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A method for extracting information from spec- 
troscopic data gathered during process monitoring 
is described and applied to an industrial problem. 
The method allows the estimation of the changes 
in the concentrations of the components in the 
process as well as their pure spectroscopic re- 
sponses. Three key aspects of the new method are 
as follows: (1) the use of evolving factor analysis 
to have an initial estimation of how the concen- 
trations of the constituents change during the 
process; (2) the implementation of an alternating 
and constrained least-squares method to optimize 
both the spectra and the concentrations of the 
components in the process; (3) the development of 
a new approach for the simultaneous analysis of 
various runs of the same process to estimate the 
ratio of concentrations between the common com- 
ponents in the different runs. 

INTRODUCTION 
Recent advances in process instrumentation and in data 

collection techniques have resulted in a rapid increase in the 
amount of data that can be acquired from chemical processes. 
Extracting the significant information from the data produced 
by modern instrumentation is in many circumstances a 
nontrivial task. The description and modeling of the evolution 
of a chemical process is important for both practical and 
economic reasons. The present work concerns the application 
of new tools for process monitoring and modeling. These 
tools can be used to extract all of the useful chemical 
information from process monitoring data. 

The development and application of first and higher order 
multivariate calibration and standardization methods have 
allowed the solution of many problems in real-world process 
analytical chemistry, and much attention has been given to 
these methods in the field of chemometrics in recent years.’ 
There are, however, important cases where these methods 
cannot be applied because there is no previous information 
available to perform a calibration of the system. Examples 
of this situation in process analysis are abundant and include 
monitoring the evolution of chemical processes where one or 
more parameters are changed, such as time, temperature, 
pH, the concentration of a reagent, or any other parameter, 
and there is no previous quantitative information about the 
evolution of the process. The multivariate data acquired with 
spectroscopic probes produce continuous data which can be 
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arranged in an ordered data matrix according to the variation 
of the parameter changed during the process. 

One way to address this problem is by curve resolution 
meth~ds .~J  In the factor analysis framework, curve resolution 
decomposes a bilinear data matrix into the product of two 
simpler matrices which are related respectively to each one 
of the two orders of the original data matrix. The goal of the 
curve resolution methods is the determination of those 
decompositions which have physical and chemical meaning. 
In the case of process analytical chemistry, the final goal is 
the estimation of the matrix containing the concentration 
profiles of the constituents as a function of time and 
simultaneously the estimation of the unit responses (pure 
spectra) of those constituents. 

To have a meaningful solution from the curve resolution 
decomposition, it is necessary to make some assumptions 
about the signals obtained such as bilinearity, nonnegativity, 
unimodality, and closure. Examples of such treatments with 
more or less success can be found in the literature.” However, 
in general, such treatments do not guarantee unique solutions 
because the rotational and intensity ambiguities inherent to 
curve resolution decompositions can still be present after 
applying the above-mentioned constraints. As it is shown in 
the present work, these ambiguities can be partly overcome 
with the use of some special techniques. One of the most 
interesting techniques, which has not received much attention 
in the field of process analysis, is evolving factor analysis 
(EFA).a12 Taking advantage of the ordered structure of the 
acquired data, evolving factor analysis provides valuable 
information concerning the windows of existence of every 
component in the unknown mixtures existing at any time 
during the process. When evolving factor analysis is applied 
to cases where selectivity for some component is present in 
any of the two orders, the determination of the concentration 
profile and spectroscopic response of such component can be 
estimated at least qualitatively without any other additional 
requirement. Therefore, it is especially important to detect 
such selectivity regions. 
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in an ordered way along the process, for instance along the 
time axis. C and A are respectively the matrices of the 
concentration profiles in the process and the unit pure 
chemical component spectra for the set of components 
spectroscopically active in the range studied. The dimensions 
of these matrices are C (NS X NC) and A (NC X NW), 
where NS is the number of spectra acquired, NW is the 
number of spectroscopic channels, and NC is the number of 
chemical components in the mixtures. 

The goal of curve resolution methods is as follows: given 
D, obtain the real physically meaningful C and A. Obviously 
such a task cannot be achieved directly from the principal 
component analysis decomposition if no additional infor- 
mation is provided since the equation 

(3) 

has an infinite number of solutions for any arbitrary trans- 
formation matrix T. There is a rotational and an intensity 
ambiguity to solve for C and A if no more information is 
provided to constrain the number of possible solutions. This 
is the task, in general, of the curve resolution methods and, 
in particular, of the proposed method. 

Intensity Ambiguity. There is an intrinsic intensity 
ambiguity in all curve resolution solutions since for any scalar 
m 

(4) 

0 = UVT = UTT-'VT = CA 

dij = XCikakj + eij 
cikakj = (cikm)(l/makj) = dika'& 

This means that the estimated concentrations and spectra 
will be scaled by some unknown factor m indigenous to each 
component. This is not a serious problem in qualitative 
analysis (spectral identification, fingerprinting), but it is a 
serious problem in quantitation. 

Rotation Ambiguity. More important is the rotation 
ambiguity inherent in curve resolution solutions which always 
occurs when there are two or more linearly independent 
overlapped components. The estimated spectrum for any of 
these components will be an unknown linear combination of 
the true components 

a< = Xtkak (5) 
where tk are unknown rotation constants; ak are the true unit 
pure spectra of the components; and ak' are their estimated 
pure unit spectra. 

Selectivity. Conversely, for those time windows during 
a process run where there is only one component, there is no 
rotation ambiguity. This means that the principal component 
analysis or any other solution gives the correct shapes for the 
concentration profiles and unit spectra. Only the intensity 
ambiguity will still be present. 

To remove the rotational ambiguity, it is important to detect 
the regions where selectivity is present, because in these 
regions the unit spectra and unit concentration profiles have 
the correct shapes. 

Determination of Number of Components in Mixture. 
As the interest is centered on the investigation of the changes 
in the concentration of the chemical components present in 
the system as well as in the nature of these unknown 
components, the first thing that must be done is to estimate 
how many different components are in the data set. The 
determination of this number is related to the determination 
of the level of variance which is caused by other variance 
sources (e.g., light scatter). Methods such as cross validation" 
or the theory of error in factor analysis18 will not work here 

In addition, if several process runs of the same process are 
available and as usually, a t  least one of the two orders is 
common between them (e.g., the spectral range scanned), the 
intensity ambiguities associated with the analysis of a single 
process run can be resolved. Assuming that the same 
component in the mixture has the same unit spectrum in the 
different process runs, the simultaneous analysis of different 
process runs gives the concentration ratios between the 
common components in the different runs of the process. 

Finally, in the case where both orders are in common 
between different process runs, it is conceptually and math- 
ematically better to take advantage of the second-order 
structure of the data and use multivariate higher order curve 
resolution methods like generalized rank annihilation method 
(GRAM),lS residual bilinearization (RBL),14 or other three- 
way data analysis methods.16 However, the requirement of 
having the two orders coincident (synchronization) in different 
experiments is too strict for many practical situations in 
process analysis. The present work is addressed to such 
situations. 

Data for the present work are spectra obtained from 
successive runs of an industrial chemical process. The spectra 
are evenly spaced in time, but may represent different elapsed 
times from beginning to end from run to run. The spectral 
intensities are stored in a matrix D with one spectrum per 
row. The dimensions of D are the number of spectra by the 
number of spectral channels (e.g., wavelength). The goals of 
the present work are (a) to determine the number of unique 
chemical components included during the full process; (b) to 
estimate the pure (unit) spectra of these components; and (c) 
to estimate how the concentration profiles of these compo- 
nents change within a run of the process, and how they differ 
between different runs of the same process. 

METHODS 
To achieve the goals mentioned above, different multi- 

variate data analysis techniques have been implemented and 
assembled in a single method. The different parts of this 
method are as follows: 

Principal Component Analysis and Curve Resolution. 
Principal component analysis16 gives a decomposition of a 
data matrix: 

D = U V ~  + E = 0 +E (1) 

where U and V are respectively the score and loading matrices 
obtained for the selected number of principal components, 
E is the residual error or noise matrix not explained by them, 
and b is the reproduced data matrix. The decomposition 
obtained by principal components gives orthogonal U and 
VT matrices. 

The difference, E, between the original data matrix D and 
the reproduced matrix b is calculated to know the level of 
residual variance not explained by the number of deduced 
components. For a complete bilinear data matrix, E should 
be a t  the level of noise or experimental error for the correct 
number of components. 

Assuming that the spectroscopic data matrices obtained in 
the process analysis experiments are bilinear: 

D = C A  (2) 

dij = 'ikakj 

where D is the data matrix which contains the spectra acquired 
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because they provide the total number of contributions to 
the data variance, chemical and nonchemical baseline changes, 
and the background absorption. 

If the chemical components have a larger contribution to 
the data variance than the noise, background, and baseline 
changes, the number of chemical components can be initially 
estimated simply from the comparison of their respective 
singular values. Singular values related to the background 
absorption and baseline changes are obtained in the analysis 
of the spectral regions where the chemical components do 
not absorb. Singular values related to the chemical compo- 
nents of interest are obtained in the analysis of the spectral 
regions within the absorption bands. The number of com- 
ponents estimated in this way is tested aftewards using 
evolving factor analysis (see below) and during the alternating 
least-squares optimization (see below), looking for those 
solutions which best fit the data and have physical meaning, 
i.e., give reasonable shapes in the concentration profiles and 
unit spectra. 

Determination of Selectivity of System and Initial 
Estimation of ConcentrationProfiles by Evolving Factor 
Analysis. Evolving factor analysis (EFA)”12 has been applied 
mostly to the study of spectroscopic experiments of multi- 
equilibria systems”22 and to liquid chromatography with 
diode array detection.23124 The basic idea of this procedure 
is to provide an initial estimation of the concentration profiles, 
examining how the singular values associated with these 
components evolve and change in magnitude along the 
process. In this procedure, the detected presence of selectivity 
ranges can solve the rotational ambiguity. Other methods 
used for detecting the selectivity of the system are local rank 
analysis,26 window factor analysis,26 and fixed-size moving 
window evolving factor analysis.27 

Constrained Optimization of Concentration Profiles 
and Unitary Spectra by Alternating Least Squares. From 
the results of evolving factor analysis, the window or range 
of existence of each compoiient as well as ita concentration 
profile can be obtained. These concentration profiles are 
used as initial values in a constrained alternating least-squares 
optimization procedure. At  each iteration of the optimization, 
a new estimation of the matrix of spectra A and of the 
concentration profiles C is obtained successively using the 
two following equations: 

A = C+b (6) 

C = b A +  (7) 

where the matrix C+ is the pseudoinverse of the matrix C, 
and the matrix A+ is the pseudoinverse of the matrix A. 
Obviously the selection of the correct number of components 
in the calculation of b is essential. The use of this matrix 
instead of the experimental data matrix, D, improves the 
stability of the calculations, since b is noise-filtered. 

In order to limit the number of possible solutions to these 
equations, the following set of constraints can be applied: 

Constraints on Concentration Profiles. (a) Nonnegatiuity. 
The concentration profiles are positive. 

(b) Shape. When the shape characteristics of the con- 
centration profiles of the different components in the process 
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are known, they can be usedas a constraint. A typical example 
is unimodality (only one peals per profile). In the present 
case, the shapes of the Concentration profiles were allowed 
to have some small local departures from the unimodality 
condition. 

Constraints on Unit Spectra Values. (a) Nonnegatiuity. 
The spectral values are forced to be positive. This condition 
is not applicable to derivative spectra. 

Testing the Number of Components. If the number of 
components is uncertain, the complete iterative alternating 
least-squares optimization is performed for the different most 
plausible number of components. The correct number is 
considered to be the one which gives the best fit to the 
experimental data matrix D and physically meaningful 
solutions: This means solutions with reasonable shapes for 
the unit spectra and concentration profiles. 

Uniqueness of Alternating Least-Squares Solutions 
and Simultaneous Analysis of Several Runs of the 
Process. As pointed out above, the rotational ambiguity 
associated with the alternating least-squares solutions can 
be solved for those components which have selectivity 
associated with at least one of the orders (spectral or time) 
of measurement. However there is still no guarantee that for 
these components the intensity ambiguity is removed. How- 
ever, we have learned that the intensity ambiguity in the 
alternating least-squares solution can be solved by the 
simultaneous analysis of two or more process runs at different 
experimental conditions (e.g., different starting concentra- 
tions of the constituents). 

Suppose there are NP different process runs of the same 
chemical process studied at different initial conditions or 
starting concentrations of the constituents. For each run of 
the process, a bilinear data matrix Di is obtained 

Di = CiA i = 1,2, ..., NP (8) 
Ci is the matrix of the concentration profiles of the chemical 
components in that particular run of the process, and A is the 
matrix of the unit or pure spectra of these components. In 
general, since the different process runs are obtained at  
different conditions, the concentration profiles of the different 
components in each process run Ci will differ not only in 
intensity but also in shape. Indeed, it is important to point 
out here that the procedure proposed in the present work 
allows the concentrations profiles of the constituents to change 
from process run to process run not only in intensity but also 
in shape. However, the spectra of the common components 
in the different process runs are considered to be equal and 
described in a unique matrix (see below for the case of 
noncommon Components). This assumption is true whenever 
the external conditions like temperature and solvent com- 
position are kept constant. 

Because the number of columns (wavelengths) is the same 
for all the Di matrices analyzed simultaneously, the complete 
data set can be arranged in a single augmented data matrix 
with the columns (wavelengths) in common and with a number 
of rows equal to the total number of acquired spectra in all 
the different process rune,: 

D =  r] .. .. -[::I .. A = C A  
.. 

(9) 
.. 

DhT CNP 

D = C A  (10) 
Similarly to what is done in the case of the analysis of the 
individual process runs, the augmented data matrix D can be 
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decomposed using principal component analysis 

D = U V ~  + E = I3 + E (11) 
where now U and VT are respectively the score and loading 
matrices of D for the preselected number of components, E 
is the residual error matrix containing the variance not 
explained by these numbers, and b is the reproduced data 
matrix, Under the assumption of linearity, the number of 
correct components will give a residual error matrix close to 
the noise or experimental error. 

As a f i s t  step in the curve resolution method, the matrix 
of the concentration profiles C is estimated from the initial 
estimation of the C1, Cz, ..., CNP submatrices obtained by 
evolving factor analysis of the DI, Dz, ..., DNP submatrices, 
as described before. An initial estimation of the augmented 
C matrix is then obtained simply by setting the estimation 
of the Ci matrices one on top of each other in the same order 
as they are in D. 

As done in the single-process data analysis, at each iteration 
of the alternating least-squares method, a new estimation of 
the matrix of spectra A and of the concentration profiles C 
is obtained. The same procedure is used but is now applied 
to the augmented matrix obtained by principal component 
analysis for the considered number of components, 0. In 
addition to the constraints present in the single-process 
analysis, in the multiple-process analysis there are two more 
constraints to apply: 

(a) Common Components Have Unique Spectra in All 
Process Runs. When the set of unit spectra in A are obtained 
for the different process runs analyzed, the components which 
are in common in the different process runs are forced to 
have the same unit spectra This constraint has an important 
effect on resolving the concentration profiles and unit spectra 
in terms of quantitation. The scale and intensity ambiguities 
can be removed in this way. 

(b) Zero Concentration Components. When a component 
is known not to be present in a specific run, then the 
concentration of such component in C is forced to be equal 
to zero. The question about the presence or absence of a 
certain component in a run can be answered by looking a t  the 
pseudo rank of the associated data matrix and also by looking 
a t  the results of the individual analysis over that particular 
run to see whether there is coincidence between the shapes 
of the recovered spectra (fingerprint matching). Visual 
inspection by the analyst is required in this step. 

The alternating least-squares procedure is repeated until 
convergence is achieved or until a predetermined number of 
cycles has occurred. 

Determination of Global Equation To Describe the 
Process at Any Point in Time During Process Run. The 
procedure described above explains how the process evolves 
in the several runs analyzed. However it is also of great 
practical interest to have a simple way to describe the process 
just from its spectrum at any time and use such a method to 
predict the state of the process in future process runs. 
Assuming that the conditions of the process will be similar 
to the ones analyzed (which is reasonable because they are 
supposed to represent the different situations found in 
practice), it is possible to provide a set of coefficients which 
can be used on line to give the concentrations of the 
components at any time during the process. These coefficients 
are found from the pseudoinverse of the unit spectra obtained 
in the least-squares optimization. As will be shown later, 
better results are obtained when the experimental spectra 
are subtracted by the first spectrum at time zero, because 
then baseline differences between runs are partly removed. 
The equations to obtain these coefficients are derived from 

channels 

Figure 1. Example of the spectra acquired in one process run. 

the bilinear model defined in eq 2. 

K = A +  (12) 
r, = r, - ro (13) 
C, = r,K (14) 

where K is the matrix of coefficients, A+ is the pseudoinverse 
of the unit spectra matrix, rt is the spectrum a t  any time of 
the process, ro is the first spectrum a t  time 0, r, is the 
subtracted spectrum, and ct is the calculated concentration 
of the components at any time of the process. 

EXPERIMENTAL SECTION 
Eight different runs of the same industrial chemical process 

at different days of production were analyzed. Every run 
generated between 75 and 125 spectra, 795 in total, measured 
along a selected IR spectral range of 66 channels. An example 
of the data collected in one of the runs of the process is given in 
Figure 1. The entire IR spectrum was not used because it 
contained information on process components that were not of 
interest to this study. The spectra change with time, starting 
from a very weak and flat background absorption, increasing the 
absorption to give two main absorption bands at channel numbers 
of 10-20 and 50-60 and a broader absorption band around channel 
number 30, and finally decreasing the absorption very rapidly on 
all bands when the process is terminated. All runs show a similar 
pattern but with slight differences in the timing and in the position 
of the maxima (shifting), which show that there are some 
differences in the chemistry of the different runs of the process. 
The problem to solve is as follows: Given the set of spectra 
collected along the different runs of the process determine (a) 
how many chemical components are responsible for the observed 
spectral changes; (b) how the concentrations of these components 
change within every run of the process, and also how these 
concentrations differ from one run to another; (c) what are the 
spectral features of these Components; and (d) what the method 
is that describes the process on line, at any time during a future 
process run. 

The background absorption and baseline can also change 
during the process and are different for different runs. Therefore, 
some pretreatment of the data is needed. Two methods were 
used. 

First, to account for the differences in the initial baseline 
absorption among different process runs, subtraction of the first 
spectrum of each run from the following spectra in the same run 
removes these differences. This is true because in the first 
spectrum only the baseline or initial background absorption is 
present and the spectral bands of interest have not appeared. 
With this treatment the first spectrum in each run wil l  be zero. 

Second, to account for the changes in the baseline or back- 
ground during a particular run, the first and second derivatives 
of the raw spectra are calculated. That pretreatment allows the 
minimization of the contributions which are constant along a 
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Flgure 2. Second derivative spectra of one process run. 

Table I. Comparison of Reduced Singular Values. 
795 spectra, 64 channels 795 spectra, 5 channels 

1.5381559 X 1o-B 
4.4253437 X lV7 
1.3784506 X lP7 
9.2429634 X 10-8 
4.8231603 X 10-8 

1.4242273 X lV7 
1.1659144 X 
1.3244814 X le7 
1.6341295 X 
2.0548819 X le7 

4 Obtained in the analysis of the complete second derivative data 
set to the reduced singular values obtained in the analysis of the 
spectral regions where there is no contribution of the components of 
interest." 

particular spectrum (fist derivative) as well as those contributions 
which produce constant slopes within every spectrum (second 
derivative). In Figure 2, the second derivative spectra of the 
data set in Figure 1 are given. Most of the baseline changes are 
now removed. 

Both pretreatment, second derivative, and subtraction of the 
first spectrum were analyzed by the methods described herein 
and also compared with the analysis of the raw experimental 
spectra without any pretreatment. 

RESULTS AND DISCUSSION 
(1) Determination of Number of Components. The 

estimation of the singular values related to noise is performed 
using the first channels of the second derivative spectra where 
no band is present (see Figure 2). As mentioned before, in 
the second derivative spectra, the background and baseline 
contributions to the data variance are considerably dimin- 
ished. The singular values obtained in this narrow spectral 
range are estimated for all the process runs together to include 
the variation between process runs. At the same time, the 
singular values of the complete data set comprising the 64 
channels of measurement (process runs individually, and all 
together) are also calculated. For the comparison (Table I), 
the dimensions of the data matrix in one case and another 
were not the same, and therefore the reduced singular values" 
were used. When the complete set of runs and spectra are 
analyzed, the maximum number of different chemical com- 
ponents was estimated as either two or three, since the value 
of the third singular value is similar to the first singular value 
associated with the noise in the nonabsorbing parts of the 
spectra. When the analysis is performed over the individual 
process runs, it was found that the number of chemical 
components was always between two and three. 

The number of components obtained in this way is used 
only to start the procedure. Three components were con- 

(28) Malinowski, E. R. J. Chenom. 1987,8,33-40. 
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Flgure 3. Reproduced second derlvatlve spectra of the process rur. 
glven In Figure 2 using three principal components. 

Table 11. Standard Deviation of Residuals Obtained in 
Data Analysis. 

2 components 3 components 4 components 
1.16 X 10-9 exp - PCAb 2.82 X 10-3 1.18 X 10-9 

PCA - calCC 5.50 X 10-3 3.30 X 10-9 6.76 X 10-9 
exp - calcd 6.19 X 10-9 3.80 X 10-3 6.86 X 10-3 

Results are given for two, three, and four componenta in the 
simultaneous analysis of the eight runa of the process. b Standard 
deviation of the residuals between the experimental data matrix and 
the principal component analysis reproduced data matrix. 0 Standard 
deviation of the residuals between the principal component analysis 
reproduced data matrix and the calculated data matrix using the 
optimized set of unit spectra and concentration profiles given in 
Figures 7 and 8. Standard deviation of the residuals between the 
experimental data matrix and the calculated data matrix using the 
optimized set of unit spectra and concentration profiles given in 
Figures 7 and 8. 

firmed from evolving factor analysis and the alternating least- 
squares optimization procedures (see below). 

(2) PCA Analysis. Figure 3 shows the recalculated spectra 
shown in Figure 2 using principal component analysis. The 
principal components used in reproduction are the three more 
significant found by the principal component analysis of the 
whole augmented data matrix. Comparison of Figures 2 and 
3 shows that most of the dominant spectral features are 
described by the three principal components obtained in the 
analysis of the 795 spectra from the eight different runs from 
the process. Noise filtering is also achieved, and very little 
information is lost by using only three components. If only 
two components were used, a poor reproduction of the original 
data is observed. Four components yield very little improve- 
ment. The standard deviations of the residuals between the 
eight-run experimental matrix and the reproduced matrix 
considering two, three, and four principal components are 
given in Table 11. 

(3) Evolving Factor Analysis. Figure 4 is a plot of the 
concentration profiles from evolving factor analysis (see refs 
8-12, and above) applied to one run of the process. From 
evolving factor analysis, three components are detected and 
differentiated from the other contributions. The fourth and 
fifth components emerge significantly from the error con- 
tributions only at the very end of the process when the reaction 
was terminated and are, therefore, not of interest for the 
present study. Similarly, the evolving factor analysis of each 
of the eight other process runs provides an initial estimation 
of the concentration profiles of the components in each process 
run. These concentration profiles are used as initial values 
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Flgure 4. Initla1 concentratlon changes estlmated by uslng evolving 
factor analysls of a slngle-process run. 

h 

'I 0.06- 

[ 0.05 - 
,! I 0.03 - 

- 

0.02 - 

0.01 - 

0 20 40 60 80 100 120 140 

time 

Flgure 5. Concentration changes calculated by constrained alternating 
least squares of a slnglaprocess run. 
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Flgure 8. Unlt (pure) spectra calculated by constrained alternatlng 
least squares of a single-process run. 

in the alternating least-squares optimization. They can be 
used in the individual analysis of each set of data, or better, 
to build up the initial estimation of the augmented concen- 
tration matrix to be used in the simultaneous analysis of the 
eight runs of the process. 

(4) Alternating Least-Squares Optimization Applied 
to Data from Single-Process Run. Figures 5 and 6 give 
respectively the optimized concentration profiles and unit 
spectra obtained in the analysis of an individual process run. 
These concentration profiles and unit spectra are obtained 

time 

Figwe 7. Concentration changes calculated by constrained altematlng 
least squares of elght process runs. X-axis is a time axis and gives 
an indication of the spectra number within the total number of spectra 
analyzed (795 In total). 

after applying the constrained optimization described before 
when data from a single-process run are analyzed. For this 
process run, some selectivity exists for both the first and third 
components and because of the effect of the applied con- 
straints. 

(5) Alternating Least-Squares Optimization Applied 
To Simultaneous Analysis of Data Acquired from Eight 
Runs of the Process. The alternating and constrained least- 
squares optimization method was applied to the augmented 
data matrix containing the eight runs of the process arranged 
in the three following forms: (a) without any pretreatment, 
(b) with the first spectrum of each run subtracted from all 
spectra, and (c) to the second derivative augmented data 
matrix. The concentration matrix used initially in the 
optimization was the augmented concentration matrix con- 
taining the concentrations obtained in the individual evolving 
factor analysis of each run. Of the three arrangements of the 
data matrix, the one which gave the best results is the second 
case where the spectra of each run are corrected by subtracting 
the first spectrum of the same run. The reason for the superior 
results in this case is that the subtraction of the first spectrum 
of each run removes the arbitrary offset between data from 
different process runs. When the optimization is performed 
using the second derivative spectra, the nonnegativity con- 
straint is lost and cannot be applied over the unit spectra. 
While the results are still in agreement with those obtained 
with the subtracted data matrix, the shapes of the recovered 
concentration profiles and unit spectra are less reliable. Of 
the three cases, the poorest results were obtained when no 
pretreatment was performed. The reason for this degradation 
of the resolution is because of the effects of the baseline 
(background absorption) differences between process runs. 

In order to summarize the large amount of calculations 
performed during the present work, only the results obtained 
from the simultaneous analysis of the eight runs of the process 
will be given. In the alternating least-squares optimization 
of the complete data set, the number of three components is 
again reconfirmed. If another number of components is used, 
not only is it the fit worse, (see Table 11) but also the shapes 
of the recovered unit spectra and concentration profiles do 
not make chemical sense. 

Figure 7 shows the concentration profiles obtained in the 
analysis of the eight runs of the process after applying 
constrained alternating least-squares optimization. Com- 
ponent one (solid line) rises very fast a t  the beginning of the 
process, decreases a bit afterward, and then remains stable 
until the process is terminated. Component two (dashed line) 
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of the concon- 
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nentadwingfhep”. Wmeanethatalhughtheglobal 
shape muet be &odd and smooth, locally some small 
oecillations of the Mimoealtty condition had to be allowed 
(eee the consentration proAles of pieuree 6 aad 7). 

Figure 8 show8 the unit spectra of the three common 
componenta deduced from the analysis of the eight runs of 
theprocsrul. Theshapeaobtainedforthemthreeunitspectra 
explain very well the changes oBeerved in the shapes of the 
raw pmxa  experimental apedm of every run. For instance, 
the first component only has the band around channels 50- 
60; thia is in agreement with the firet experimental spectra 
of wery nm which only show that band. Conversely, the 
second and ahird componenta have two bends approximately 
in the same locations but shifted between them. The strong 
abearption around channele 10-20 is mote important for the 
third component than for the second, but the later becomea 
the dominant contribution in some experiments. Thie is in 
egreslnentwith what i sdhrved fromthedetailedcomparbon 
of the spectra of the M e r e n t  runs. Moreover, tba recovered 
unit spectra show different baseline as a comequence of the 
observed baseline changea in the experimental spectza 

When the analysis is performed using the bBcond derivative 
spectra, the reeulta arevery similar tothe onesgiven in Figure!a 
7 and 8, but with a poorer description of the concentration 
profiaee in some parta of the process, especially for component 
2 in the first three runs. The reaeon for this dsgradation of 
thereeolution is because the nonnegativity constraint cannot 
be applied over the eecand derivative unit spectra. 

In Fignres 9 and 10, the relative standard deviation of the 
residuals along both axes of measurement, spectra number 
and spectral channel, are given. These reaiduale correepond 
to the difference between the experimental data matrix and 
the recalculated data matrix using the set of concentration 
p m h  and unit spectra derived from the alternating lese+ 
quam optimization (Figunre 7 and 8). In order to get the 
relative values, the standard deviations of the residuals were 
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CONCLUSIONS 
The proposed method allows the description of the chemical 

changes produced during process runs. The method is suited 
to those cases where no previous information about the system 
is available and only a model-free approach can be used. The 
method takes advantage of the selectivity present in the 
system, as well as the information gained when several runs 
of the process under different conditions are analyzed 
simultaneously. 

From the results obtained from the analysis of a selected 
group of process runs, it is possible to predict the course of 
future similar process runs in real time, thereby allowing 
optimal control. 

A t  the present time, the method used requires decisions 
regarding noise levels, appropriate spectra shapes, and use of 
various constraints made by the analyst. Future work will 
be aimed at providing a more automatic and robust tool to 
the process analytical chemist. 
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the process are less under control (the process is terminated 
or initiated with a low absorbance value) and are not of interest 
for the present work. The spectral channels with larger 
relative standard deviations are the ones where there is almost 
no absorption of interest (Figure 10). This means that the 
experimental spectra are described appropriately by the three 
unit spectra obtained in the constrained least-squares opti- 
mization. 

(6) Determination of Concentrations of Components 
at Any Stage of the Process from Its Time Spectrum. In 
Figure 11, the three sets of coefficients calculated from the 
unit spectra are plotted. The three have a spectral shape, 
each one with independent features. They do not describe 
the noise but the relevant changes in the spectra. When they 
are applied, the concentrations at  any time of the process can 
be determined. In particular, if they are applied to the 
augmented data matrix with the eight process runs, the 
concentration profiles of Figure 7 are obtained. The con- 
centrations predicted from these coefficients when applied 
to new spectra not used in the building of the model have to 
be compared in relation to those given in Figure 7 and not 
in absolute terms. In order to have absolute values, external 
calibration information must be provided. 


