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SUMMARY

Application of multivariate curve resolution (MCR) is shown for three-way data obtained in acid–base titrations
of salicylic acid monitored using emission spectrofluorimetry at three different excitation wavelengths. Rank
analysis of augmented column- and row-wise matrices showed that the experimental fluorescent data have a
trilinear data structure. MCR allows the unambiguous recovery of the species profiles in both orders: the
fluorescent emission spectrum at each excitation wavelength and the pH distribution profile of the two fluorescent
species formed during the acid–base titration. Results are compared with those obtained using the trilinear
decomposition and generalized rank annihilation methods. Using the mass balance equation for the total
concentration of salicylic acid, the third pH distribution profile of the non-fluorescent fully protonated salicylic
acid species is deduced. The values of the two acid dissociation constants of salicylic acid, for the carboxylic and
hydroxylic groups, are estimated without using the mass action law and are compared with previous estimations
in the literature and with estimations using traditional mass action law hard-modelling-based methods. © 1997
John Wiley & Sons, Ltd.
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INTRODUCTION

When a titration of a sample is monitored using emission spectrofluorimetry at different excitation
wavelengths, a set of different correlated data matrices is obtained. Grouping these correlated data
matrices gives a three-way data array or third-order tensor. This situation is similar to that encountered
in the analysis of a set of related samples (at different concentrations) by a hyphenated
chromatographic method, e.g. liquid chromatography with multiwavelength diode array detection,1 or
when several runs of a chemical process are monitored spectroscopically at multiple wavelengths
under different initial concentrations of the reagents.2 However, the internal data structure of all these
three-way data arrangements can be different.

A data matrix contains information about two vector spaces or measurement orders: one is the row
space or row order (vector space spanned by the rows of the data matrix) and the other is the column
space or column order (vector space spanned by the columns of the data matrix). In both vector spaces
or orders of measurement the data contain a structural part and noise; the former is usually described
by a reduced set of linearly independent vectors. Every chemical species is described by a species
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profile (vector) in each of the two orders of measurement, usually a species spectrum and a
concentration profile (changes in the concentration of the different chemical constituents). In many
chemical situations, when several individual data matrices are compared, at least one of the two orders
of measurement in the simultaneously analysed data matrices has a common structure, i.e. a common
subset of basis vectors spans the row or column spaces (or subspaces) of the different data matrices.
This common structure is present many times in the spectral order, i.e. common species with equal
spectra in the different experiments (data matrices). In a smaller number of cases the common
structure is present in both orders of the simultaneously analysed matrices, i.e. the two vector spaces
(rows and columns) of all the simultaneously analysed data matrices are spanned by the same set of
basis vectors. This particular three-way data structure is called ‘trilinear’ and a well-known example
of such a situation is the case of excitation–emission fluorescence spectroscopy where two spectral
orders are available.3 It can also be the case for some types of kinetic or evolutionary chemical
reactions or processes monitored spectrometrically.4 For three-way data arrays, trilinearity5 is a desired
situation, since under such a circumstance the rotational factor analysis ambiguities6 inherent to the
factor analysis decomposition of two-way data arrays are totally solved and recovery of species
profiles in both orders of measurement can be achieved. This has important consequences in mixture
analysis where the problem of quantitation of an analyte in a real sample, in the presence of unknown
and uncalibrated interferences, can be solved without sample pretreatment or analyte separation (i.e.
second-order advantage7). Total trilinear data structure is, however, a highly demanding requirement.
For instance, it is not normally fulfilled in most practical applications of hyphenated chromatography,
where usually the elution time order is not common between runs, since the shapes of elution profiles
of coeluted components vary between different chromatographic runs.8 In kinetic reactions only under
special conditions (first- and pseudo-first-order reactions) and for some of the component species is
the trilinearity constraint totally fulfilled.9 One case where trilinearity is easily achieved is in
fluorescence spectroscopy, since in that case there are two highly reproducible spectral orders,
excitation and emission; spectral wavelength values and species spectra under the same physical
conditions (temperature, ionic strength, solvent composition) are highly reproducible.

As is proved in the present work, a chemical reaction monitored using fluorescent emission spectra
obtained at different excitation energies is also a good example of highly structured trilinear data. In
the case of an acid–base titration monitored by fluorescent emission spectrometry at different
excitation wavelengths, each excitation wavelength provides a data matrix of fluorescent emission
spectra recorded at every pH. The information about the changes in concentration of the chemical
species during the acid–base titration is modulated in the spectral order by the different excitation
wavelengths. More importantly, each particular species yields, at the different excitation wavelengths,
fluorescent spectra which show the same spectral bands with different relative intensities. The changes
in band intensity depend on both the excitation wavelength and the chemical nature of the particular
species. All this agrees with a trilinear data structure.

Several methods have been proposed to solve the components present in unknown mixtures from
trilinear three-way data arrays. Among these methods are the generalized rank annihilation method
(GRAM)7 and its extension the trilinear decomposition (TLD) method.5 These are eigenvalue–
eigenvector decomposition-based methods and provide fast non-iterative solutions; they require,
however, strict fulfilment of the trilinearity constraints. Alternative methods based on Tucker
decomposition10 have also been proposed; they do not require such strong trilinearity requirements but
are iterative and slower to achieve convergence. Multivariate curve resolution (MCR) based on an
alternating least squares (ALS) optimization algorithm has been shown to be a powerful tool for
resolving two- and three-way data arrays.11 The main advantage of this method is that it is easily
adapted to data sets of different complexity and structure, trilinear or non-trilinear, providing optimal
least squares solutions. Although iterative, when the appropriate initial estimations and constraints are
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applied, the ALS implementation of the MCR method is also reasonably fast. In the present work the
results obtained by ALS MCR are compared with those obtained by GRAM and TLD.

The study of changes in the fluorescence properties of salicylic acid along an acid–base titration is
interesting because of its possible application in the study of other related compounds of great
environmental importance, such as humic substances, which show a very complex structure and
behaviour and contain salicylic-like chemical groupings.12, 13 Salicylic acid shows two acid–base
equilibria: the deprotonation of a carboxylate group and the deprotonation of a hydroxyl group. Three
species, H2sal, Hsal2 and sal22 , can be present in the pH range 0–14. The study of the acid–base
equilibria of salicylic acid using fluorescence is complicated, however, because the fully protonated
species H2sal, which participates in the first deprotonation equilibrium, is not a fluorescent one and
because of the very weak acidity of the hydroxyl group participating in the second equilibrium.14 It is
not easy to obtain a trustworthy pKa value for the deprotonation of the hydroxyl group in aqueous
medium, as is evident from the lack of agreement among published values of this pKa. Its high value
makes impossible the use of the very precise potentiometric method for its determination in aqueous
media. In previous work15 a continuous spectrophotometric titration of ligand solutions with
absorbance readings at a single analytical wavelength (326 nm) and a traditional least squares curve-
fitting approach for the treatment of data were employed to find this value. In the present work a
continuous spectrofluorimetric titration method was preferred, because the differences between the
fluorescent emission spectra of the individual species are sharper than those shown by the UV
absorption spectra and also because the recorded multiwavelength fluorescent emission spectra yield
a richer amount of information than readings at a single wavelength as obtained in previous work. The
pKa values determined previously:14 at 25 °C and 0·1 M ionic strength were 2·85 and 13·4 respectively
for the two acid dissociation equilibria.

Traditional methods for stability constant determination14, 15 make use of the mass action law. In the
present work an alternative way is proposed which does not use the mass action law constraint.
Instead, the stability constants are estimated from the concentration profiles of the species in
equilibrium obtained through the MCR method, since for data trilinear in nature the rotational
ambiguities can be totally solved without making use of the mass action law. The obtained values are
compared with previous estimations in the literature and with estimations obtained in this work by
using traditional mass action law-based methods.

EXPERIMENTAL

In the acid–base titration of salicylic acid, three chemical species are formed according to the pH
value: at pH below 3 the fully protonated species (H2sal), at intermediate pH the monoprotonated
species (Hsal2 ) and at pH above 12 the dianion (sal22 ) are predominant. According to previous
studies,16 only two of these species are fluorescent, namely those containing the carboxylate group
together with a protonated or a deprotonated hydroxyl group, i.e. Hsal2 and sal22 respectively. The
titration is monitored spectrofluorimetrically; that is, at each measured pH, three fluorescent emission
spectra are recorded using three different excitation wavelengths. In order to test the proposed method,
the experimental data set was compared with a data set obtained from a simulation process.

Experimental data

A solution containing 9·9631025 mol l21 salicylic acid at constant ionic strength from 0·1 mol l21

NaNO3 was titrated by adding small amounts of acid or base to change the pH in the range
1·17–13·60. Thirty-six titration points were selected for data treatment. The titration vessels were
thermostatted at 25·0±0·1 °C. At each pH, fluorescent emission spectra were recorded between 250
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and 650 nm (0·5 nm resolution, scan rate 200 nm min21, 15 nm excitation and emission slit width) at
three excitation wavelengths: 280, 297 and 314 nm. From these spectra, 351 wavelengths between 350
and 525 nm were selected for data treatment. With the experimental data a matrix is built for each
excitation wavelength, with as many rows as pH values measured (NP=36) and as many columns as
wavelengths monitored in the fluorescent spectra (NW=351). In Figure 1 the mesh 3D plots of the
three analysed data matrices (D4 for the excitation wavelength lexc =280 nm, D5 for lexc =297 nm and
D6 for lexc =314 nm) are given.

These matrices were used to estimate the real fluorescent emission species spectra, pH species
profiles and acid–base dissociation constants of the salicylic acid (pKa1

and pKa2
) as well as to test the

assumptions about the nature and structure of the experimental data.

Simulated data

A data set was simulated using the previous knowledge of the system in order to validate the MCR
method, i.e. to investigate how well the proposed method recovers fluorescent emission spectra and
pH distribution profiles of the species, as well as the pKa values postulated initially. Three simulated
data matrices were obtained from a linear model

Dk=SkC
T +N (1)

where Dk(NW,NP) is the simulated data matrix at one of the three excitation wavelengths under study:
l=280 nm for k=1, l=297 nm for k=2 and l=314 nm for k=3; NW is the number of wavelengths of
the pure species spectra selected for analysis (NW=351 as in the experimental data); NP is the number
of pH values in the titration, equal to the number of spectra simulated for each excitation wavelength,
selected for analysis (NP=131, whereas in the experimental treatment only 36 points were selected).

Matrices D1 , D2 and D3 were evaluated from the simulation of spectral matrices Sk and
concentration matrices CT plus a noise term N. Sk(NW,NS) is the matrix of the NS fluorescent emission
spectra of the pure species at excitation wavelength k, prepared from theoretical spectra (roughly
estimated from a preliminary analysis of the experimental data). For trilinear data,

Sk=SKk (2)

where Kk is a diagonal matrix with the relative intensities of the emission spectra at each excitation
wavelength k in its diagonal and S is the matrix of the unitary pure emission species spectra (common
shape).

CT(NS,NP) is the concentration matrix of the NS fluorescent species, obtained from the pH species
distribution for preselected pKa values of deprotonation equilibria. The same matrix CT is used to build
the three matrices Dk . The species distribution was calculated from the solution of the mass balance
equations using the non-linear Newton–Raphson method with a damping constraint17 and assuming
fulfilment of the mass action law for values of the logarithm of acid dissociation constants equal to
2·85 and 13·4. The matrix N is a matrix of Gaussian noise, of zero mean and a standard deviation of
0·5% of the maximum fluorescent intensity.

Reagents

Sodium salicylate (Carlo Erba) and other analytical reagent grade chemicals were used. All solutions
were made with deionized CO2-free water and adjusted to an ionic strength of 0·1 mol l21 with
NaNO3 .

Titrant solutions were prepared from sodium hydroxide and hydrochloric acid (Merck).
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Figure 1. 3D plots of experimental fluorecent emission spectrometric titration data of a salicylic acid solution
([salicyclic acid]=9·9631025 M) at excitation wavelengths of (a) 280, (b) 297 and (c) 314 nm (pH range

1·17–13·60)
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Apparatus

The fluorescence spectra were recorded at each pH using a Perkin Elmer LS 50 luminescence
spectrometer equipped with a Hellma 176·752 fused silica flow cell (25 ml inner volume). Acid–base
titrations were performed through capillary additions of very small amounts of titrant in order to
maintain essentially constant the analytical concentration of the titrand along the whole titration. The
EMF readings leading to pH values were made through an Orion 720 pH-meter and a Ross–Orion
combined electrode.

The system was organized in a closed loop circuit with continuous flow of the 25 °C thermostatted
solutions using a Gilson Minipuls II peristaltic pump.

METHOD

Data structure

Every individual data matrix (D1 , D2 and D3 in the simulated study; D4 , D5 and D6 in the experimental
study) has NW rows (number of wavelengths) and NP columns (number of pH values or spectra
measured). The three data matrices obtained in the simulated study or the three in the experimental
study can be arranged in a three-way data array structure (Figure 2). Each of these three-way data
arrays can also be unfolded in an augmented row-wise or column-wise two-way data matrix (Figure
2). In reduced notation, [D1;D2;D3 ] and [D4;D5;D6 ] are the two augmented column-wise data matrices
which have 33NW rows and NP columns. They are built from individual data matrices by setting one
on top of the other and keeping the column vector space in common. [D1, D2, D3] and [D4, D5, D6] are
the two augmented row-wise matrices which have NW rows and 33NP columns. They are built from
individual data matrices by setting one beside the other and keeping the row vector space in
common.

Figure 2. Simultaneous analysis of a set of correlated data matrices by matrix augmentation

R. TAULER, I. MARQUÉS AND E. CASASSAS60

© 1998 John Wiley & Sons, Ltd. J. Chemometrics, Vol. 12, 55–75 (1998)



Rank analysis and data structure

If the data are trilinear, the data matrices obtained at different excitation wavelengths must have row
and column vector spaces in common. The pH distributions of the species in the three data matrices
are exactly the same since they belong to the same acid–base titration at the same pH values. The pure
emission spectra for the same fluorescent species at the three different excitation wavelengths should
have the same shape and only differ in a scaling factor. The ratio of the scaling factors of these
fluorescent emission spectra for each species in the different data matrices is unique for each species.
Under these assumptions the condition of trilinearity is fulfilled and the singular value decomposition
of the augmented data matrices, row- and column-wise, must give the same number of principal
components, which should also be equal to the total number of species present in the system. In the
case of no rank increase by matrix augmentation a trilinear data structure8 is confirmed.

Evolving factor analysis (EFA)18 and derived methods19 provide information about the local rank20

of a data matrix. This information is especially useful to check the conditions for complete resolution
of a data matrix, as has been pointed out by Manne.21 Moreover, EFA of a data matrix can provide an
initial estimation of the distribution (concentration profiles) of the fluorescent species.

ALS MCR of individual data matrices

Experimental data are described by a bilinear model such as given by equation (1). The complete
resolution of individual data matrices depends mostly on the presence of pure variables22 or selectivity
and on the local rank structure of the data matrix.21 Equation (1) is solved iteratively for Sk and CT by
means of an alternating least squares algorithm using natural constraints:11 such as non-negativity,
closure and unimodality to decrease the possibility of rotational ambiguities and to provide a
physically reliable optimization path. These constraints are applied externally after each new
pseudoinverse estimation of Sk and CT. Therefore during the optimization the constraints modify the
least squares pseudoinverse estimations and the constrained solutions are not truly least squares
solutions. However, in practice, when the optimization advances and becomes closer to convergence,
the constraints are not active any more and the estimations become truly least squares solutions. In
Table 1 the steps of the ALS procedure are summarized.

ALS MCR of augmented data matrices (Three-way Data Analysis)

The bilinear model derived from a generalized linear equation is simultaneously applied to a set of
correlated matrices using

D1 S1 N1

D2 S2 N2

. . . = . . . CT + . . . (3a)

. . . . . . . . .

Dk Sk Nk

or

[D1;D2:. . .;Dk ]=[S1;S2;. . .Sk ]CT +N (3b)

where [D1;D2;. . .;Dk ], [S1;S2;. . .;Sk ], CT and N are respectively the augmented data, the augmented
species spectra, the common concentration profiles (species distribution) and noise matrices. Because
of the data arrangement for column-wise augmented data matrices [D1;D2;. . .;Dk ], the same set of
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Table 1. Steps of alternating least squares multivariate curve resolution procedure

Step Comments

1 Building up of data matrices Dk(NW,NP), k=1,2,3 (simulated) and k=4,5,6 (experimental). Building up
of augmented column-wise matrices Daug (either [D1;D2;D3 ] simulated or [D4;D5;D6 ] experimental)
(see Figure 2 and Experimental for notation).

2 Investigation of the chemical rank of the individual Dk and augmented Daug matrices by SVD and
PCA. Estimation of the number of fluorescent species. Reproduction of the experimental data
matrices for the considered number of principal components.

3 Investigation of pure variables22 and local rank structure of data matrices by EFA-derived
methods.18, 19 Initial estimation of concentration profiles (species distribution) of active fluorescent
species.

4 ALS optimization of species profiles in both orders of measurement.2,4,8,11,12 The basic equations used
during the ALS optimization when aplied either to individual or augmented matrices are

CT =S+
k D*k or CT =S+

augD*aug; Sk=D*k(C
T )+ or Saug =D*aug(C

T )+

where D*k and D*aug are the reproduced individual data matrix and the reproduced augmented data
matrix respectively for the considered species number. CT is the matrix of pH distribution profiles in
both type of treatments (analysis of individual and augmented data matrices). Sk and Saug are the
matrices of fluorescent emission spectra of the pure species in the analysis of the individual k data
matrix and in the analysis of the augmented data matrix respectively. The superscript + in the
matrices CT+ , S+

k and S+
aug refers to the corresponding pseudoinverse matrices.26 These equations are

solved iteratively; at each iteration the following set of natural constraints can be applied.

(i) Selectivity In the pH range where only one species is detected by local
rank analysis,11,18–20 the concentration of the other species is
forced to be zero.

(ii) Non-negativity The concentration and/or spectra should be non-negative for all
species.

(iii) Unimodality The concentration profiles of all the detected species should be
unimodal. An initial unimodality tolerance parameter r is set on
starting the optimization; r=0 for non-unimodality; r=1 for strict
total unimodality; r=1·1 for 10% of local unimodality departure
allowed. When during the optimization the profile becomes
non-unimodal, then the profile is corrected.

(iv) Closure This constraint could not be applied in all the pH range because
of the presence of a non-fluorescent species (H2sal) in
equilibrium with the other fluorescent species (Hsal2 and
sal22 ).

(v) Trilinearity This constraint is shown in Figure 3 and explained in Method.

Whereas in the analysis of the individual data matrices Dk the constraints (i)–(iv) can be applied, in
the analysis of the augmented data matrices Daug the trilinearity constraint (v) can also be optionally
applied.

5 Convergence is tested from the root mean square of residuals (s) between the PCA-reproduced data
matrices (for the particular number of species considered) and the ALS-reproduced data matrices
during the optimization. When the relative changes in s are smaller than a certain initially proposed
convergence criterion (e.g. 0·01%), local convergence is considered to be achieved.

6 Data fitting is evaluated from the percentage of lack of fit experimental data (see footnotes to Table
3).

7 Validation of the ALS solutions is performed, for simulated data or for a real system with known
solutions, by calculation of the correlation or similarity between the ALS-recovered species profiles
and the true species profiles (see Results and Table 4).
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basis vectors in CT spans the common column space of all the individual data matrices Dk included
in the augmented data matrix D. This is in agreement with the fact that the same chemical species are
present in the different individual data matrices and that they should have exactly the same pH
profiles. On the other hand, and in accordance with molecular luminescence spectroscopy theoretical
considerations,16 the emission spectra of the same species obtained at different excitation wavelengths
should have the same shape and differ only in a scaling factor. This means that the row space of each
data matrix Sk is also spanned by the same set of basis vectors (see equation (2) and therefore the data
should be trilinear.

According to previous results obtained by several authors,1,3,5,7,23,24 the analysis of trilinear data is
optimally performed by methods based on the resolution of a generalized eigenvalue–eigenvector
problem, such as GRAM7 and TLD.5 Although TLD and GRAM are fast and provide unique solutions,
they cannot be used for non-trilinear data and do not allow the input of a different type of data
structure nor of the known chemical information to prevent meaningless solutions. On the other side,
iterative ALS methods have been usually proposed for the analysis of non-trilinear three-way
data2,4,9–11 which cannot be analysed by TLD or GRAM. In this work the possibilities of the ALS MCR
method2,4,8,9,11 when it is applied to trilinear data are explored and the results obtained are compared
with those obtained by GRAM and TLD when they are applied to the same data set.

The ALS analysis of augmented column-wise matrices (three-way data) involves not only the
adaptation of the algorithm and constraints used in the ALS analysis of individual data matrices (see
steps in Table 1) to column-wise augmented matrices, but also the inclusion of a trilinearity constraint.
This is of special relevance in the present work to check the performance of the proposed ALS MCR
method when applied to trilinear data. A graphical description of this constraint is shown in Figure 3
for the case of the simultaneous analysis of the simulated data; the same holds for the experimental
data in the case of trilinearity. The implementation of this constraint in the ALS MCR algorithm is
totally different from that in other ALS-based methods.10 Every column of the augmented resolved
species spectra matrix [S1;S2;S3 ] (33NW,NS) is folded in a new reduced matrix SR(NW,3). This
matrix is decomposed by principal component analysis (PCA). Since the three resolved species spectra
found in SR should have the same shape, only the first principal component is considered, giving one
score vector u(NW,1) and one loading vector vT(1,3). The score u has the common shape structure of
the ALS spectra currently estimated and the loading vT has the relative intensity ratios of the spectra
in the three different matrices obtained at the three different excitation wavelengths. The product of
the score and loading vectors gives a new estimation of the folded matrix SR* containing the three
filtered (only common shape) resolved species spectra. Finally, this matrix SR* is unfolded to restore

Figure 3. Implementation of trilinearity constraint. The three spectra in the second column of the augmented
species spectra matrix [S1;S2;S3 ] are folded to give the matrix SR. Application of PCA to SR gives a first score
u and loading vT, whose product gives the filtered matrix SR*. Finally, SR* is unfolded to give a new estimation
of the three spectra in the second column of the augmented species spectra matrix [S1;S2;S3 ]*. The process is

repeated for all columns of [S1;S2;S3 ], i.e. for all species spectra of the system
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each column of the new augmented matrix [S1;S2;S3 ]*. This is a very convenient and fast way to
implement the trilinearity constraint during the ALS optimization procedure. The equality of shapes
for the fluorescent emission spectra of the same species at the three excitation wavelengths is therefore
guaranteed. When this is the case and the real data structure is trilinear, the application of the proposed
method converges quickly to the correct solution giving the common vector profiles defining the row
and column common vector spaces of the simultaneously analysed data matrices.

The different steps in Table 1 have been implemented in a set of MATLAB25 programme files. The
execution of the successive steps previously described is fast. As with other non-linear optimization
methods, it requires active user interaction for initial estimate selection (step 4) and application of
more appropriate constraints. Previous knowledge of the general features of the system is extremely
helpful in this context.

GRAM and TLD method

The set of three simulated (D1 , D2 , D3 ) or three experimental (D4 , D5 , D6 ) data matrices is folded in
a cube of data D (third-order tensor, Figure 2) and analysed using GRAM and the TLD method
proposed by Sanchez and Kowalski5 and others.23, 24 These methods are considered the standard
methods for the analysis of three-way trilinear data in chemistry. In this work, results obtained by
application of ALS MCR, GRAM and TLD are compared. A brief description of GRAM and TLD is
given below.

GRAM allows the simultaneous analysis of two data matrices. Therefore, in our case, three
combinations of two data matrices are possible for the three simulated data matrices D1 , D2 and D3:
D1 and D2; D1 and D3; and D2 and D3 . The same holds for the three experimental data matrices D4 ,
D5 and D6 . GRAM performs the generalized eigenvalue decomposition of each set of two matrices
(e.g. D1 and D2 ) using the QZ simultaneous diagonalization algorithm,26 solving for the common
eigenvectors spanning the common vector spaces of the two simultaneously analysed matrices. In
order to use the QZ algorithm, rectangular data matrices should be projected first to square matrices
and this transformation must preserve the rank of the two simultaneously analysed matrices. From the
common eigenvectors obtained by the QZ method, matrices of emission species spectra (S), of
concentration profiles (CT, species distribution) and of relative intensities of emission spectra at
different excitation wavelengths (Kk ) are deduced. TLD performs the decomposition of the three-way
data set D (Figure 2) in steps. First, the singular value decomposition of row-wise ([D1 ,D2 ,D3 ] in
Figure 2), column-wise ([D1;D2;D3 ] in Figure 2) and tube-wise ([D1:D2:D3 ] in Figure 2) unfolded
augmented matrices gives the row space scores (U), the column space scores (V) and the first two
vectors of the tube space scores (W). Second, two representative pseudosamples G1 and G2 are
obtained by projection of the original tensor D (Figure 2) onto the (U, V, W) basis. Third, the emission
species spectra, the concentration profiles and the relative intensities of the emission spectra at
different wavelengths are obtained from the resolution of the generalized eigenvalue decomposition
of matrices G1 and G2 (as in GRAM using the QZ algorithm; see above). All the described steps are
also valid for the decomposition of the experimental three-way data set built from the experimental
data matrices D4 , D5 and D6 .

A more detailed description of both GRAM and TLD can be found elsewhere.1,5,7,23,24 In this work,
GRAM and TLD are mostly used to validate the results obtained by ALS MCR.

pKa evaluation and species distribution of system in whole pH range

The equilibrium reactions and their respective constants for the deprotonation of salicylic acid are

H2sal⇀↽H+ +Hsal2 , Ka1
= [Hsal2 ] [H+ ]/[H2sal] (4)
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Hsal2 ⇀↽H+ +sal22 , Ka2
= [sal22 ][H+ ]/[Hsal2 ] (5)

The dissociation constants (pKa) and species distribution of the system were calculated from the
concentration of Hsal2 and sal22 species obtained from the ALS MCR procedure. The concentration
of H2sal species was calculated from the mass balance of salicylic acid. The hydrogen ion
concentration was measured experimentally.

The STAR programme27 developed for the study of ionic equilibria from spectrophotometric data,
is a non-linear least squares regression programme for the refinement of stability constants. The
programme is based on fulfilment of the mass action law, mass balance equations and Beer’s law.
Species fluorescence spectra are obtained by solving the Beer-like linear model from calculated
species concentration (for a set of stability constants) and experimental fluorescence spectra.

RESULTS AND DISCUSSION

Rank analysis

Rank analysis of the individual simulated data matrices D1 , D2 and D3 using the singular value
decomposition (SVD) method26 gives (Table 2) first and second singular values much larger than the
following ones, but the third singular value is already at the same level as the fourth and subsequent
ones (see s3 /s4 ratios). This is in agreement with the detection of two fluorescent species. Rank
analysis of the individual experimental data matrices D4 , D5 and D6 also gives similar trends in the first
singular values (see Table 2). Real experimental noise, however, is not uniformly and randomly
distributed, giving some systematic contributions and larger s3 /s4 ratios. From the obtained results it
is assumed that only two of the three species involved in the acid–base equilibria of salicylic acid are
fluorescent. Matrices D2 and D5 give the largest singular values s1 and s2 , showing that the excitation
wavelength of 290 nm gives a slightly better sensitivity than the other excitation wavelengths used to
obtain the matrices D1 , D3 , D4 and D6 . On the other hand, the lower the ratio s1 /s2 , the more similar
are the two singular values and the more orthogonal are the corresponding species spectra. From this
point of view the species spectra recovered from matrices D3 and D6 (l=314 nm) will be the more
orthogonal ones. Considering that the noise level is described by the third singular value, the ratio s2 /s3

gives an estimation of the signal-to-noise ratio.
Rank analysis of augmented row-wise and column-wise data matrices confirms data trilinearity for

Table 2. Rank analysis of data matrices by SVD

Singular values Singular value
ratios

Matrix s1 s2 s3 s4 s1 /s2 s2 /s3 s3 /s4

D1 6425 79 10 10 82 8 1
D2 10638 154 16 16 69 10 1
D3 4912 131 7 7 37 19 1
[D1;D2;D3 ] 13361 316 18 18 42 17 1
[D1 , D2 , D3 ] 13363 222 17 17 60 13 1
D4 2352 109 16 6 22 7 3
D5 3928 153 18 6 26 8 3
D6 1891 133 17 6 14 8 3
[D4;D5;D6 ] 4947 334 35 27 15 9 2
[D4 , D5 , D6 ] 4953 236 32 11 21 7 3
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both simulated and experimental data matrices. There is no rank augmentation when the three different
fluorescent emission spectra matrices are augmented both row- and column-wise. This shows that the
three matrices have the same row and column vector spaces, defined by common vector profiles, i.e.
the same pure species fluorescent emission spectra and species distribution (concentration profiles of
the two species at varying pH). The number of components deduced from the number of larger
singular values is in all cases also equal to two. Column-wise data matrix augmentation yields in both
simulated and experimental cases a lower s1 /s2 ratio than row-wise data matrix augmentation and
similar or better s1 /s2 and s2 /s3 ratios than the best of the individual data matrices. From these results
the best data matrix set-up that can be selected for optimal signal-to-noise ratio (largest s2 /s3 ratio),
sensitivity (larger values of s1 and s2 ) and selectivity (lower s1 /s2 ratio) is the column-wise augmented
data matrices [D1;D2;D3 ] and [D4;D5;D6 ]. This column-wise data augmentation was selected for the
rest of the calculations.

ALS MCR of individual data matrices

Table 3 gives a summary of the results obtained by application of PCA and ALS MCR to the analysis
of individual and augmented data matrices for a two-component model. Data fitting using ALS was

Table 3. Comparison of results (lack of fit (%)a ) obtained
by analysis of individual data matrices and augmented
data matrices (experimental and simulated data) using

different methodsb

Matrix PCA ALSnt ALSt GRAM TLD

D1 1·093 1·306 — — —
D2 1·085 1·273 — — —
D3 1·059 1·083 — — —
[D1;D2 ] 1·090 1·089 1·092 1·092 1·092
[D1;D3 ] 1·085 1·082 1·086 1·088 1·086
[D2;D3 ] 1·084 1·082 1·085 1·086 1·085
[D1;D2;D3 ] 1·088 1·086 1·090 — 1·090
D4 0·869 0·872 — — —
D5 0·571 0·619 — — —
D6 0·992 1·016 — — —
[D4;D5 ] 0·901 0·918 1·131 0·938 0·932
[D4;D6 ] 1·326 1·325 1·627 1·590 1·384
[D5;D6 ] 0·822 0·822 0·838 0·997 0·838
[D4;D5;D6 ] 1·021 1·021 1·189 — 1·182

a Fitting errors are expressed as

lack of fit (%)=
∑(dij 2d*ij )

2

∑(dij )
2 3100

where dij are the experimental data points for spectrum i at
wavelength j and d*ij are the reproduced data points for spectrum
i at wavelength j by PCA, ALS optimization, GRAM or TLD.
b Methods used: PCA is principal component analysis; ALSnt is
ALS Multivariate curve resolution without the trilinearity
constraint; ALSt is ALS multivariate curve resolution with the
trilinearity constraint; GRAM is the generalized rank annihilation
method;7 TLD is the trilinear decomposition method.5 ALSt,
GRAM and TLD cannot be applied in the analysis of the indi-
vidual data matrices. GRAM cannot be applied to the augmented
matrices [D1;D2;D3 ] and [D4;D5;D6 ].
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close to data fitting obtained by PCA. As the ALS optimization gives more constrained solutions than
the PCA solutions, the lack of fit obtained by ALS was slightly larger than that obtained by PCA. The
lack-of-fit values were around or lower than 1% in all cases. Initial estimations of pH species
distribution (concentration profiles) were obtained from EFA of individual data matrices.17 The
constraints applied in the analysis of the individual simulated data matrices were non-negativity,
closure and unimodality and those in the analysis of the individual experimental data matrices were
non-negativity and unimodality. Since total selectivity (only one of the two species present) does not
exist in the pH range under study, this constraint cannot be applied without losing data fitting. Closure
could not be applied to the experimental data matrices, since at the beginning of the titration the first
species H2sal exists at high concentrations and is not fluorescent. Too severe a unimodality constraint
over the pH distribution profiles in the analysis of the more noisy data had undesired effects, cutting
the pH distribution profiles in unreasonable positions. Therefore this constraint was accordingly
relaxed.

In Table 4 the resolution power of the ALS method for simulated data is given. This is evaluated
from the recovery of the pH distribution profiles (C1 and C2) and species spectra (S1 and S2) of the
two detected species (Hsal2 and sal22 ). The recovery between the calculated and theoretical profiles
was evaluated as the cosine of the angle between the two vectors associated with the two profiles. A

Table 4. Recovery of profiles (cosine valuesa ) from analysis of
individual data matrices and augmented data matrices

(simulated experiments)

Methodb Matrix C1 C2 S1 S2

ALS D1 0·9828 0·9995 1·0000 0·9755
ALS D2 0·9819 0·9990 1·0000 0·9772
ALS D3 0·9861 0·9993 1·0000 0·9864
ALSnt [D1;D2 ] 0·9859 0·9953 1·0000 0·9775c

ALSnt [D1;D3 ] 0·9863 0·9956 1·0000 0·9726c

ALSnt [D2;D3 ] 0·9863 0·9979 1·0000 0·9825c

ALSt [D1;D2 ] 0·9999 0·9995 1·0000 0·9989
ALSt [D1;D3 ] 1·0000 0·9999 1·0000 1·0000
ALSt [D2;D3 ] 1·0000 0·9999 1·0000 0·9999
ALSnt [D1;D2;D3 ] 0·9863 0·9980 1·0000 0·9806c

ALSt [D1;D2;D3 ] 1·0000 0·9999 1·0000 0·9999
GRAM [D1;D2 ] 1·0000 0·9998 1·0000 0·9999
GRAM [D1;D3 ] 1·0000 0·9999 1·0000 1·0000
GRAM [D2;D3 ] 1·0000 0·9998 1·0000 0·9999
TLD [D1;D2 ] 1·0000 0·9995 1·0000 0·9999
TLD [D1;D3 ] 1·0000 0·9999 1·0000 1·0000
TLD [D2;D3 ] 1·0000 0·9999 1·0000 0·9999
TLD [D1;D2;D3 ] 1·0000 0·9999 1·0000 0·9999

a Recovery of profiles by ALS curve resolution, GRAM or TLD
measured as the cosine of the angle between the two vectors associated
with the calculated and theoretical profiles (see second subsection of
Results).
b ALSnt is the ALS method without the trilinearity constraint; ALSt is the
ALS method with the trilinearity constraint; GRAM is the generalized
rank annihilation method;7 TLD is the trilinear decomposition method.5

c Average of the values obtained for the S2 ALS-recovered profiles at
each excitation wavelength when the trilinearity constraint is not
applied. The S1 profile is always totally recovered (cosine equal to
one).
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high similarity (correlation) between the calculated and theoretical profiles gives a very small angle
between the two vectors representing the two profiles, i.e. a cosine of this angle close to one. From
the results in Table 4 it is seen that the recovery of the C2 and S1 profiles was very good, whereas that
of the C1 and S2 profiles was not as good. This shows that in the analysis of the individual data
matrices the factor analysis ambiguities for profiles C2 and S1 were practically solved, whereas those
for profiles C1 and S2 were not. These results are in agreement with previous investigations11 and with
resolution conditions based on local rank.21 As the first species was practically (not totally) the only
existing species at the beginning of the simulated titration, its spectrum S1 is unambiguously
recovered. As shown by Malinowsky28 and others,29, 30 the recovery of the concentration profile of a
particular species is possible if there is a local region or window where this species is absent or at very
low concentration (practically non-existent). This condition was fulfilled for the pH distribution profile
C2 (Figure 4(b)), since this species practically did not exist at the beginning of the simulated acid–
base titration. In contrast, it was not possible to recover correctly the C1 and S2 profiles, because the
deprotonation reaction could not be pushed forward to its end in aqueous medium (pKw =13·74) and
no selectivity exists for species 2. Linear combinations of the C1 and S2 profiles were then possible,
fitting equally well the data, even when other constraints such as non-negativity, closure or
unimodality were applied. This situation was very similar to that also found in chromatography for
resolution of embedded peaks.21, 30 Figure 4 shows graphically the agreement between the theoretical
distribution and spectra profiles and those obtained by the ALS MCR method in the analysis of the
individual simulated data matrix D2 . Rotational ambiguities were solved (equal shape) for the S1 and
C2 profiles but were not solved (different shapes) for the S2 and C1 profiles. Additionally, because the
system was closed and there was almost selectivity at the beginning of the titration, the intensity
ambiguity was also solved for the S1 spectra profile. However, for the C2 profile, although the
rotational ambiguity had been practically solved (see Table 4), the intensity ambiguity persisted. This
was a consequence of the lack of selectivity at the end of the titration, which allowed still ambiguous
solutions for intensity to be present for the concentration profiles C1 and C2 and also for the S2 spectra
profiles.

Results obtained for experimental data matrices showed the same trends as for simulated data
matrices. The same conclusions can be extracted in relation to the resolution of the species profiles.
Lack-of-fit values obtained for experimental data matrices were similar to those obtained for simulated
data matrices, which again allows the extrapolation of the resolution considerations given for
simulated data. The experimental data structure was very similar to the simulated data structure.

ALS MCR of augmented data matrices

Initial estimations of pH distribution profiles for the simultaneous analysis of correlated data matrices
were taken from EFA of any of the individual data matrices. In any case, identical solutions were
recovered after the ALS optimization. Table 3 gives the ALS lack of fit obtained in the analysis of the
column-wise augmented matrices for both simulated and experimental data. As for individual data
matrices, the values of the ALS lack of fit for both augmented simulated and experimental data
matrices were similar. When the trilinearity constraint was not applied, the ALS lack-of-fit values were
practically identical to those obtained by PCA. On applying the trilinearity constraint, very small
increases in the ALS lack-of-fit values were observed; for example, for the augmented experimental
data matrix [D4;D5;D6 ] a small increase from 1·021% (ALS with no trilinearity) to 1·189% (ALS with
trilinearity) was observed, probably due to very small experimental departures from the postulated
trilinear model.

Table 4 shows the results achieved in the recovery of pH distribution profiles and spectra profiles
of the two detected species using the proposed ALS MCR method when applied to the simulated
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augmented data matrices [D1;D2 ], [D1;D3 ], [D2;D3 ] amd [D1;D2;D3 ]. The best results were obtained
when the trilinearity constraint was applied during the ALS optimization. Other constraints applied
were the non-negativity and closure constraints for simulated data matrices and the non-negativity
constraint for experimental data matrices. The unimodality constraint was applied under the same
conditions as in the analysis of individual data matrices (see above). As can be deduced from the high

Figure 4. Simulated (lines) and recovered (circles) (a) spectra and (b) species distribution for Hsal2 species
(number 1) and sal22 species (number 2) in analysis of individual data matrix D2 (pH range 11–13·6)
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cosine values in Table 4, all profiles, C1, C2, S1 and S2, were well recovered when the trilinearity
constraint was applied. Figure 5 shows graphically the perfect agreement between the simulated and
ALS-estimated profiles. The rotational and intensity ambiguities associated with the factor analysis of
the individual data matrices were completely solved in the analysis of the column-wise augmented
matrices with the proposed method. As seen in Figure 5(b), the shapes of the fluorescent emission
spectra at the three excitation wavelengths were identical (trilinearity), as can be easily proved from

Figure 5. Simulated (lines) and recovered (circles) (a) species distributions and (b) spectra for Hsal2 species
(number 1) and sal22 species (number 2) in analysis of augmented data matrix [D1;D2;D3 ] (pH range 11–13·6)
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singular value analysis of the three fluroescent emission spectra of every species: only one significant
singular value was obtained. When the trilinearity constraint was not applied, although the ALS lack
of fit was even better than when it was applied, some rotational ambiguities persisted for profiles C1
and S2 (see Table 4). Trilinearity is therefore a necessary condition to solve completely the rotational
ambiguities, i.e. to solve a system such as the present one where the selectivity and/or local rank
resolution conditions21 were not present.

Figure 6 shows the recovered fluorescent emission spectra from the analysis of the augmented
experimental data matrix [D4;D5;D6 ]. The non-negativity, unimodality and trilinearity constraints were
applied as in the analysis of the simulated data. The shape of the three spectra of the same species at
different excitation wavelengths was the same, but the intensity changed. The intensity ratio of the
three fluorescent emission spectra of the same species at each excitation wavelength was specific for
each species, as it should be from theoretical considerations.

Comparison between GRAM, TLD method and ALS MCR method

For simulated three-way trilinear data (simultaneous analysis of D1 , D2 and D3 the results obtained by
GRAM, TLD and ALS MCR (using the trilinearity constraint) were very close (Tables 3 and 4). In all
cases, nearly perfect agreement was found between the recovered and true spectra and pH distribution
profiles. These results confirm that the proposed MCR method with the trilinearity constraint gives
similar results to those obtained by GRAM and TLD when applied to three-way trilinear data
systems.

In Table 3 the lack-of-fit values obtained by GRAM and TLD are also given for the analysis of
experimental data matrices D4 , D5 and D6 . Small differences are shown between different treatments
which can be caused by small departures from trilinearity in the experimental data and their effect on
the different algorithms. In general, very good agreement is obtained between GRAM, TLD and ALSt

(with the trilinerity constraint) for the C1, C2, S1 and S2 species profiles, with cosine values close to
one (not given in Table 4). Larger differences, although still small, are observed between these values

Figure 6. Fluorescent emission spectra of Hsal2 species (number 1) and sal22 species (number 2) resolved
through ALS method from experimental augmented data matrix [D4;D5;D6 ]

MULTIVARIATE CURVE RESOLUTION APPLIED TO TRILINEAR DATA 71

© 1998 John Wiley & Sons, Ltd. J. Chemometrics, Vol. 12, 55–75 (1998)



and those obtained by ALSnt (without the trilinearity constraint), which also confirm the results
obtained using simulated data (given in Table 4).

Apart from data fitting (measured by lack-of-fit values) and recovery (measured by cosine values),
GRAM, TLD and ALS MCR can also be compared in terms of speed and ease of use. Giving exact
figures on the speed of these methods is largely dependent on hardware and software implementations;
therefore only qualitative estimation and interpretation of the differences observed between the
different methods are given. Our personal evaluation of speeds for the analysis of data sets under study
yielded the following results (given in parentheses in relative times): GRAM (1)<SVD or
PCA(10)<TLD(40)<ALS (5–200). The fastest method was GRAM. It was faster than TLD because
in its algorithm the singular value decomposition was limited to ten components, whereas in TLD the
singular value decomposition of the three augmented matrices (column-wise, row-wise and tube-wise)
was performed for all the components. TLD is not restricted, however, to the analysis of two data sets
as GRAM is; GRAM and TLD were implemented in a single programme and were fast and easy to
use. MCR, on the other hand, involves several steps (see Table 1) and requires some previous learning
on how to use the ALS method. However, the interpretation of results was easier in MCR than in
GRAM or TLD, since the profiles obtained by MCR were always real positive numbers, whereas those
obtained by GRAM or TLD must be transformed appropriately.24 In MCR there are two steps which
determine the speed of the analysis. The first step is the calculation of initial estimates to be used as
starting values of the optimization. In the present work this was performed by means of EFA. The
speed of EFA is determined by the speed of the method for eigenanalysis or singular value
decomposition. Using the MATLAB25 SVD method, this is usually performed in seconds or a few
minutes, depending on the size of the data matrices. The second step is the ALS optimization. The
speed of this optimization depends on various factors, among which the ‘quality’ of the initial
estimates, the constraints applied during the optimization and the convergence criterion are important.
Initial estimates were obtained from the EFA (see above) and proved good enough in all cases studied
in this work. It was found that application of the right constraints during the ALS optimization
increased the speed of convergence, but this depended on which algorithms were used for the
implementation of these constraints. A more detailed study of the effect of constraints on the speed of
the optimization is outside the scope of this work. The convergence criterion also affected the speed
of the calculations; a convergence criterion of 0·01% change between the standard deviations of the
residuals in two consecutive iterations was used in all calculations. A looser convergence criterion of
0·1% would have given faster results, with practically identical solutions to those shown in Tables 3–5
and Figures 4–6 for a convergence criterion of 0·01%. In any case, none of the optimizations
performed using the ALS MCR method lasted more than 5 min on an IBM RISC 590 AIX computer.

In the present work the ALS MCR method is validated for the analysis of trilinear three-way data;
other examples of application to trilinear and non-trilinear data have already been published2,8,9,11,12 or
are in progress at present. Compared with GRAM and TLD, the ALS MCR method has the favourable
feature that it can be used for both two- and three-way data analysis, while within three-way data it
can be used for both trilinear and non-trilinear data. GRAM and TLD are much more restricted than
the proposed ALS MCR method because they can be only used for three-way trilinear data. Moreover,
GRAM can only be used in the analysis of two data sets. The ALS method can take advantage of
additional data constraints, which can be essential in the case of three-way data with departures from
the trilinear model.

pKa evaluation and species distribution of system in whole pH range

In Table 5 a summary of the pKa estimations performed for the different data matrices (see Method)
is given. The values obtained using the ALS MCR method are compared with those obtained by the
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STAR computer programme. Whereas the latter is a hard-modelling method using the mass action law,
the former is a soft-modelling method which does not use the mass action law constraint.

The estimation of pKa2
is firstly shown for the individual simulated data matrices D1 , D2 and D3 . As

expected, the results obtained using the STAR programme have recovered correctly the pKa2
value

(13·39) used in the simulations. On the other hand, the values obtained by ALS in the individual
analysis of the simulated data matrices differ from the theoretical value used, in agreement with the
fact that in the individual analysis the rotational ambiguities were not completely solved and therefore
the recovery of the pH distribution profiles (see Figure 4) was not fully correct. The effect of these
remaining ambiguities and of the closure constraint was to push forward the formation of the
deprotonated species more than allowed if the mass action law were applied, and at the same time the
intensity of the corresponding species spectra was changed (Figure 4). On the other hand, as already
pointed out, the simultaneous analysis of the simulated matrices D1 , D2 and D3 solved the rotational
ambiguities and recovered totally the pH distribution profiles (Figures 5 and 6). Consequently, the
value of pKa2

calculated by ALS was in this case much closer to that used in the simulations. Also, the
pKa values obtained in the simultaneous analysis of several data matrices by ALS MCR are very
similar to those obtained by GRAM and TLD if the appropriate similarity transformations are
applied,24 i.e. TLD and GRAM negative and complex profiles are converted to their positive real
values.

The real value of pKa2
was estimated from the experimental data matrices D4 , D5 and D6 and from

the column-wise augmented matrix [D4;D5;D6 ], both with the STAR programme27 and with the ALS
method (Figure 7). In this case the differences between the ALS and STAR individual analyses were
smaller than those found previously for simulated data and within the estimated standard deviations.
It appears from these results that for real data the effect of rotational ambiguities is less important than
for simulated data. One possible explanation of this can be found in the fact that the recovered pKa2

value, 13·1, is lower than that used for the simulation, 13·4. A lower pKa2
means that more of the

Table 5. pKa values of salicylic acid obtained by ALS, TLD or GRAM and a
traditional least squares curve-fitting programme (STAR) for experimental and

simulated data

ALS Value in
Equilibrium Matrix (TLD or GRAM)a STAR literature

H2sal⇀↽Hsal2 +H+ D4 2·83(2)b 2·842(4) 2·83c

D5 2·82(2) 2·830(4)
D6 2·82(6) 2·80(1)
[D4;D5;D6 ] 2·82(2) 2·829(4)

Hsal2 ⇀↽sal22 +H+ D1 13·21(8) 13·394(5) 13·39d

D2 13·21(9) 13·396(5)
D3 13·22(8) 13·391(7)
[D1;D2;D3 ] 13·43(2) 13·398(5)
D4 13·23(6) 13·122(4)
D5 13·09(5) 13·167(4)
D6 13·09(5) 13·19(1)
[D4;D5;D6 ] 13·09(6) 13·146(4)

a In the case of simultaneous analysis of several data matrices, results are
analogous for GRAM, TLD and ALS multivariate curve resolution with the
trilinearity constraint.
b The values of standard deviations are given in parentheses.
c Obtained through a potentiometric method.17

d Obtained through a spectrophotometric method.17
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deprotonated species is formed at lower pH, giving better conditions for the recovery of its pH
distribution profile and species spectra. Another possibility is that the effect of non-randomly
distributed experimental error constrains the number of possible ambiguous solutions. Whereas
rotational ambiguities appear clearly for simulated data with no error or with small randomly
distributed errors, they would not be so clearly deduced from real data with non-random error
distributions. This would mean a possible advantage of the factor analysis of real data compared with
the factor analysis of simulated data. This subject, however, deserves further investigation.

Evaluation of the first pKa was also possible from the experimental data matrices. The results
obtained using the two different approaches were in this case very similar (Table 5) for both individual
data matrix analysis and augmented data matrix analysis. The agreement in the evaluation of the first
pka between the ALS estimations obtained from both kinds of data matrices and those obtained using
the STAR programme proves that no rotational ambiguities are present in the pH region where this
equilibrium predominates. The value of pKa1

=2·82±0·02 obtained under experimental conditions of
25 °C and 0·1 M ionic strength agrees with that proposed in the literature.13, 14

From the pH distribution profiles recovered from the analysis of experimental data, the second pKa

of salicylic acid at 0·1 M ionic strength and 25 °C is finally estimated (see Method) to be equal to 13·1.
This value differs somewhat from our previous estimation of 13·4 using a single-wavelength
spectrophotometric method under much more limited experimental conditions.15

CONCLUSIONS

A set of fluorescent emission correlated data matrices obtained in a spectrofluorimetric acid–base
titration monitored at different excitation wavelengths was shown to have a three-way trilinear data

Figure 7. Theoretical (lines) and calculated through ALS MCR method (symbols) species distributions from
experimental augmented data matrix [D4;D5;D6 ]: j, H2sal; m, Hsal2 ; d, sal22 ([salicylic acid]=9·9631025, pH

range 1·17–13·60, pKa1
=2·82, pKa2

=13·09)
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structure. The inclusion of a trilinearity constraint during the curve resolution of a set of correlated
data matrices allowed optimal recovery of the species profiles, concentration pH distribution profiles
and spectra profiles, solving those factor analysis ambiguities present in the factor analysis of
individual data matrices using the same curve resolution method. From the optimal pH distribution
profiles recovered by the proposed alternating least squares multivariate curve resolution method, it
was possible to get an improved estimation of the second pKa of the hydroxyl group of salicylic acid,
equal to 13·1 at 25 °C and 0·1 M ionic strength.

In the present work the alternating least squares multivariate curve resolution method was validated
for the analysis of trilinear three-way data and showed similar results to those obtained by application
of the generalized rank annihilation and trilinear decomposition methods when applied to the same
data sets.
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