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ORTHOGONAL ROTATIONS TO MAXIMAL AGREEMENT FOR 
TWO OR MORE MATRICES OF DIFFERENT COLUMN ORDERS 
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Methods for orthogonal Procrustes rotation and orthogonal rotation to a maximal sum of 
inner products are examined for the case when the matrices involved have different numbers of 
columns. An inner product solution offered by Cliff is generalized to the case of more than two 
matrices. A nonrandom start for a Procrustes solution suggested by Green and Gower is shown 
to give better results than a random start. The Green-Gower Procrustes solution (with nonran- 
dora start) is generalized to the case of more than two matrices. Simulation studies indicate that 
both the generalized inner product solution and the generalized Procrustes solution tend to attain 
their global optima within acceptable computation times. A simple procedure is offered for ap- 
proximating simple structure for the rotated matrices without affecting either the Procrustes or 
the inner product criterion. 
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Procedures for rotating matrices to maximal agreement (often called matching pro- 
cedures) have been offered by many authors and have found numerous applications both 
in the context of factor analysis and multidimensional scaling. Surveys of several methods 
have been given by Kettenring (1971) and, more extensively, by Ten Berge (Note 2). Ten 
Berge offered a taxonomy of matching procedures based on these following five dimen- 
sions, 

First, each matching procedure is aimed at optimizing some particular criterion (loss 
function or agreement measure). Three criteria are especially popular: The Procrustes 
criterion, the inner product criterion, and the congruence criterion. Let As, i = 1, 2 . . . . .  m, 
be given matrices of order n x k~, with n > kl > k2 > "'" > kin, and let T~ be rotation 
matrices of order ks x kin, i = 1, 2 . . . . .  m. Then the Procrustes criterion is defined as 

f (T1,  T2 . . . . .  Tin) = ~. tr (A,T~ - A~ T~)'(A~ T~ - Aj Tj) (1) 
i<j 

which shows that 'Procrustes' is synonymous to 'least-squares' in this context. The inner 
product criterion is defined as 

g(T1, T2 . . . . .  T,) = ~' tr T'i A'~ Aj  Tj. (2) 

The congruence criterion is defined as 

ks 

h(T 1, T z . . . . .  Tin) = ~ ~ q~(A s t,p, Aj  tip) (3) 
S<j p=l  

where tk is Tucker's coefficient of congruence (Tucker, Note 3), a measure of proportion- 
ality of vectors. The inner product criterion can be understood as a weighted congruence 
criterion, each congruence being weighted by the geometric mean of the squared lengths 
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of the two vectors involved. On the other hand, the inner product criterion coincides with 
the Procrustes criterion in some important special cases, as will be explained below. 

A second dimension along which Ten Berge classified matching procedures is con- 
cerned with the use of orthogonality constraints on the rotation matrices Tt, T2 . . . . .  Tin. 
Very often these matrices are required to be columnwise orthogonal in some sense, but 
unrestricted solutions also exist. 

A third distinction is that between simultaneous and successive solutions. In the latter, 
the columns of the rotation matrices are computed successively, subject to orthogonality 
constraints with respect to the columns already computed. This distinction is immaterial 
for unrestricted solutions. 

Fourth, Ten Berge distinguished matching procedures for m = 2 matrices from oener- 
alized procedures involving three or more matrices. In the case m = 2 he added the dis- 
tinction between one-sided procedures, where T 2 is an identity matrix, and two-sided pro- 
cedures, where no such constraint is imposed. 

Finally, Ten Berge distinguished procedures for the case k~ = k2 . . . .  = kin, called 
symmetric in the present paper, from procedures which allow the matrices A~ to have 
unequal numbers of columns (the asymmetric case). 

The present paper is concerned with only a small subset of the set of matching prob- 
lems generated by Ten Berge (Note 2). Specifically, we shall examine the simultaneous 
orthogonal Procrustes and inner product rotation problems. The distinction between one- 
sided and two-sided rotations for m = 2 is irrelevant here because T2 can always be incor- 
porated in T~: Postmultiplying both T 1 and T 2 by T~ does not affect function (1) or (2). 
This leaves us with these four problems to consider: 

Problem 1 : 

Problem 2: 

Problem 3: 

Problem 4: 

Maximize 0(7"1) = tr T'~A'~A 2 subject to the constraint T'a 7"1 = lk  2, 

Maximize (2) subject to the constraint 
t 

T'ITI = T2 T2 . . . . .  T~ Tm= lkm, m > 2; 

Minimize f(T1) = tr (A17'1 - A2)'(A17"1 -- A2) subject to the constraint 
T'I TI = lk2 ; and 

Minimize (1) subject to the constraint 
t r J 

Tx T1 = T2  T2 . . . . .  Tm Tm= lk m , m > 2. 

In the symmetric case Problems 1 and 3 coincide. Solutions are well-known, e.g., Green 
(1952) and Cliff (1966). The generalized Problems (2) and (4) also coincide in the sym- 
metric case. A solution was derived by Ten Berge (1977). In the asymmetric case the four 
problems are distinct. A solution for Problem 1 was offered by Cliff (1966) and a solution 
for Problem 3 was suggested by Green and Gower (Note 1). The main purpose of the 
present paper is to generalize these two asymmetric solutions to the case m > 2. 

Generalization o f  the Asymmetric  Orthogonal Inner Product Rotation 

The solution to Problem 1 can be obtained at once from the Eckart-Young or singu- 
lar value decomposition 

A'IA2 = PDQ'  (4) 

with P'P = Q'Q = QQ' = Ik2 and D (k 2 x k2) diagonal and nonnegative. The solution for 
7"1 is 

7"1 = PQ' (5) 
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cf. Cliff (1966). For computational purposes it may be convenient to obtain this solution 
in a different way. Let A]  be an n x kl matrix obtained by adding kl - k2 zero columns 
to A 2 . Replacing A2 in (4) by A~" will yield a kl x k 1 solution Ti ~ in (5). Deleting the last 
k~ - k 2  columns from T~" will yield T1, cf. Ten Berge (Note 2, p. 29). This approach 
permits treatment of the asymmetric Problem (1) as a symmetric problem. 

So far, no solutions for the generalized Problem 2 have been offered. Although Ten 
Berge (Note 2, p. 44) outlined an approximate solution this does not seem to be generally 
useful. However, a very simple and straightforward generalized solution can be derived. 
Consider the inner product function (2) as a function of T~ only, for fixed matrices Tj 

(J # O: 

9 ( ~  = tr T~ A~ ~ Aj Tj + Ki (6) 

where Ki is a constant with respect to T~. It is readily verified that maximizing (6) is 
simply a matter of rotating Ai to a maximal sum of inner products with the matrix ~i*~ 
Aj Tj. Clearly, once starting values have been inserted in 7"1, T2, . . . ,  T,, each of these 
matrices can be replaced in turn by the optimal T~, for fixed matrices T~ (j # i). The 
optimal T~ can be obtained as 7"1 from the solution of Problem 1, taking A~ = A~ and 
A2 = ~ j , i  Aj Tj. Since each replacement increases (2) monotonely and (2) is bounded, this 
procedure must converge if it is terminated when no further significant increments are 
obtained. In fact this procedure is a very straightforward generalization of Ten Berge's 
solution for the symmetric generalized inner product rotation problem (Ten Berge, 1977). 

A Solution for Problem 3 

Above, Problem 3 was defined as the problem of minimizing 

f (TO = tr (A1T1 - A2)'(A1T1 - Az) (7) 

subject to the constraint T'~T~ = Ik2. Until very recently, no solution to this problem 
(with kl > k2) was available, except for the special case of k2 = 1, cf. Ten Berge & Nevels 
(1977). Ten Berge (Note 2, p. 29-30) derived as necessary conditions for a minimum of (7) 
that T'~A'~A 2 be symmetric and positive semidefinite. This result is stronger than that 
obtained by Green and Gower (Note 1, p. 4), who showed that T'~A'~A 2 must be sym- 
metric. More importantly, Green and Gower offered an algorithm for the minimization of 
(7): Initially, the matrix A 2 is extended into an n x k 1 matrix A~ by adding k l -  k 2 

arbitrary columns to it. Then the following two steps are taken iteratively: 

Step 1. 

Step 2. 

The symmetric orthogonal Procrustes problem for the matrices A1 and A~ 
is solved by the conventional methods to yield a k~ x kl rotation matrix 
TL 

The matrix T* is partitioned as T~' = IT  t I T,] where T I is of order k 1 x k2 
and T. is of order k~ x (k~ - k2). The last kl - k2 columns of A~ are re- 
placed by A 1 T.. 

Clearly, Step 2 has no effect onf(T1). Step 1 improves the fit between A 1T~' and A*. This 
fit partitions into the fit between A1T1 and A2, cf. (7), and the fit between A I T .  and the 
submatrix containing the last kl - k  2 columns of A~. Since the latter fit can only be 
diminished by Step 1, the fit between A1T1 and A2 must be improved by Step 1. This 
explains why the procedure must improve on each cycle, as was claimed by Green and 
Gower. In addition, after convergence, the matrix T*'A'tA* must be symmetric and posi- 
tive semidefinite by Step 1, cf. Ten Berge (1977, p. 269). Since T'IA'~A2 is a submatrix of 
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T* 'n '  ~* with diagonal elements that are also diagonal elements of the latter matrix, 1 z a  l " X 2  

T'~A'IAe must, upon convergence, be symmetric and positive semidefinite, hence it must 
satisfy the necessary conditions mentioned above. 

Avoidin# Local Minima With the Green-Gower Method 

Green and Gower (Note 1, p. 6) point out that their method need not converge to the 
global minimum. The following artificial example may demonstrate this. Let 

A1 = 2 ; A 2 = 0 , (8) 
0 0 

and let a zero column be added to A 2 to yield an initial A*. Then Step 1 of the Green- 
Gower method will yield a rotation matrix 

T* = t (9) 
0 

with x = 1 or x = - 1 .  The third column of T~' is T, .  Since A1T. 'is the zero vector, 
nothing changes by Step 2 of the Green-Gower method, which breaks down at this point, 
yielding a valuef(Tl) = 1. This is not the global minimum of zero, which is attained for 

7"i= 0 (10) 
0 

where y = (.75) 1/2 or -( .75) 1/2. 
In order to avoid local minima Green and Gower suggest computing several solu- 

tions, with different random starts for A~. They report that "in our limited experience 
local optima are seldom found." It seems, however, that better starts can be chosen. For  
instance, a nonrandom start can be derived from a conditional solution to Problem 3 
suggested by Ten Berge (Note 2, p. 30). This solution is based on the expansion off(T1), cf. 
(7), a s  

f(TO = tr T'~A'~A1T 1 - 2 tr T'IA'IA 2 + tr A'2 A 2 (11) 

and takes T 1 = KW, where K contains the k2 eigenvectors of A'tA1, associated with the k2 
smallest eigenvalues, and W is a k 2 x k 2 orthonormal matrix which maximizes tr T'~A'~A 2. 
Note that W does not affect tr T'~A'~A~T1. It can be verified that this solution minimizes 
the second term of (11) conditional on minimizing the first term. This will not produce the 
global minimum off(T1) but it will approximate this minimum. A nonrandom start as- 
sociated with this conditional solution can be obtained by inserting the k2 - kl eigenvec- 
tors of A'~A 1, associated with the k2 - k l  smallest eigenvalues, in T, and adding the 
matrix A1 T, to A2. We shall refer to this start as 'the conditional start'. 

In order to investigate the liability of either starting option to producing local 
minima the options were compared in a number of actual computations. Data  sets were 
selected or constructed in such a way that the global minimum could be determined or 
was known in advance. 

For  the case k2 = 1 the global minimum off(T1) can be found by a method offered 
by Ten Berge and Nevels (1977). The authors computed both the global minimum and the 
minima attained by the Green-Gower method with the conditional and the random starts, 
for 21 sets of data with k2 = 1 and kl varying between 4 and 8. In all 21 cases the 
conditional start yielded the global minimum. The random start yielded the global mini- 
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mum at once in 19 cases. In two cases the random start had to be repeated twice before 
the global minimum was attained. 

A similar study was conducted for 13 sets of data where perfect fit was known to 
exist by construction. In these sets kl varied from 3 to 8 and k2 varied from 2 to 4. Again 
the conditional start yielded the global minimum in all cases. The random start produced 
the global minimum at once in eleven cases. In two cases, four or five restarts were 
needed. 

In addition, 15 artificial data sets were constructed in which A~AI was a scalar 
matrix. For these data minimizing f(T~) coincides with maximizing g(Tl), tr T'~A'tA~Tt 
being constant. The global minima were derived from Cliff's solution to Problem 1 (see 
above). In all 15 cases both starting options yielded the global minimum. 

Finally, the number of iterations required by the two starting options were com- 
pared. The t5 artificial data sets with scalar A'tAI and the four data sets for which the 
random option produced local minima were left out of consideration. For  the conditional 
start the initial truncated eigendecomposition of A'IAt was counted as one additional 
iteration. Over the 30 data sets considered, both options required the same number of 
iterations in 5 cases; the conditional option required more iterations in 12 cases and less 
iterations in 13 cases. 

The first three studies indicate that the conditional start is superior to the random 
start in terms of sensitivity to local minima. Both starts seem to entail similar compu- 
tation times but since the random start needs to be repeated several times the conditional 
start approach saves time as well. It can he concluded that the Green-Gower method with 
the conditional start is the most attractive solution to the asymmetric orthogonal Pro- 
crustes problem for two matrices currently available. 

A Solution for the Generalized Orthogonal Asymmetric Procrustes Problem 
Above, the solution to Problem I was generalized to a solution of Problem 2, by 

rotating each matrix in turn to a maximal sum of inner products with the sum of the 
remaining rotated matrices, cf. (6). In a parallel fashion the solution to Problem 3 dis- 
cussed in the previous section can be generalized to the case of more than two matrices 
(Problem 4). Consider the generalized Procrustes function (1) as a function of T~ only, for 
fixed matrices Tj (j # i): 

f(T3 = (m - 1) tr T'iA'~AiT~ - 2 tr T'iA'~A~Tj + K~ (12) 

where K~ is a constant with respect to T~. Completing the square yields 

f(Ti) = (m - 1)tr  T~A~Ai T~ - 2 t r  IT~A'i~ Aj Tjl 
L j , i  / 

[(z + ( m - - 1 ) - 1  tr A~ Aj + K  + 
L \ j ~ l  / \j,i 

=(m--1) t r [ ( A , T ~ - ~ _ ~ I ) ( A ,  Ti-- .~_~ Am~_T1)]+K~ (13) 

where K~ + is another constant with respect to T~. From (13) it is obvious that minimizing 
(12) is simply a matter of rotating Ai to a best least squares fit with (m - 1)-1 ~_~j.i Ai T~, 
the average of the remaining rotated matrices. Again, after starting values have been 
inserted in T1, T 2 . . . . .  Tm each of the matrices T/(i = 1, 2 . . . . .  m) can be replaced in turn 
by the optimal T t for fixed matrices Tj (j  # 0. The optimal T~ can be obtained by solving 
Problem 3 for At = Ai and A2 = (m--1)  -1 ~ . ;  A i T  j. Each replacement reduces (1) 
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monotonely and (l) is bounded. Therefore, the procedure must converge if it is terminated 
when no further significant reduction of (1) is obtained. 

Simulation Studies for the Two Generalized Procedures 

The solutions to Problem 2 and 4, briefly labelled 'inner product method'  and 'Pro-  
crustes method '  in this section, were implemented in a Pascal computer program. The 
program was run both on randomly generated factor loading matrices and on real data. 

First, the inner product method was run on 21 sets of random matrices. Each set 
contained at least three and at most 10 matrices, with 10, 15 or 20 rows, and numbers of 
columns varying between 1 and 12. The values of (2) obtained were compared with two 
upper bounds that can be derived for (2) as generalizations of upper bounds for the 
symmetric case derived by Ten Berge (1977, p. 273). The ratios of obtained values of (2) to 
the best upper bound in each set varied from .879 to .993, with an average of .936. This 
implies that the obtained values of (2) cannot be far below their maxima. Computing 
times on a CDC Cyber 170/760 were reasonable. In only one data set, with 10 matrices, 
more than half a minute CP-time was needed. 

Second, the Procrustes method was run on 22 sets of random matrices where by 
construction perfect fit was known to exist. Again, each set contained between 3 and 10 
matrices with 10, 15 or 20 rows and numbers of columns varying between 1 and 12. In 21 
cases perfect fit was obtained. A minor departure from perfect fit was obtained in one 
case. Computing times were higher than for the inner products method. In only two cases, 
with 8 and 10 matrices, respectively, more than two minutes CP-time were needed. 

Third, 20 sets of random matrices were constructed such that A~ A i was a scalar 
matrix, thus yielding the Procrustes criterion and the inner product criterion identical up 
to a constant. Each set contained between three and eight matrices with 10, 15 or 20 rows 
and numbers of columns varying between 1 and 12. For  the inner product method, the 
ratios of obtained values of (2) to the best upper bound in each set varied from .927 to 
.999, with an average of .971. The Procrustes method yielded values of (2) which were 
equal or differed trivially from the values obtained by the inner product method. 

Finally, the inner product method was run on 11 sets of real matrices. Each set 
contained between three and six matrices with numbers of rows ranging from 8 to 18 and 
numbers of columns ranging from 1 to 8. The ratios of obtained values of (2) to the best 
upper bound for each set now had an average of .999. In addition, the computations never 
took more than two seconds CP-time. 

These studies show that there is no severe local opt imum problem for the two gener- 
alized methods discussed in this section. Also, computing times on a high speed computer  
tend to be quite acceptable. 

A description of the computing program used in this study is available upon request 
from the authors. 

Rotation to Simple Structure in the Matched Space 

For  m > 1 both the Procrustes criterion (1) and the inner product  criterion (2) are 
insensitive to a joint rotation in the matched space. That  is, postmultiplying the matrices 
T1, T2 . . . . .  Tm by an arbitrary or thonormal  km × k ,  matrix N does not affect the match. 
This property was discussed by Cliff (1966, p. 40) for the case m = 2 and readily gener- 
alizes to the case m > 2. It permits approximating 'simple structure' for the rotated 
matrices without any loss of agreement between them. An approximation to simple struc- 
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ture  can  be o b t a i n e d  c o n v e n i e n t l y  by  c o n s t r u c t i n g  the  s u p e r m a t r i x  

/A TI\ 

\A£ r j  
a n d  sub jec t ing  it to  a v a r i m a x  ro ta t ion .  Th i s  yields a c o m m o n  r o t a t i o n  N for the  ma t r i ces  
Ti, i = 1, 2 . . . . .  m which  a p p r o x i m a t e s  s imple  s t ruc tu re  for all  ma t r i ces  Ai T~N s imul t a -  

neous ly .  
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