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A GENERAL SOLUTION FOR A CLASS OF WEAKLY CONSTRAINED 
LINEAR REGRESSION PROBLEMS 

Jos M. F. TEN BERGE 
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This paper contains a globally optimal solution for a class of functions composed of a linear 
regression function and a penalty function for the sum of squared regression weights. Global 
optimality is obtained from inequalities rather than from partial derivatives of a Lagrangian 
function. Applications arise in multidimensional scaling of symmetric or rectangular matrices of 
squared distances, in Procrustes analysis, and in ridge regression analysis. The similarity of 
existing solutions for these applications is explained by considering them as special cases of the 
general class of functions addressed. 
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Consider the problem of minimizing, for fixed a - 0 and fixed 8, the function 

f(t) = liFt - ,112 + a ( t ' t  - 8) 2, (1) 

where F is a given n × m (m <- n) matrix, d~ is a given n-vector, and t is an m-vector. 
This function consists of the sum of a linear regression function and a penalty function 
for the deviation of the squared length of t from 8. Although there is no constraint on 
t in (1), the function is called "weakly constrained," because the penalty function 
prohibits a relatively large departure of t 't from 8. 

The purpose of the present paper is to solve the general problem of minimizing fit), 
and to demonstrate its applications in a variety of contexts. Specifically, it will be 
shown that certain problems in multidimensional scaling can be handled in terms of 
minimizing f(t) for certain values of a and 8. If, on the other hand, we let a tend to 
infinity for 8 >-- 0, then the penalty function must be zero if f(t) is to be minimized, and 
the problem in (1) can be interpreted as the constrained least squares regression prob- 
lem of minimizing liFt - 6112 subject to t't = 3. Applications of this problem can be 
found in Procrustes analysis and ridge regression analysis. 

Although (1) is the conceptually most relevant starting point for this paper, even 
fuller generality can be obtained by redefining the problem. That is, let 

F = V C  ~/2 U '  (2) 

be a singular value decomposition o f F ,  with V' V = U' U = U U '  = I m , and C diagonal 
with diagonal elements c l  ~ c 2  ~ " • • >- c m >>- O.  Then (1) can be written equivalently 
as the problem of minimizing 

g(w) = 6 ' 6  - 2w'x + w 'Cw + a (w 'w  - 3) 2, (3) 

where w -= U ' t  and x - U ' F ' d ~ .  Below, the minimum of (1) will be determined through 
the minimum of (3). The solution for the minimum of (3), to be given below, does not 
require C to be nonnegative definite. Therefore, this solution can be applied to the 
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problem in (3) regardless of nonnegativity of C. The case where a = 0 has a well-known 
closed-form solution. Accordingly, only the case o~ > 0 will be treated in the sequel. 

A General Solution for the Minimum of g(w) 

Let q denote the multiplicity of the smallest diagonal element in C and let the 
function ~Os(b) be defined as 

@s(b) = f i b -  "~a - (ci  ~- b ) '  
i = 1  

(4) 

with first derivative 

~ b s ( b ) = 8 -  ~ - (ci  ~ b )  2' 
i = 1  

(5) 

for b ~ ci, i = 1 . . . .  , s, and s <- m. Define r = m - q and partition C and the vectors 
w a n d  x as 

(Cr  [ 0 )  = ( W r y ;  x = ( X r ~  (6) 
C = Cq "~ w \Wq J \Xq fl' 

where C r contains c l ,  . . .  , Cr on the diagtnmtT-xnd Wr and x r contain the first r 
elements of w and x, respectively. Note that Cq = CmI q . The solution for the minimum 
of g(w) reduces to three distinct cases: 

Case  1. Not every element of Xq is zero. In this case g(w) is minimized by 

w = (C - b0I)- ix,  (7) 

where bo is the unique value of b < c,n for which @~n(b) = 0. This bo can be found 
by a Bolzano search, for instance. Details will be given below. 

Case  2. 
mized by 

with Wq = 0 and 

Every element of xq is zero, and @'r(cm) < 0. In this case g(w) is mini- 

wr = (Cr - b o l , ) - l X r ,  (8) 

where bo is the unique value of b < Cm for which @'(b) = 0. This b o can again be 
determined by a Bolzano search. 

Case  3. Every element Of Xq is zero, and 4,'~(c m) ~ O. In this case, w r can again 
be computed as in (8), but this time with bo = Cm. In addition, Wq should be deter- 
mined arbitrarily, subject to the constraint that 

wqw#' = qs:(Cm). (9) 

This yields an infinite number of solutions if q > 1. A solution among others is 
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xl x, )) i/2, ) 
W ' = . . . .  , - - ,  ( l l t r ( C  m 0 . . . . .  0 . 

C l  - -  C m  C r - -  C m 
(lO) 

A P r o o f  f o r  Case 1 

The proof for Case 1 is organized as follows. First, it will be shown that for every 
w, g(w) >- d~'O + Ore(b), where d~'d~ is a known constant and qlm(b ) is a known 
function, see (4), of a real parameter b < c m . Because the inequality holds for every 
b < Cm, it represents a family of lower bounds to g(w). 

Next,  this family will be narrowed down to its best member, by considering only 
the b 0 < Cm for which Sin(b) is a maximum, 

Finally, a vector w0 will be constructed for which this best lower bound is attained. 
The very fact that a lower bound is attained is sufficient for a global minimum, and will 
serve to justify the seemingly pointless developments in retrospect. 

The proof starts by noting that, for every b < Cm, we have the inequality 

and hence 

[[(C - bl) l/2w - (C - bl)-l/2xl[ 2 >- 0, (11) 

w 'Cw - 2w'x -> bw'w - x ' (C  - b l ) - i x .  (12) 

Combining (3) and (12) yields 

g(w) >- tb'~ b + bw'w - x ' ( C -  b l ) - l x  + a ( w ' w  - 8) 2 

= ~ ' ~ + ~  w ' w - 8 +  + ~b 4~ x ' ( C - b I ) _ _ - l x - - - ~ ( w ) .  (13) 

Clearly, 

b 2 
~(w) >-- ~b'~b + 8b 4a  x ' (C  - b I ) - l x  = d~'r b + $m(b) .  (14) 

It follows that g(w) > ~b'd~ + 
minimality of g(w) to have a Wo and a b o < c m for which g(Wo) = d~'tb + $m(bo) .  Such 
a b o must of course satisfy 

~bm(b) for every b < Cm. It is sufficient for global 

$m(bo)  = max $ , , (b) .  (15) 
b < c m  

This maximum occurs at a bo < ¢ m  which satisfies Sin(b) = 0; that is, 

b 
$ ' ( b )  = ~ 2a x ' (C  - b I ) - 2 x  = 0 .  (16) 

It has been shown by Greenacre and Browne (1986) that, whenever X~Xq > 0, equa- 
tions like (16) have a unique root bo < Crn. If  we take b = b o and 

w = Wo = ( C  - b o l ) - l x ,  (17) 

then it is easy to see that both (13) and (14) hold as an equality, and that the global 
minimum has been attained. This completes the proof for Case 1. []  
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It should be noted that (7) is not only sufficient, but also necessary for the global 
minimum in Case 1. Specifically, once it has been established that ~ ' ~  + qJm(bo) is a 
lower bound to g(w) that can be attained, it follows that the inequalities that lead to this 
lower bound must hold as equalities. If we require (13) and (14) to hold as equalities, 
then solution (7) follows uniquely. The fact that only b < cm have been considered in 
(11) and (I2) does not detract from this uniqueness because stationary points of  fit), 
corresponding to b > Cm, cannot be globally optimal, as has been shown by Shapiro, 
see Greenacre and Browne (1986, p. 241). It can be concluded that (7) is the unique 
globally minimal solution for Case I. 

It should be noted that Case 1 implies that F in (1) is of full column rank. This can 
be seen from F = VC 1/2 U'  and x = U'F'd~. If the smallest singular v a l u e  Clm/2 is zero, 
then the last q columns of  F U  are zero, and hence the last q elements ofx  are zero, and 
Case 1 does not apply. The reverse, however, does not follow: We need not have Case 
I if F has full column rank, because 6 can be orthogonal to the last columns of  F U ,  
even if these columns are nonzero. A demonstration of this possibility will be given 
below (Table 1). 

A P r o o f  f o r  Case 2 and Case 3 

The proof for Case 2 and Case 3 follows essentially the same logic as the proof for 
Case 1 given above. That is, a family of lower bounds to g(w) is derived and the best 
member of this family is shown to be attained for a certain vector w. 

Both in Case 2 and Case 3, Xq = 0. Define for b <- c m the m × m diagonal matrix 

I 
(cl - b )  ( c 2 - b )  ". 

Db = 

0 

(Cr - b) 

\ 

0 , 

0, 

(18) 

with generalized inverse D~-, obtained by inverting the r nonzero elements. Clearly, 
we can consider Db in partitioned form as 

00) D b =  0 " (19) 

For every b <- Cm, we have the inequality 

[IO~/2w - (Oh-) l:2xll 2 ~ 0, (20) 

and hence 

w'Crwr - 2W'Xr --> bw:wr  - x'D~-x. (21) 

Noting that w'Cw = w r C r w  r + CmW~W q and that WrX r = W'X, we have from (21), 

g(w) --> ¢b'~b + ot(w'w - 8) 2 + bw:wr  + CmW~Wq -- x'D~-x. (22) 

From b <- c m it follows that 
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bwrwr + c,nw'qWq >- bw'wr  + bw'ow q = bw'w.  (23) 

Combining (22) and (23) yields 

g(w) -> 4"4' + a ( w ' w  - ~)2 + bw'w - x ' D i x  

=dp'd:+o~ w'w- 8 + +Sb---- 
b 2 

4a x'Dffx --- g*(w), (24) 

(see (13)). Clearly, 

b 2 

g*(w)__-> ¢b'cb + 8b 4a x'D~-x dp'fb + Or(b). (25) 

It follows that g(w) >-- d~'~b + d..tr(b ) for every b < Cm, when xq = 0. This time we are 
interested in the b <-- Cm that maximizes ~br(b), to obtain equality. 

Let t be the largest index (t = 0, 1 , . . . ,  r) such that xt # 0 and xt+ i . . . .  = 
Xr = 0. There is a unique bo < ct (if t = 0 then bo = 2a8),  that maximizes ~br(b) and 
satisfies 

b 
Cr(b) = 8 2a x'(Db)Zx 0. (26) 

This bo satisfies b < cm if and only if $'r(C m) < 0, as in Case 2. Therefore, in Case 2 
we define bo as the unique root of (26) for b < Cm, and we take Wo according to (8). 
It can be verified that this yields g(w o) = 6 ' ~  + $r(bo),  which implies that the unique 
global minimum for g(w) has been obtained. Specifically, using (8) we have Wq = 0, 
which implies that (23) holds as an equality, and we have (20) holding as an equality. 
From (8) and (26) it is clear that 

x 2 b 

W'W = WrW r = (C i -'~17o) 2 = {~ -- 2--~' 
i=l 

(27) 

which shows that (25) also holds as an equality. Because every inequality which led to 
g(w) =2- d~'6 + $r(b) holds as an equality, it has been shown that (8) yields the global 
minimum for g(w) in Case 2. Uniqueness follows as it did in Case 1. 

Finally, consider Case 3, where d/r(Cm) > O. Here the maximum of tkr(b) for b -< 
Cm occurs at b = c,n. Accordingly, we take bo = Cm to obtain wr from (8) and we 
construct a wq that satisfies (9). Then we have equality in (20). Although now Wq # 0, 
equality in (23) in still guaranteed because bo = Cm. Finally, we have a Wo satisfying 

x, 
W;Wo = w;wr + W~Wq = (ci - c , . )  2 

i-~-1 

b 
+ , / ' ; ( C m )  = 8 - 2--~' (28) 

which shows that (25) holds as an equality. It can be concluded that the solution for 
Case 3 is globally optimal, albeit nonunique. A computational example for Case 3, with 
t = 1, r = 2 and rank (C) = 3 can be found in Table 1. []  
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TABLE 1 

2 A Computational Example for  Case 3 (¢x = 6; 6 = ~) 

F = 

~ ( : )  = 

4 
4 

-4  
-4  

2 
-2  

_2 
3 

1 
-1 

1 
-1 

0 

.5 
-- .5 
-- .5 

.5 ; 
0 

0 0 

= 

1 16 35095 
12 712 = 60492 

-1 
-1 
-1 
-1 
-1 

1 

C ~__ 

72 0 0 

0 4 0 ; x =  

0 0 1 

( q =  1; r = 2 ;  t =  1) 

> 0 ÷ Case 3 

-4  

0 

0 

wo = 

- 4 / 7 1  

0 7 
; WSWo = - ~ . ;  

2 1 16 
g(wo) = 6 + ~ 24 71 - -=  6.399648. 

Applications 

Unfolding 

Greenacre  and Browne (1986) suggested an alternating least-squares method for  
fitting squared distances in multidimensional unfolding. The heart  o f  their method con- 
sists of  minimizing the squared distance function 

h ( t )  = I[(d 2 - h)  - t ' t l  - 2Ytl] 2, ( 2 9 )  

for  given n-vectors  d 2 and h and a given n x m matrix Y satisfying 1' Y = 0 ' .  Although 
h(t) is not at all similar to (I), it is easy to redefine h(t) in a form that does resemble (1). 
That  is, let ~ -= (h - d2), F - 2Y, and 8 -= - n - l l ' ~ .  Then h(t) can be written as 

h(t) = liFt - ~b - t ' t l l[  2 = l if t  - ~b[[ 2 + n ( t ' t )  2 + 2 ( l ' ~ ) ( t ' t )  

= liFt - ~bll 2 + n ( t ' t  - 8) 2 - n8 2, (30) 

which is a special case o f  (1), with a = n, if the cons t an tn  82 is ignored. Greenacre  and 
Browne (I986) solved the problem of  minimizing h(t) in Case 1. For  all practical pur- 
poses this seems sufficient because the chances that other  cases occur  seems highly 
remote in their method. 

Multidimensional Scaling 

A similar application of  minimizing f(t) also occurs  in multidimensional scaling, 
although this application seems to have gone unnoticed. That  is, let V be a symmetric  
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n x n matrix, with zero diagonal, the elements of which are regarded as approximate 
squared distances between pairs of points in Euclidean space. Browne (1987) consid- 
ered the problem of minimizing 

h(a) = [IV- hln - lnh '  + 2AA'[[ 2, (31) 

where A is an n x m matrix and the vector h contains the diagonal elements of A A ' .  
Although Browne has considered various iterative methods for minimizing (31), none of 
these seem to be based on alternating least squares by updating the rows of A itera- 
tively. Such a straightforward procedure arises quite naturally upon decomposition of 
h(A) in a function of any row a~ of A and a constant term with respect to a i. For 
example, if we take i = 1 and define A I as the (n - 1) x m matrix obtained by deleting 
the first row of A, then that part of h(A) that varies with al can we written as 

h l (a l )  = (vii - a l a l  - a ~ a l  + 2 a l a t ) 2 +  2llvl - u l  - a l a l l n - ~  + 2 a l a t l [  2, (32) 

where vl is the n - l vector containing the off-diagonal elements of the first column 
(and row) of V, and u] = ( a j a x , . . . ,  anan)' .  Clearly, the first term of hi(a1) is 
constant. Upon centering A l columnwise (which does not affect the distances), it 
remains to minimize 

½hl(a~) = ll2Alal - ~b[I 2 + (n - 1)(alal) 2 + 2(a [a l )~b ' ln -z ,  (33) 

where cb --- (ul - vt). This function can be written as 

2 h l ( a l )  = t l F a l  - ~bll 2 + ( n  - l ) ( a [ a l  - a )  2 - ( n  - I ) 8 2  , ( 3 4 )  

with F = 2A I and 8 = -d~ ' ln_ l / (n  - 1). It is obvious that (34) can be considered a 
special case of (1) with a = (n - 1), ignoring the constant - ( n  - 1)82 . Because every 
row of A can be optimized, keeping the other rows fixed, an alternating least squares 
method for minimizing (31) can readily be obtained. It is not claimed that such an 
algorithm would be more efficient than any of the algorithms considered by Browne. 
We merely wish to demonstrate the applicability of (1) in the context of least-squares 
squared distance scaling. 

Procrustes analysis 

Gower (1984) discussed a predecessor of the Greenacre and Browne method 
(Greenacre, 1978; see Case I above), at a time when the global minimality had not yet 
been established (a gap to be filled by Shapiro; see Greenacre & Browne, 1986, p. 241), 
but was merely conjectured (rightly) to be associated with a root of (16) smaller than 
Cm, the smallest eigenvalue in C. Gower expressed his conjecture as follows: "In  
problems of this kind it is usual for the smallest root [bo] to correspond to the smallest 
residual sum of squares, see e.g. oblique Procrustes analysis" (p. 758). Gower's sus- 
picion of the similarity between the problem he was discussing and oblique Procrustes 
analysis will now be corroborated by showing that oblique Procrustes analysis is also 
a special case of (1). That is, if 8 > 0 and we let a tend to infinity, then the penalty 
function a(t ' t  - 8) 2 dominates f(t), and minimizing f(t) unconstrained becomes equiv- 
alent to minimizing lift  - ,112 subject to t ' t  = 8. Such a problem has been considered 
by Browne (1967) and ten Berge and Nevels (1977), among others, for 8 = 1. The ten 
Berge and Nevels solution is exactly the same as the solution of the present paper, if we 
choose a = ~ and 8 = 1. This shows the applicability of (1) in contexts different from 
multidimensional scaling, and serves to unify approaches that might seem unrelated. It 
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is important to note that Case 2 and Case 3, which seem irrelevant for vector re- 
estimation problems, do play a role in oblique Procrustes analysis, w h e r e ,  may have 
structural zero elements; see ten Berge and Nevels (p. 597) for an example. 

An Algorithm for Minimizing fit) 

On the basis of  (7), (8), and (10), the following algorithm for minimizing f(t) seems 
appropriate, starting from a known n x m predictor matrix F,  an n-vector d#, and 
parameters a and 8. 

1. Compute U and C from the eigendecomposition F ' F  = U C U ' .  Evaluate q, the 
multiplicity of the smallest eigenvalue crn in C. 

2. Compute x = U'F'do, and Xq, the vector containing the last q elements of x. 
3a. If X~Xq > 0, then find the unique b0 < Cm for which 

~bm(b) = 8 - (b/2a) - (ci ~ b) 2 = O. 
i = l  

(35) 

Although Newton's method is often recommended to find such a root, it may wander 
off to a b > c m unless it starts close to the root desired. For this reason, it is safer to 
use a Bolzano search. This method consists of iteratively deleting the left or right-hand 
half of an interval, depending on whether the derivative is positive or negative at the 
midpoint, respectively. For 8 > 0 it is obvious that - x ' C - t x  = Ore(O) <- Om(bo) <- 
8bo, so we start with the interval [ - - 8 - I x ' C - I x ,  Cm]. For 8 = 0, we start with the 
interval [ -2(ax 'C-lx)1/2 ,  Cm ]. The derivative to be evaluated at the midpoint is given 
in (35). After convergence, compute w0 by (7). 

3b. If X~Xq = 0, set r = m - q and evaluate 

x? 
t~'r(Cm) = 8 - (Cm/2a) - ~ (ci -~ cm)  2" 

i = 1  

(36) 

If this is nonnegative, compute w0 by (10). Else, do a Bolzano search to find the unique 
bo < Cm for which 

$ ' ( b )  = 8 - (b /2a)  - (ci "~ b)  2 = 0. 
i = 1  

(37) 

The Bolzano search may be started with the interval [ - 8 - 1 x ' r C f x r ,  crn] if 8 > 0, and 
with [ -2(ax~C7 xr)1/2, C,n] otherwise. After convergence, obtain w0 by (8). 

4. Compute to = Uw0 as the minimizing t of (1). 

Discussion 

The weakly constrained regression problem of this paper has been shown to have 
a, typically unique, global minimum. We have used a completing-the-squares type 
approach, rather than calculus, because it yields global minimality rather easily for 
Case 2 and Case 3. For Case 1 alone, the calculus solution given by Greenacre and 
Browne (1986) would seem to be more efficient. 

The regression problem has been shown to have various applications, and more 



JOS M. F. TEN BERGE 609 

a p p l i c a t i o n s  a re  f o r t h c o m i n g .  In  add i t i on ,  o u r  t r e a t m e n t  s e r v e s  to  uni fy  a p p a r e n t l y  
d i f fe ren t  a p p r o a c h e s ,  b y  a l lowing  the  p a r a m e t e r  a to  t end  to  infini ty.  
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