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Centering a matrix row-wise and rescaling it column-wise to a unit sum of  squares requires an 
iterative procedure. It is shown that this procedure converges to a stable solution. This solution need 
not be centered row-wise if the limiting point of  the iterations is a matrix of rank one. The results o f  
the present paper bear directly on several types of  preprocessing methods in Parafac/Candecomp. 

Key words: ipsative data, doubly standardized matrices. 

Clemans (1966) has given an extensive discussion of  ipsative matrices, defined as 
matrices having the property that the sum of  the scores over  the attributes for each of  
the entities is a constant. Typically, ipsative matrices are obtained by row-wise cen- 
tering, that is, subtracting the means row-wise, where each row corresponds to an 
entity. In addition, Clemans has suggested the possibility of  standardizing the ipsative 
matrix column-wise, which yields the "ipsative-standard score matr ix"  (p. 7). How- 
ever,  it is readily seen that the latter matrix is no longer ipsative, because rescaling a 
matrix column-wise affects the row means differentially. Therefore,  if a matrix is de- 
sired which is both ipsative and standardized, then one has to resort to an iterative 
procedure (Cattell, 1966, p. 118). Procedures of this kind have recently drawn attention 
in the context  of Parafac/Candecomp (Harshman & Lundy,  !984; Kruskat,  1984). In 
particular, iteratively centering a three-mode array of order  p x q x r across the p 
elements of one mode and rescaling within elements of  that mode comes down to the 
iterative process of centering a matrix of  order p x qr column-wise and rescaling it 
row-wise. Kruskal has recently claimed that " though it has not been proved mathe- 
matically, we believe that this procedure will always converge"  (p. 61). In the present 
paper, a mathematical proof  will be provided in support of  this claim. However ,  it will 
also be shown that, after convergence,  the resulting matrix need not be ipsative and 
standardized at the same time. 

Formal Statement of the Problem, and a Basic Result 

Let  Y denote a k x n data matrix with observations for k entities on n variables and 
let J = (I - 1 l ' /n), the centering operator  of order n. Then YJ is the row-wise centered 
version of Y. Rescaling the columns of Y to unit sums of  squares can be expressed as 
post-multiplication of  YJ by D -~/2, where D is the diagonal of (JY' YJ). The resulting 
matrix YJD-I/2 can again be centered row-wise by taking YJD-1/2j, and so on. 

It is important to note that this procedure consists of subsequent postrnultiplica- 
tions of  Y. Therefore,  if the initial Y is centered column-wise,  this property will survive 
each additional step of  the procedure.  For  this reason, rescaling our matrix contemn- 
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wise is tantamount to standardizing it column-wise, provided that the initial Y has been 
centered column-wise. 

The main purpose of the present paper is to show that the iterative procedure 
converges. This will be accomplished by showing that the procedure monotonely de- 
creases the nonnegative function I' YjYjl ,  evaluated after the rescaling step, where Yj 

• is the current version of Y after j  iterations. First, however, we need to have a general 
result on correlation matrices. 

Result  1. Let R be an n x n correlation matrix and let R ,  be the correlation matrix 
obtained from J R J  by 

R ,  = D -  I/2JRJD- 1/2, (1) 

where J = j2 is the n × n centering matrix and D = Diag (JR J). Then 

I 'RI >I I 'R .  1. (2) 

Proof. Let Y be any matrix such that Y' Y = R, and let ei be the i-th column of the 
n × n identity matrix. From the Schwartz inequality we have, for i = 1 . . . . .  n, 

(e[JRei) 2 = {(e[JY')(Yei)}2 ~ (e[JRJei)(e[Rei) = e/JRJei,  (3) 

and hence 

(JR). ~ D::. 

Noting that D I/2 = Diag (JRJD -1/2) it can be seen from (4) that 

tr J R J D -  1/2 >t tr JR. 

Furthermore, we have the inequality 

II Y J  - Y J D  - '/2jI12 i> o, 

which is equivalent to 

(4) 

(5) 

(6) 

tr JR + tr J R ,  1> 2 tr JRJD - 1/2 (7) 

Combining (5) and (7) yields 

tr J R ,  >I tr JR.  (8) 

By expanding the definition of J we arrive at 

I 'R .  1 ~< I 'RI,  (9) 

which completes the proof of Result 1. [] 

Result 1 is the key result to be used in the convergence proof below. However, it 
is also interesting in its own right. That is, centering a matrix of standard scores 
row-wise reduces the sum of the correlations between the variables, according to 
Result 1. 

A Proof of Convergence 

Let the iterative procedure, described above, be summarized by the expression 
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Yj+ l = YjJDj- l/z, j = 0, 1, 2, 3 . . . .  (10) 

where  Dj = [Diag (J YjYjJ)] and the initial matrix Y = Yo is unders tood to have  unit 
sums of  squares column-wise.  In (10) and elsewhere in the present  paper,  it is tacitly 
assumed that Dj is nonsingular. This excludes the case where one or more columns of  
Yj.J are zero. 

Define, f o r j  I> 0, Rj = YjYj. and R~+1 = Yj+L Yj+ i. Then it is clear from Result  1 that 
the iterative procedure  (10) reduces I 'Rj l  monotonely,  a s j  increases.  Because I 'Rj l  is 
bounded below (by zero), the iterative procedure  must  converge to a solution where  the 
difference between l 'Rfl  and I'Rj.+11 tends to zero. It will now be shown that the 
difference between Yj. and Yj+ ~ tends to zero as well. For  this purpose,  let us revisit the 
p roof  of  Result  1. Suppose that equality holds in (9). Then we have,  with Y. = YJD -~/2, 

YJ= Y . J ,  (11) 

see (6). It  follows that 

D = Diag (JY' YJ) = Diag (JY ' ,Y .J )  = D , .  (12) 

Rescaling the columns of Y . J  again to unit sums of  squares results in the matrix 

Y,  JD , 1/2 = Y . J D -  i/2 = YJD-  1/2 = y . .  (13) 

This shows that the procedure  (10) converges  to a stable matrix Y, with unit sum of  
squares for each column. 

Unfortunately,  this matrix Y, need not be centered row-wise.  Note  that it has not 
been shown that I 'R1 tends to zero,  therefore t t Y ,  J - Y, tl 2 has not been shown to tend 
to zero. This means that a solution may be obtained which fails to meet  the purpose  of 
the procedure.  

In fact,  examples  can be constructed where the final solution Y. is stable, with Y . J  
also stable, but Y, 7 ~ Y ,J .  However ,  these examples  have a peculiar form of  necessi ty ,  
as will be shown below. 

Result  2. I f  Yj = y/+ 1 and Y~ ~ Y J  then Yj has rank one. 

Proof." I f  Yj = Yi+ 1 then R / =  Rj+ l and we have l 'R i l  = 1 'R/+ 1 I. In the p roof  of  
Result  1 we cannot have equality in (9) unless (3) holds as an equality for i = 1 . . . . .  n. 
In the present  notation, this yields 

YjJei = Ai Yjei (14) 

for certain scalars Ai, i = 1 . . . . .  n, if Yj = Yj+I. Defining/zi = n(1 - Ai) we can simplify 
(14) as 

~i~ei = ~l 05) 

for  i = 1 . . . . .  n. If, for some i, p.; = 0, then ~1 = 0 and Yj = Y j ,  which would produce  
a contradiction. Therefore,/ .L i # 0 for i = 1 . . . . .  n. This shows that all columns of  Y~ 
are proportional  so Yj. has rank 1. This completes  the proof  of  Result 2. [ ]  

Conversely ,  when Yj. has rank one then Yj = Yj.+ l in any case. This follows at once 
upon writing ~. = xu' for some vector  x with x'x = 1 and a sign vector  u. Howeve r ,  if 
the rank of  Yj is 1 and, therefore,  Yj = Yj.+ I, we still need not have YjJ = ~., It  follows 
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that the procedure may converge to a rescaled yet noncentered solution. It is clear from 
Result 2 that this can only happen if the procedure converges to a rank one solution. 

Result  3. The rank of  Yj ( j  = 1, 2 . . . .  ) is at least (rank Yo - 1). 

Proof. A f t e r j  iterations we have 

V1-~1/2  = I/2jD 1- I/2 *j*-'j- I YoJDo " '"  D j -  I/22 J =-- Yo W (16) 

for some n x n matrix W. It is well-known that J has n - 1 unit eigenvalues and one zero 
eigenvalue. Therefore,  J can be written as J = KK'  for some n x (n - 1) matrix K with 
K ' K  = l(n-u.  Let  K'D~-~/2K =- Wj. Then YoW can be written as 

Yo W =  Y o K W o W I " "  W j - 2 K ' .  (17) 

Clearly, each Wj is nonsingular hence W is of  rank n - 1. By Sylvester ' s  inequality 
(Gantmacher,  1959, p. 66) we have 

rank Y0 W i> (rank Y0) + (rank W) - n = (rank Y0) - 1. (18) 

Clearly, rank Y0 W = rank Yj. This completes the proof  of  Result 3. [] 

From Result 2 and Result 3 one might be tempted to infer that starting with an 
initial Yo that has rank at least three will prevent  convergence to a noncentered solution. 
However ,  a reviewer pointed out that this does not follow. Specifically, suppose that Yo 
has rank three or higher. Then the solution has at least rank two. However ,  the pro- 
cedure is terminated as soon as I 'Rjl = t'Ri+~ I holds in a finite number of  decimal 
places, implying that (14) and (15) do not hold exactly. Therefore ,  the solution does not 
satisfy (14) and (15) yet the limiting point of the Ys a s j  tends to infinity may satisfy (14) 
and (15). In other words, if the procedure converges to a solution of  rank one the actual 
solution Yj may have higher rank. In fact, the reviewer has provided examples where 
Y0 has arbitrary rank yet the procedure yields a noncentered solution. It can be con- 
cluded that the iterative procedure (10) may yield a non-centered solution if it con- 
verges to a rank one matrix. The problem, how to determine from Yo whether  or not the 
procedure  will converge to a rank one solution, remains yet to be solved. 

Discussion 

The results of the present paper are particularly relevant for certain varieties of  
Parafac preprocessing, where the three-mode array is to be centered across elements of  
one or two modes,  and to be rescaled within elements of  either mode, see Kruskal 
(1984) and Harshman and Lundy  (1984). However ,  many other types of Parafac pre- 
processing remain yet to be examined (Harshman & Lundy,  p. 247-271). 

Harshman and Lundy (1984, p. 252) have given a matrix expression for the itera- 
tive centering and rescaling of  two modes of  a three-way array,  where each slab of  the 
array is premultiplied by the same matrix M~ and postmultiplied by the same matrix 
M j,. They  note that the properties of  these matrices "a re  still under s tudy" .  The proof  
of  Result 3 has an implication for these matrices. That  is, they have precisely the same 
structure as matrix W in (17), hence they are of  rank k - l and n - 1 respectively,  if 
the slabs are of  order  k x n. Combining this with the observation that both M,  and M b 
are column-centered (Harshman & Lundy,  p. 253) it can be concluded that the column 
spaces of  M a and M b a r e  known. 
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