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F I T T I N G  T H E  O F F - D I A G O N A L  D E D I C O M  M O D E L  IN T H E  
L E A S T - S Q U A R E S  S E N S E  BY A G E N E R A L I Z A T I O N  OF T H E  

H A R M A N  A N D  J O N E S  M I N R E S  P R O C E D U R E  OF F A C T O R  A N A L Y S I S  
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Harshman's DEDICOM model provides a framework for analyzing square but asymmetric 
matrices of directional relationships among n objects or persons in terms of a small number of 
components. One version of DEDICOM ignores the diagonal entries of the matrices. A straight- 
forward computational solution for this model is offered in the present paper. The solution can 
be interpreted as a generalized Minres procedure suitable for handling asymmetric matrices. 
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DEcomposi t ion  into Directional  COMponents  (DEDICOM) has been suggested by 
Harshman  (1978) as a method for the analysis of  square matrices of  directional data. 
Such matrices contain intrinsically asymmetr ic  relations among n objects. Typical  ex- 
amples  are friendship (interpersonal attraction) matrices,  brand-switching probabil i ty 
matrices,  or confusion matrices,  see Harshman,  Green,  Wind and Lundy  (1982). 

Le t  X denote an n by n directional data matrix. In the D E D I C O M  model X is 
decomposed  as 

X = A R A '  + E ,  (1) 

where A is an n x q matrix (q < n) of  coefficients expressing the associat ion be tween 
the n objects and q "bas ic  t ypes "  of  objects,  R is a q x q matrix giving the directional 
relationships among the basic types,  and E is an n x n matrix of  error  terms. 

Equivalently,  any element x o. of X is decomposed  as 

q q 

xij = ~ ~ aisajtrst + eij. (2) 
s = l  t = l  

It is clear f rom (2) that x o. is approximated as the sum of  q2 triple products.  Each of  these 
products  contains the association ai~ of  subject i and type s, the association aj, of  object  
j and type t, and the directional association of type s with respect  to type t. As a result, 
a large entry x o in a friendship matrix, for instance, arises when type s strongly prefers 
type t and persons i and j are strongly associated with type s and t, respectively.  

Har shman  (1978, p. 15) noted that the diagonal entries of  X are often incomparable  
with the off-diagonal entries in terms of the underlying psychological processes.  There-  
fore, instead of fitting the " c o m p l e t e "  model (1) one may often prefer  to fit the off- 
diagonal model 

X - Diag (X) = A R A '  - Diag ( A R A ' )  + E - diag E. (3) 
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At this point it is instructive to compare (1) and (3) with familiar factor analytic 
models. Harshman et al. (1982) have pointed out that the matrix A resembles a matrix 
of factor loadings and that R is analogous to a matrix of correlations or covariances 
between oblique factors. In fact, when X is a symmetric matrix of covariances or 
correlations then (1) reduces to principal components analysis and (3) reduces to factor 
analysis. 

The present paper deals with computational solutions for fitting the off-diagonal 
DEDICOM model in the least-squares sense. Specifically, it will be shown that (3) is not 
only a generalized factor analysis model conceptually, but that it can also be handled by 
a generalized factor analysis algorithm computationally. That is, a computational so- 
lution for (3) can be obtained by generalizing the MINRES algorithm (Harman & Jones, 
1966) to handle asymmetric matrices. 

A Direct Solution for the Off-Diagonal DEDICOM Model 

Fitting the complete DEDICOM model (1) amounts to minimizing the function 

f ( A ,  R )  = HX - ARA'I I  2 = ~ (xij - a[Raj) z, 
i4 

(4) 

where a [ i s  row i of A and a s is the transpose of rowj  of A. 
Similarly, fitting the off-diagonal model (3) amounts to minimizing 

g ( A ,  R) = [~ - Diag (X) - A R A '  + Diag (ARA')[[ 2 = ~ (xij - a[Raj) 2. 
i4:j 

(5) 

It is obvious that f >- g, with f = g only if Diag (X) = Diag ( A R A ' ) .  Furthermore, 
it is well-known that, for fixed A, the minimizing R of (4) is given by 

R = ( A ' A ) -  I A ' X A ( A ' A ) - 1 ,  (6) 

if the inverse exists (Penrose, 1956). On the other hand, minimizing (4) as a function of 
A, for fixed R, seems quite cumbersome. Although various solutions have been sug- 
gested (Harshman et al., 1982; Harshman & Kiers, 1987) these are either approximate 
least-squares solutions or they lack the property of monotone convergence. Recently, 
Kiers (1989) developed a truly alternating least-squares method for minimizing (4), 
based on column-wise updating of A. The method converges monotonely, but is some- 
times painfully slow. 

Solutions for minimizing (5) can be obtained from methods that minimize (4), with 
an additional step added to each iteration. That is, after updating R and A one may 
replace the diagonal elements of X by their least-squares estimates, based on the cur- 
rent values of the model parameters, see Harshman (1981, p. 5). For instance, one 
might iteratively update R according to (6), update the columns of A according to the 
Kiers (1989) method and replace Diag (X) by Diag ( A R A ' ) .  Harshman (1981, p. 5) noted 
that it is perhaps more elegant to eliminate the extra step and instead modify the main 
steps in such a way that they simply do not depend on the diagonal entries. It will now 
be shown that, in tact, (5) can be minimized as a function of each row of A directly, 
which allows us to construct a more straightforward algorithm for minimizing (5). 

Specifically, let the vectors c i and ri contain the n - I off-diagonal elements of 
column i and row i of X, respectively. Then the problem of minimizing g ( A ,  R )  as a 
function of row i of A alone amounts to minimizing 

gi(ai) = lies - AiRaill 2 + llri - A i R '  aill 2, (7) 
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TABLE 1 

Values of g(A,R) and CPU-times (in parentheses) for eight sets of 
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d a t a .  

Data set n q 

Generalized Generalized 

Minres Takane Minres Takane 

1 8 2 4594.17 ( 6.6) 4611.34 ( 4.1) 4590.99 (16 
1 8 3 2570.85 ( 7.2) 2763.80 ( .4) 2568.71 (16 
1 8 4 511.58 (15.4) 1493.34 (24.4) 511.53 (16 
2 8 2 940.70 ( 1.6) 940.77 ( .7) 940.69 (16 
2 8 3 728.89 (12.7) 748.61 ( 1.2) 728.09 (16 
2 8 4 440.33 (27.7) 479.13 (14.3) 443.80 (16 
3 16 2 1302.10 ( 6.4) 1302.14 ( 2.2) 1302.10 (16 
3 16 3 689.64 ( 5.9) 689.80 ( 5.6) 689.61 (16 
3 16 4 360.00 (48.9) 509.05 (13.9) 379.57 (16 
4 6 3 10795.59 (26.8) 11703.75 (13.5) 10932.32 (16 
5 6 3 9226.87 ( 3.5) 9233.81 ( 1.4) 9225.67 (16 
6 6 3 10246.69 (19.4) 11123.07 (12.9) 10269.23 (16 
7 6 3 9828.11 ( 3.5) 9830.47 ( 1.6) 9824.54 (16 
8 6 3 13219.17 ( 3.0) 13977.93 ( .4) 13215.03 (16 

4591.18 
2657.12 
1523.01 
940.69 
738.97 
477.70 

1302.10 
689.61 
508.28 

11624.75 
9225.67 

11032.83 
9824.54 

12894.39 

16) 
16) 
16) 
16) 
16) 
16) 
16) 
16) 
16) 
16) 
16) 
16) 
16) 
16) 

where A i is the (n - 1) x q matrix obtained by deleting row i of A. Clearly, (7) can be 
rearranged into 

AiR 2 
g i ( a i )  = II(crl) - -  (Z~R,)aill  , (8) 

which is an ordinary least-squares regression problem, with the well-known solution 

ai = (R'A "AiR + RAIAiR') - l(R'A[ci + RA[ri). (9) 

In the special case where X is symmetric we have c i = q and it can be shown that the 
minimizing R of (4) and (5) is also symmetric of necessity. When, additionally, the 
constraint R = I is imposed, then updating the rows of A by (9) reduces to the Minres 
method of factor analysis (Harman & Jones, 1966). 

We are now in a position to outline a straightforward iterative procedure for min- 
imizing (5). After specifying q, the desired rank of the model (3), and filling A and R with 
arbitrary initial values, the following three steps are to be cycled through iteratively: 

Step 1: Replace Diag (X) by Diag (ARA'). This yields f lA,  R) = g(A, R) for the 
current A and R. 

Step 2: Replace R by the matrix that minimizes f f o r  fixed A, according to (6). 
Because g <-f, this step decreases g(A, R) at least as much as it decreases f(A, R). 

Step 3: Replace each row of A in turn so as to minimize g conditionally according 
to (9). 

Clearly, Step I does not affect g, but Steps 2 and 3 decrease g(A, R) monotonely. We 
have thus obtained a monotonely convergent algorithm for minimizing (5), or, equiv- 
alently, for fitting the off-diagonal DEDICOM model (3) in the least-squares sense. The 
algorithm owes its simplicity to the way in which rows of A can be optimized by (9) 
when the diagonal elements of X can be ignored. Unfortunately, when the complete 
DEDICOM model (1) has to be fitted, no such simple procedure for improving A is 
available. The procedure offered by Kiers (1989) for updating the columns of A is far 
more complicated than our (9). 
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Practical Experiences With the Proposed Algorithm 

In order to gain an impression of the efficiency of the "generalized minres 
approach" proposed above, it was applied to a number of data sets. For purposes of 
comparison, the indirect approach based on iteratively minimizing (4), with updating 
Diag (X) as an additional step, was also implemented. Two methods for minimizing (4) 
were considered, namely the method of Takane (1985) and the method of Kiers (1989). 
Because Takane's method appeared to converge faster than the Kiers method through- 
out, while on the average the same residual sums of squares (5) were obtained, it was 
decided to report only the results for the indirect approach based on Takane's method. 

Table 1 contains the obtained values of g(A, R), see (5), for three real-life data sets 
(1, 2 and 3), using dimensionalities 2, 3 and 4 in each case, and for five random matrices, 
using dimensionality 3 throughout. All iterations were started with the n x q matrix A 
containing the eigenvectors of (X + X'), associated with the largest (absolute) q eigen- 
vaiues. 

On the left hand side of Table 1 the values of g(A, R) and the associated CPU-times 
(seconds) are reported that were obtained when the iterations were terminated as soon 
as the difference between g(A, R) and its previous value, evaluated after a full cycle of 
updating A and R, was smaller than .0001 times that previous value. Clearly, using this 
time-independent stopping criterion, it appeared that the generalized Minres procedure 
yields lower values of g(A, R) in all 14 cases considered. However, Takane's method 
required far less CPU-time on the average, and stopped sooner in every case but one 
(data set 1, q = 4). Therefore, it is conceivable that the superiority of the generalized 
Minres approach is an artifact of the stopping criterion used. In order to verify this, the 
same data sets were analyzed once more, allowing a fixed CPU-time of 16 seconds. The 
obtained values of g(A, R) after 16 seconds CPU-time are reported on the right hand 
side of Table 1. Although the results for Takane's method do seem to have been 
improved, the superiority of the generalized Minres approach still prevails. In one case 
Ta.kane's method gave a lower value of g(A, R) than obtained with generalized Minres, 
in five cases the values of g(A, R) were equal, and in the remaining eight cases gener- 
alized Minres proved to be better. 

From the results of Table 1 it can be concluded that the generalized Minres ap- 
proach is a useful method for fitting the off-diagonal DEDICOM model. 

Discussion 

The algorithm suggested above fits the off-diagonal DEDICOM model while it 
ignores the diagonal values of ARA' altogether. As a result, these diagonal values may 
appear to have negative signs. Even if their sizes are irrelevant, their signs may still be 
a matter of concern, and one might want to impose a nonnegativity constraint on Diag 
(ARA'). However, such constraints seem to call for an entirely different algorithm. 
Minimizing (5) as a function of any single row of A is an unconstrained problem. Even 
if a constrained version (a~Ra i -> 0) of this problem could be solved, it is not at all clear 
how (6) could be adjusted to preserve the nonnegativity. 
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