levels, appropriate spectra shapes, and use of
various constraints made by the analyst. Future work will
be aimed at providing a more automatic and robust tool to
the process analytical chemist.
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