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Kristof has derived a theorem on the maximum and minimum of the trace of matrix products 
of the form X,f'lX2f" 2 -.. X,I~, where the matrices 1~ are diagonal and fixed and the X~ vary 
unrestrictedly and independently over the set of orthonormal matrices. The theorem is a useful 
tool in deriving maxima and minima of matrix trace functions subject to orthogonality con- 
straints. The present paper contains a generalization of Kristof's theorem to the case where the X~ 
are merely required to be submatrices of orthonormal matrices and to have a specified maximum 
rank. The generalized theorem contains the Schwarz inequality as a special case. Various exam- 
ples from the psychometric literature, illustrating the practical use of the generalized theorem, are 
discussed. 
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Kristof [1970] has derived the following theorem on the trace of certain matrix 
products. 

Theorem 1. (Kristof's theorem). Let Xt  be an or thonormal  matrix, l~i be a fixed diag- 
onal matrix, Fi be the diagonal matrix obtained from i~i by arranging the absolute values 
of the elements in the diagonal of l~i in (weakly) descending order, i = 1 . . . . .  n, all matrices 
of order m x m with m > 2. Then, under unrestricted and independent variation of X~, 

- t r  F I F  2 . ,-  F n _< tr X I ~ I X 2 ~ 2  "'" X , f ' ,  < tr FIF2 . . -  F n. (1) 

The limits can be attained. 
Proof. See Kristof [1970]. [ ]  

Kristof has demonstrated the practical utility of Theorem 1 in various psychometric 
applications. Typically, these applications involve optimization problems of traces of  
matrix products under orthonormali ty constraints, for which closed-form solutions exist. 
Using Kristof 's  theorem, one can find global opt ima at once, without having to resort to 
partial differentiation with Lagrange multipliers; see also Levin [1979]. 

The present paper  is concerned with generalizing Kristof 's  theorem. The need for this 
is apparent  from a number  of  psychometric problems in which the matrices X ,  . . . . .  X ,  of  
Kristof 's  theorem are required to be only semi-orthonormal,  i.e., row-wise or  column-wise 
orthonormal.  Clearly, it is desirable to relax the orthonormali ty conditions of Kristof 's  
theorem to the effect that semi-orthonormal matrices can be handled. This will be done in 
Theorem 2 below. In fact, this Theorem offers even greater generality to the matrices 
X ,  . . . . .  X , .  That  is, they need merely be submatrices of or thonormal  matrices. The 
reason for seeking such generality is theoretical: Theorems should be derived in the grea- 
test possible generality. 

For  later reference, the following definitions and lemmas will be convenient. 
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Definit ion 1. A matrix is suborthonormal if it is a submatrix of an orthonormal 
matrix. The set of suborthonormal matrices is called U. 

Definit ion 2. A matrix is semi-orthonormal if it is row-wise and/or column-wise or- 
thonormal. The set of semi-orthonormal matrices is called V. 

Let W denote the set of orthonormal matrices. Then W c V c U. 

L e m m a  1. Every suborthonormal matrix can be augmented to a semi-orthonormal 
matrix by adding only rows and by adding only columns to it. 

Proof.  Let X be a suborthonormal matrix. Construct an orthonormal matrix which 
has X as a submatrix and the Lemma is evident. [ ]  

L e m m a  2. A matrix is suborthonormal if and only if its singular values are in the 
range [0, 1]. 

Proof.  Let X be an n x k matrix, n > k, with Eckart-Young or singular value de- 
composition (SVD) or basic structure, cf. Green [1969, 314-316] 

X = PDQ' ,  (2) 

where P ' P  = Q'Q = QQ'  = I k and D is diagonal with diagonal elements dl > d2 > "'" > 
dk > O. The diagonal elements of D are the singular values of X. Singular values are 
de-fined to be nonnegative and arranged in (weakly) descending order throughout  the 
present paper. 

Let it be given that d 1 < 1. Construct the semi-orthonormal matrix 

X +  = [ X  " P( I  - 02) 1/2"P,]  (3) 

where P ,  is an orthonormal completion of P. Clearly, X + X'+ = I ,  which implies that 
X e U. Conversely, let X e U. By Lemma t there is an X ,  such that IX i X , ]  is row-wise 
orthonormal. For  every w with w'w  = 1 we have 

1 = w 'w  = w ' I w  = w ' ( X X '  + X ,  X , ) w  > w ' X X ' w  (4) 

which implies that X has no singular values greater than 1. [ ]  

L e m m a  3. A matrix is semi-orthonormal if and only if its singular values are unity. 
P r o o f  Let X be an n x k matrix, n > k, with SVD 

X ---- P D Q '  (5) 

where P ' P  = QQ'  = L If D = I then X ' X  = Q P ' P Q '  = 1. Conversely, if X ' X  = I then the 
eigenvalues of X ' X  are unity, hence the singular values of X are unity. []  

L e m m a  4. The product of two suborthonormal matrices is suborthonormal. 
P r o o f  Let A ~ U and B ~ U, where A has k columns and B has k rows. Expand A 

into a column-wise orthonormal A÷ and B into a row-wise orthonormal B÷.  The non- 
zero eigenvalues of A+ B÷ B'+ A'+ = A+ A'+ are the eigenvalues of A'+ A÷ = L Using 
Lemma 2, this implies that A+ B÷ is suborthonormal. Since A B  is a submatrix of A+ B+,  
it must also be suborthonormal. [ ]  

T h e o r e m  2. (Generalized Theorem 1). Let X i be a suborthonormal matrix with rank 
-<_ ri, ~i be a fixed diagonal matrix, F~ be the diagonal matrix obtained from f'~ by arrang- 
in--g the absolute values of the diagonal elements of l~i in (weakly) descending order, i = 1, 
. . . .  n. Let m be the largest number of rows or columns of the X~, and Ai be the diagonal 
m x m matrix containing F~ in its upper left corner and zeroes elsewhere, i = 1, 2 . . . . .  n. 
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Then 

- - t r  AIA 2 --- A . E .  _< t r  X I ~ I X 2 F 2  . . .  X n F  n ~_~ tr A,A 2 --- A . E  r (6) 

where r = min (r3. and E. is the m x m matrix containing I .  in its upper left corner and 
zeroes elsewhere. 

Proof  Define Y~ as the m x m matrix containing X i in its upper left corner and 
zeroes elsewhere, i = 1 . . . . .  n. Let Y~ have the SVD 

Y~ = Pi Ol Q', (7) 

where Pi and Qi are or thonormal  and Dt is diagonal. Defining 

d 

f ( X )  = tr X l f ' l X z f ' 2  . . .  X . f ' .  

we have 

f ( X )  = tr YI,~I Y2Zx2 " "  Y ,A,  (8) 

where ~ is the m x m diagonal matrix containing f'i in its upper left corner and zeroes 
elsewhere. From (7) and (8) we have 

f ( X )  tr P1D1Q'~,lP2D2Q'27~ 2 • P . D . Q .  . .  (9) 

Applying Theorem 1 to (9) yields 

- t r  DIAtD2A 2 . . .  D ,A ,  < f ( X )  < tr D1AID2 A 2 -.- DnA,. (10) 

For  some Y~ we have rank Y~ < r. Hence there must be a Di with at most r nonzero 
elements and Di = D i E r . Ttierefore, (10) can be reduced to 

- - t r  DA E  r < f ( X )  <_ tr DAE,  (11) 

where D = D1D 2 . •. D,  and A = A~A 2 • • • A,. Clearly, tr DAE,  only depends on the first r 
diagonal elements of D. Noting that the X~ are suborthonormal  and every Y~ has the same 
nonzero singular values as X~ we can infer from Lemma 2 that the first r elements in the 
diagonal of D are in the interval [0, 1]. As a result (11) implies 

- t r  AE~ ~ f ( X )  <_ tr AE,. (12) 
I 

This completes the proof  of Theorem 2. 

Theorem 2 differs from Theorem 1 in several respects. The most  striking difference is 
that the Xt are no longer required to be orthonormal.  Second, the X i need no longer be 
square. Third, the assumption that the Xi vary independently and unrestrictedly (except 
for their ranks) over the set of suborthonormal  matrices is not made, The reason for this 
is that the assumption is not met in some of the intended applications, see below. In the 
absence of the assumption, the statement "the limits can be attained" had to be omitted 
from Theorem 2. However, it can readily be verified that the limits of (6) can be attained if 
the X~ of Theorem 2 are varying independently and (except for rank) unrestrictedly over 
the set of suborthonormal matrices. 

In various applications some of the X t are restricted to have rank X~ = r~ instead of 
rank X~ < r~. Obviously, this modification does not affect the validity of (6). 

Kristof  [1970, p. 522] derived a second equivalent version of Theorem 1 in which the 
diagonal matrices 1~ are replaced by arbitrary square matrices A~. The special case n = 2 
of this version had been derived earlier by Von Neumann  [1937] as was noted by Kristof. 
Green [1969, p. 317] applied Von Neumann 's  result and pointed out that it also holds if 
X t and X 2 are or thonormals  of different orders. Since or thonormal  matrices are subor- 
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thonormal, this generalization of Von Neumann's result is a special case of the n = 2 
version of Theorem 2. 

It may be worth noting that the well-known Schwarz inequality is also a special case 
of the n = 2 version of Theorem 2. To verify this, let x and y be nonzero vectors of order 
k. The suborthornormal "matrices" x'(x' x)-1/2 and y(y'y)-1/2 can be taken as XI and X 2 , 
respectively, with r = 1 and ~1 = I k and 1:' 2 = 11. Then Theorem 2 implies 

- 1 <_ x'(x'x)- 1/2y(y,y)- 1/2 < 1 (13) 

or, equivalently, 

-(x'x)l/2(y'y) 1/2 < x'y ~ (x'x)l/2(y'y) 1/2 (14) 

which is the Schwarz inequality. 

Applications of Theorem 2 

This section contains three applications of Theorem 2 to psychometric problems. The 
first problem has also been treated by Kristof [1970], using Theorem 1. Our treatment of 
this problem allows the elimination of a restrictive assumption. The remaining two appli- 
cations are the principal components problem and canonical correlation problem, respec- 
tively. Theorem 2 permits very direct and highly general solutions to these problems. 

Application 1. Multiple regression (Kristof's Example 4). Let X be an s × t matrix 
(s > t) of rank t, containing predictor variables, and Y be an s x u matrix of criterion 
variables. It is desired to minimize ~/(B) = tr (Y  - X B X Y  - XB)', where B is a t × u 
matrix of regression weights. 

Noncalculus solutions for this problem are well-known, e.g., Bock [1975, p. 170-171] 
and do not require Theorem 1. However, in order to illustrate the range of possible 
applications of Theorem 1, Kristof applied this Theorem to this problem. 

A remarkable feature of Kristof's derivation is that it rests on the unnatural assump- 
tion that t = u. When Theorem 2 is applied, this assumption can be omitted. This can be 
seen from the key inequality tr (T'V)M(W'U)A < tr MA, cf. Kristof [1970, p. 526]. For  
instance, if t > u then T'V is suborthonormal of rank _<_ u; W'U is orthonormal of rank 
u, and M and A are diagonal, nonnegative, of order u x u, with diagonal elements ar- 
ranged in (weakly) descending order. Therefore, Theorem 2 gives tr (T'V)M(W'U)A 
< tr MAE~ = tr MA. The remaining part of the derivation is analogous to Kristof's, and 
need not be repeated here. 

Application 2. Principal components analysis. Consider the problem of jointly deter- 
mining p principal components for a k × k correlation matrix R. Typically, this problem 
is treated as determining a k × p matrix B which maximizes the sum of squared loadings 
tr B'R2B subject to the orthogonality constraint B'RB = Ip. Let R have rank r _> p and 
eigendecomposition R = KAK' ,  K 'K  = I , ,  A diagonal, 2 t >_ 2._ 2 > --- _> 2,-> 0. The prob- 
lem is to maximize 

r/(B) = tr B'R2B = tr B'KA2K'B (15) 

subject to B'RB = B'KAK'B = Ip. This constraint implies that B'KA I/2 is suborthonor- 
mal of rank p. Hence Theorem 2 yields 

r/(B) = tr (B'KAI/2)A(A1/2K'B) <_ tr AEp. (16) 

This upper bound can be attained for 
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where N is an arbitrary p × p o r thonormal  matrix. B ,  is the well-known solution for the 
principal components  problem. 

Application 3. Canonical  correlations. Kris tof  [1970, p. 529] mentioned the possi- 
bility of  solving the canonical  correlat ion problem by Theorem 1. However,  it is not  clear 
how this can be done  if the two sets o f  variables involved have different numbers  o f  
variables or  if less than the maximal  number  of  canonical  variates are determined. It  will 
be shown here that  Theorem 2 permits a fully general treatment.  

Let X I be a s tandardized n x k matrix of  rank r I and X2 be a s tandardized n x m 
matrix of  rank r2, and let rl > r2. Suppose it is desired to determine r pairs of  canonical  
variates f rom X 1 and S2 ,  r ~_~ /'2" Then the problem is to determine a k x r matrix B1 and 
an m x r matrix B2 which maximize 

t/(Bt, B2) = tr B'tX'~X2 B2 (17) 

subject to the constraints 

B'tX'IXxBt = B'2 X'2 X2 B2 = I,. (18) 

Define the Eckar t -Young decomposi t ions X t = PIDtQ't, X2 = P2D2Q'2 and P'tP 2 = 
UFV', with P'tP1 = Q'IQI = It1, P'2P2 = Q'2 Q2 = 1,2, U'U = v ' v  = v v '  = 1,2, 31, D2 
and F diagonal. F r o m  08)  it is clear that  C't = B'~QID1 and C~ = B'2Q2D 2 are semi- 
o r thonormal  of  rank r. N o w  rl(Bl, B2) can be written as 

r/(Bx, B2)  = tr B'IQ1DtP'IP2D2 Q~ B 2 = tr C'tUFV'C2. (19) 

Since C't U is subor thonormal  of  rank < r and V'C2 is subor thonormal  of rank r, Theo-  
rem 2 implies 

r/(B~, B2) < tr FE , .  (20) 

This bound  can be attained by taking 

and B2 = Q2D21V [ . :  .] (21) 

where N is an arbitrary o r thonormal  r x r matrix. This is sufficient to show that  B t and 
B2 as given in (21) maximize the sum of  the first r canonical  correlations. 

Discussion 

The applications discussed above clearly demonst ra te  the practical utility of  Theo-  
rem 2. M a n y  other  applications could be cited. Fo r  instance, the proofs in Kris tof 's  Ex- 
ample 3 and 5 [Kristof, 1970] can be simplified if Theorem 2 is used instead of  Theorem 
1. In fact Kris tof 's  proofs for these Examples can be interpreted as implicit generalizations 
of  Theorem 1 in the direction of  Theorem 2. 
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