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Necessary and sufficient conditions for rotating matrices to maximal agreement 
in the least-squares sense are discussed. A theorem by Fischer and Roppert, which 
solves the case of two matrices, is given a more straightforward proof. A sufficient 
condition for a best least-squares fit for more than two matrices is formulated and 
shown to be not necessary. In addition, necessary conditions suggested by Kristof 
and Wingersky are shown to be not sufficient. A rotation procedure that is an 
alternative to the one by Kristof and Wingersky is presented. Upper bounds are 
derived for determining the extent to which the procedure falls short of attaining the 
best least-squares fit. The problem of scaling matrices to maximal agreement is 
discussed. Modifications of Gower's method of generalized Procrustes analysis are 
suggested. 
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The Orthogonal  Procrus tes  Prob l em  

The problem of ro ta t ing  m matrices (m > 2) toward a best least-squares fit 
is known  as the or thogonal  Procrustes problem.  IfA~ (i = 1,2, • • • m) is a set of  
m matrices of order n × k (n > k), then the problem is to find o r t h o n o r m a l  
matr ices Tt (i = 1, 2, . . .  m) for which the funct ion  

f(T~, . . .  Tin) = E tr (ART, - AjTj) ' (A~T~ - A~T~), 
t<) 

is minimized,  or equivalently,  for which the funct ion 

g ( T 1 , " "  T i n ) =  Y~ tr T , ' A , ' A , T j  
l<J 

is maximized.  Since pos tmul t ip ly ing  each TL by the same o r thonorma l  T does 
not  affect the value o f f  or g, any one of the matrices T~ can be taken as the k × 
k identi ty matrix. Therefore when m = 2, the problem can be reduced to 
finding an o r t h o n o r m a l  matr ix  7"1 for which the funct ion 

f (T~)  = tr (A~TI - A2)'(A~T~ - A2),  
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is minimized, or equivalently, for which 

g(T1) = tr TI'AI'A~ 

is maximized. The solution to this problem is well known [Green, 1952; 
Kristof, 1964; Fischer & Roppert, 1965; Cliff, 1966; SchSnemann, 1966]. It will 
be worthwhile to analyze this solution in detail since it has important implica- 
tions for the general case of m > 2. The solution is most conveniently based on 
the so-called Eckart-Young decomposition of a real matrix [Eckart & Young, 
1936]. 

Theorem 1. I fX is a real n × k matrix of rank r(n > k > r), then matrices 
Pr(n X r), Dr(r × r) and Qr(k × r) can be constructed which satisfy the 
equation 

(1) X = PrDrQ/,  where 

(2) Pr'Pr = O /  Qr = It, 

and Dr is diagonal and positive definite. 
Proof  Let Qr contain any orthonormal set of eigenvectors corresponding 

to the non-zero eigenvalues of X'X.  Then Qr satisfies 

(3) x ' x  = arDr2ar ', 

and 

(4) Qr'Or = It. 

Obviously, Dr 2 is a diagonal matrix of positive eigenvalues of X'X.  Let Dr be 
the diagonal matrix of positive square roots of these eigenvalues. Finally, let 
Pr be constructed as 

(5) Pr = XQrOr -~. 

Then Pr'Pr = Q/Qr  = It, Dr is diagonal and positive definite, and 

(6) PrOrQr' = XQrQr'. 

SchSnemann, Bock and Tucker [Note 2, Lemma 1] proved that 

(7) x a r a r '  = X, 

for any Qr satisfying (3) and (4). This completes the proof of Theorem 1. The 
case of multiple zero or non-zero eigenvalues has been implicitly covered [see 
also SchSnemann, Bock & Tucker, Note 2, pp. 11-12]. 

By adding orthonormal columns to Pr and Qr and zeros to Dr, one can 
construct matrices P(n × k), Q(k × k)  and D(k × k) satisfying 

(8) X = PrOrQr ' =  PDQ',  

with P'P  = Q'Q = QQ' = I~ and D diagonal and positive semidefinite. 
Equation (8) is known as the Eckart-Young decomposition of X. 
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A Necessary and Sufficient Condition for Maximum Agreement when m = 2 

Theorem 2. The function g(T1) = tr TI'Aa'A~, where T~ varies without 
restriction over the set of or thonormal  matrices of order k × k, is maximized if 
and only if TI'AI'A, is symmetric and positive semi-definite (SPSD). 

Proof Let TI'AI'A2 = PrDrQr' = PDQ' be an Eckar t -Young  decomposi- 
tion of TI'A~'A2. Let it be given that, for any or thonormal  k X k matrix N, 

(9) tr TI'AI'A2 > tr N'AI'A2. 

Suppose, contrary to what is to be proved, that T~'A~'A~ is not SPSD; then Qr 
¢ Pr and 

(10) tr TI'A~'A2 = tr PrDrQ/ = tr Q/PrD~ < tr Dr. 

But taking N = T~PQ' would yield 

(11) tr N'AI'A~. = tr QP'PDQ' = tr D = tr D~. 

Clearly, (10) and (11) jointly contradict (9). Therefore, Ta'A~'A2 is SPSD i f(9)  
holds. 

Conversely, let TI'AI'A2 be SPSD. Then 

(12) T,'A,'A2 = PDQ' = POP' 

and 

(13) tr T~'AI'A, = tr PDP' = tr P'PD = tr D. 

Again, if N is an arbi trary or thonormal  matrix of  order k × k, then 

(14) tr N'A~'A2 = tr N'T~T~'A~'A~ = tr N'T~PDP' = tr P'N'T~PD < tr D, 

since the product  P'N'T~P is or thonormal  and has no diagonal entries greater 
than one. This completes the proof  of Theorem 2. 

Theorem 2 is essentially due to Fischer and Ropper t  [1965]. Our proof, 
however, is shorter and does not require the aid of calculus. The theorem 
solves the Procrustes problem at once, when m = 2. Let A~'A~ = PDQ' be an 
Eckar t -Young decomposition of A~'A2. Then if we let T~ = PQ', we obtain 
T~'A~'A2 = QDQ'. But QDQ' is SPSD, which is both necessary and sufficient 
for attaining the best least-squares fit. 

The General Case of m > 2 

We have been discussing the case of  m = 2 in some detail. This offers a 
useful starting point for dealing with the general case of  m > 2. For  notational 
convenience we will write S~ for T~'A~'AiTj, S~ for T'A ' ~ ~.,AITj, S~ . fo rT /A /  
~ ,  AiT ~ and g for g(T1, T~, - - - ,  T,,) = Y~<itr S~. 

When more than two matrices are involved, g must be maximized. The 
following condition is sufficient for a maximum: I f  each product S,~ is SPSD, 
then g is maximal. The proof  of  this is fairly obvious. I f  each S~j is SPSD, then 
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TABLE 1 
Artificial Data for Which Not Every St1 can be S P S D  

AI A~ As 

Note that A I ' A ,  = - 1 ;  A I ' A 3  = 1; A2 'A3 = I. 

rotation could not increase the trace of any of the S~ (Theorem 2) and 
therefore the sum of traces g must be maximal. 

It may be noted that this sufficient condition cannot generally be satisfied. 
This follows from the example in Table 1, where I and O denote the identity 
matrix and zero matrix, respectively, both of order k × k. 

For  the data of Table 1, $13 will be SPSD if and only if T1 = Ta. Similarly, $28 
will be SPSD if and only if T2 = T3. But the implication T~ = T2 will leave S12 
negative definite. Therefore,  for these data, no set of  matrices T~, T2, T3 can 
satisfy the sufficient condition for a maximum. Since g does assume a max- 
imum value [Kristof & Wingersky, 1971, p. 89], the sufficient condition is 
not necessary for a maximum. 

Kristof  and Wingersky [1971] formulated a necessary condition for max- 
imal agreement which is: I f g  is maximal, then St. is SPSD, i = 1, 2, . . .  m. 

Proof The expression g can always be rewritten as 

(15) g = tr S~. + a sum independent of  T~, 

for any value of  i(i = 1, 2 . . .  m). Now suppose that, for some i, St. is not 
SPSD. Then by Theorem 2, one can still increase tr S~. by changing T~ without 
affecting the terms independent of Tt.. Therefore g cannot be maximal if St. is 
not SPSD for i = 1, 2 . . .  m. [ ]  

It may be noted that Kristof and Wingersky [1971] proved an overly re- 
strictive version of the necessary condition, requiring that each S~ be nonsingu- 
lar. Since Theorem 2 deals with singular matrices as well, the necessary condi- 
tion has been shown to hold regardless of singularity of the matrices St. 

Above, a sufficient condition was shown to be not necessary; conversely, 
the: necessary condition just stated can be shown to be not sufficient. One may 
cortsult the data of Table 2. It is clear that each S~. is SPSD. While it is apparent 
that the attained value o f g  is k, changing signs in A2T2 and A3T3 jointly would 
yield a value as high as 3k. This would also be the maximum since upon re- 
flecting A2T2 and A3T3 each Sti would be SPSD. Obviously, the necessary con- 
dition for a maximum is not sufficient for m > 2. 

Kristof and Wingersky [1971] weakened their necessary condition to the 
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TABLE 2 
Artifical Data for Which the Necessary Condition is Satisfied, but Maximum Agreement has not 

been Attained 

A~T~ A,T, A~T. A,T, 

S~. S~. S~. $4. 

Uq U] U] U] 

following effect: If g is maximal, then S~ is S P S D ,  i = 1, 2, . . .  m. This weak  
necessary condition follows from the original s t rong  necessary condition since 
T / A / A ~ T ~  is S P S D  and so is the sum of  any two quadratic forms both of which 
are S P S D .  

Satisfaction of the weak necessary condition does not imply satisfaction of 
the strong necessary condition. An example can be found in Table 2. After 
deleting the matrix A4T4, the remaining data will only satisfy the weaker 
condition. 

Before examining procedures for the implementation of  the necessary 
conditions, it may be instructive to summarize the necessary and sufficient 
conditions for a maximum when m > 2. The following four statements form a 
hierarchy, in which each statement implies all statements below it, but is not 
implied by the statements below it. 

1. (Sufficient condition) S u is S P S D  for i, j = 1, 2, . - .  m. 
2. g is maximal. 
3. (Strong necessary condition) S~. is S P S D  for i = I, 2, - ' .  m. 
4. (Weak necessary condition) S~ is S P S D  for i = 1, 2, . "  m. 
Kristof  and Wingersky [1971] succeeded in constructing an iterative al- 

gorithm that satisfies their weak necessary condition. Their procedure runs as 
follows. 

S t e p  1. Take Am = B ~.  Rotate each A~ to maximal agreement with B ~ ,  
thus yielding A~T~ ~1~, i = 1, 2 . . .  m.  

S t e p  2. Compute 1 / m  ~ A~T~ <~ = B c~. Rotate each A~T~ ~ to B l~, thus 
yielding A~T{ 2~' i = 1, 2, . . .  m.  

S t e p  p. Compute 1 / m  ~ A i T t  ~p-I~ = ffP~. Rotate each A i T {  p-I~ to B Ip~, 
thus yielding ALT~ ~p>, i = 1, 2 • • • m.  

It can be shown that g will increase at each step after Step 1 until the 
procedure converges, which occurs if and only if the weak necessary condition 
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]has been satisfied (Theorem 2). Convergence can be shown to occur [Kristof& 
Wingersky, 1971, p. 90], and is rapid in practice. 

Kristof and Wingersky iteratively rotate each matrix to the average, or 
equivalently, to the sum of the matrices. An obvious modification of their 
procedure, needed to satisfy the strong necessary condition, would be to rotate 
each matrix iteratively to the sum of all other matrices. This procedure, 
however, would clearly fail in the case of  rn = 2. If  AI'A~. = PDQ', then we 
would obtain 7"1 = PQ' and 7"2 = QP'. After rotation we would have 

(16) g = tr T~'AI'A2T2 = tr QDP' = tr A~'A~; 

that is, the function to be maximized would not have taken a higher value. 
Therefore, the following procedure is to be preferred. 

m 
Step 1. Rotate A1 to ~ A j, thus yielding A1TI ~. 

j=2 

Step 2. Rotate A2 to A1T~ ~1> + ~ A~Tj, thus yielding A~T2 ~. 
j = 3  

r r t -1  

Step rn. Rotate Am to ~ AjT~ TM, thus yielding AmTm C1~. 

Step m + 1. Rotate AIT~ ~ to ~.~ A J S  ~, thus yielding A1T~ ~. 
iffi2 

The procedure is terminated if m steps jointly fail to raise g above some 
tllreshold value. It can be readily seen that g increases at each step. The sum of 
terms that depend on the matrix being rotated increases, while the remaining 
terms are left unchanged. The procedure will converge if and only if the strong 
necessary condition has been satisfied (Theorem 2). Again, convergence can be 
shown to occur and is rapid in practice. 

Haven [Note 1] compared our procedure to the Kristof and Wingersky 
method for 52 sets of matrices. Our procedure yielded equal or higher values of 
g, requiring on the average a smaller number of rotations. The differences were 
substantial for random matrices, and consistent although less impressive for 
empirical matrices. 

Our procedure attains the maximum o fg  i fm = 2. The same holds for the 
Kristof and Wingersky procedure, owing to the awkward first step. It does not 
hold for the Kristof and Wingersky logic: Rotating two matrices to their sum 
need not satisfy the necessary and sufficient condition for a maximum. One 
may compare the data of Table 2, after deleting AsTs and A4T4. Either A 17"1 or 
A:,T2 needs to be reflected; nothing will happen if both matrices are rotated to 
A:tT1 q- A2Tu. 

Two Upper Bounds 

Our procedure satisfies only a necessary condition for a maximum of g; it 
need not necessarily arrive at the maximum. The same holds true afortiori  for 
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the Kristof and Wingersky procedure. Therefore, it may be wise to compute 
the following two upper bounds. Let 

(17) A~'Aj = PoD~jQ~/, 

be an Eckart-Young decomposition of A{Aj.  Then tr D~j is the maximum of  
g(T .  Tj) = tr S~j (Theorem 2). Summing yields the first upper bound 

(18) g_< ~ t r O  u. 

Let A'A denote the km × km supermatrix 

0 A I'A u • • A I'A m 
A ~'A 1 0 " " A 2'A m 

( 1 9 )  A'---~ = 

(23) 

since VV, '  < 
bound. 

A m ' A 1  • • 6 

Let 

(20) A'A = PAP' (PP' = I; 6~ >_ 6s for i < j),  

be an eigenvector-eigenvalue decomposition of A'A. We then obtain the sec- 
ond upper bound 

m 
(21) g <_~- Y~. 6,. 

Proof Let T be the column supervector containing the matrices T1, T2, 
• " ", Tin, with T{Te = lk. We then have 

m (22) g = ½ tr T'ACAT = T tr U'PAP'U 

where U = m-I/2T, with U'U = I~. Substituting V = P'U, with V' V = Ik, yields 

m m m 
g =  ~- t r  V 'AV= T t r V V ' A - <  ~- ~ 6 ,  

l = l  

1 and tr VV' = k. This completes the proof  of the second upper 

Neither upper bound can be shown to be superior. Therefore, in practical 
applications, one may compare the value o fg  obtained with that upper bound 
which is the lowest. When a small difference occurs, the value obtained must be 
close to or equal to the maximum. When a large difference occurs, the value 
obtained may be far below the maximum. In that case one might resort to a 
successive method of  rotation, that is, a method which first yields column one 
of each T ,  then column two, etc. The author obtained excellent results for 
artificial data, using Kettenring's SUMCOR-rota t ion [Kettenring, 1971]. For  
real world data, values o fg  tend to be very close to the lowest upper bound, so 
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no further precautions need to be taken. I f  a large difference should occur, 
however, one might profitably insert Kettenring's  rotation as a start for a new 
,;et of  rotations by our procedure. 

Haven [Note 1] found the first upper bound to be the lower one in nearly 
all cases examined. In addition, he never observed a difference of  more than 
tbur percent between this upper bound and the value of g attained by our 
procedure. 

Gower ' s  General i zed  Procrus tes  Ana lys i s  

Gower  [1975] derived a method of  generalized Procrustes analysis which 
includes scaling constants and translations for two or more matrices. His 
method starts with an initial centering and scaling of the matrices, so that all 
column sums are zero and 2~ tr A~'A~ = m [Gower, 1975, p. 43, Step 2]. From 
then on, rotation matrices (Gower 's  Steps 3 and 4) and scaling constants (Steps 
6 and 7) are adjusted in turn. Gower  has adopted the Kris tof  and Wingersky 
procedure for steps 3 and 4. This part  of  his method can be improved by 
inserting our procedure. Moreover,  Gower ' s  solution to the scaling problem 
(Step 6) is not correct. The correct solution will be outlined next, using our 
own notation. 

Let AL, i = 1, 2 . . . .  m bern matrices of order n × k, with ~ tr A/A~ = m, 
for which scaling constants c~, c~ . . .  cm are desired to maximize 

(24) h(c~, c~, . . .  , Cm) = ~ C~Cj tr A / A  j, 
t<J 

under the constraint 

(25) ~ c, 2 tr As 'A ,  = ~ tr A , ' A ,  = m.  

This constraint safeguards the equivalence of maximizing (24) and minimizing 
the least-squares function Y]~<j tr (c~A~ - cjAj)'(c~A~ - cjA~). Let the m × m 
matrix Y be defined as 

tr A l'A 1 
tr A~'A 1 

(:26) Y = 

tr A , ' A 2  "'" tr A I ' A m  

tr A2'A~ . . .  tr A2'Am 

tr Ar~'Aa tr Am'A2  • • • tr A,~ 'Am 

Y~ = Diag [Y]. Let ~ = Ya-1/2Y Ya -~/2, the matrix of  coefficients of congruence 
['Fucker, Note  3] between matrices A1, A2, "" ", Am after arranging their 
elements in a nk  × 1 vector. 

Let 

(27) q~ = p A p ,  ( p p ,  = I; 6~ >_ 6j for i < j ) ,  

be an eigenvector-eigenvalue decomposit ion of  ~,  and p~ be the first column 
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of P. Then (24) is maximized subject to (25) by taking 

t-T-Z, \1,2 
m ] P-. (28) c~ = 'Ai 

P r o o f  Without loss of generality each matrix A~ can be rescaled to 

AL* = (tr A / A t ) - I / 2 A t ,  with tr A~* 'A~*  = 1 for i = 1, 2, . . . ,  m. (29) 

Then scalars dL are needed to maximize 

(30) h*(a~, a2, . . . ,  am) = A *l A * d, d3 tr ~, j , 
i<j 

under the constraint 

(31) ~ dtz tr A,*'A,* = ~ d, 2 = ~ tr A / A ~  = m .  

Let the d~ be arranged in a vector d. Then (30) can be written as 

(32) h . ( d )  = ½d'(O - l ) d ,  

which is to be maximized subject to (31), that is, subject to 

(33) d ' d  = m .  

Combining (27), (32) and (33), and substituting u = P ' d  yields 

(34) h * ( d )  = ½d'(~b - I ) d  = ½ d ' ( P A P '  - I ) d  

= ~(u'Au - m )  < ½(~lu'u - m )  = ½ m ( 6 ~  - 1). 

Taking d = m~/2pl,  which clearly satisfies (33), yields 

(35) h * ( m a / 2 e ~ )  = ½ m p / ( ~  - I ) p l  = ½ m p / ( e A e '  - I ) p l  

= ½m(e l 'Aex  - - p / p ~ )  = ½m(6~ -- 1). 

Therefore, (32) is maximized subject to (33) when d = m~/2p~. This result and 
the prior rescaling (29) completes the proof of (28). It can be used to improve 
Step 6 of Gower's computation scheme [Gower, 1975, p. 43]. Gower [1975, p. 
39, Equation 13] derived an equation in scalar notation which, if put in matrix 
notation, shows that the optimal scaling constants are elements of the principal 
right-hand eigenvector of Y - t a Y .  This is equivalent to our result (28). How- 
ever, Gower applies an iterative algorithm (Step 6) with unknown convergence 
properties to solve his Equation 13. It would be safer to compute the scaling 
constants by our result (28) which is guaranteed to yield the correct solution. 
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