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KRUSKAL’S POLYNOMIAL FOR 2 × 2 x 2 ARRAYS AND A
GENERALIZATION TO 2 x n x n ARRAYS

Jos M. F. TEN BERGE
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A remarkable difference between the concept of rank for matrices and that for three-way
arrays has to do with the occurrence of non-maximal rank. The set of n × n matrices that have
a rank less than n has zero volume. Kruskal pointed out that a 2 x 2 x 2 array has rank three
or less, and that the subsets of those 2 x 2 x 2 arrays for which the rank is two or three both
have positive volume. These subsets can be distinguished by the roots of a certain polynomial.
The present paper generalizes Kruskal’s results to 2 x n x n arrays. Incidentally, it is shown
that two n x n matrices can be diagonalized simultaneously with positive probability.
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Kruskal (1989, p. 10) has drawn attention to the remarkable fact that the subset 
those 2 x 2 x 2 arrays for which the rank is less than the maximum possible rank, has
positive volume. Specifically, a 2 x 2 x 2 array cannot have a rank greater than three,
but it has either rank three or rank two with positive probability, when its elements are
drawn randomly from any reasonable distribution. Kruskal also noted that a certain
polynomial, defined only for 2 x 2 × 2 arrays, is crucial in determining the rank of such
arrays. It is the purpose of the present paper to show that 2 × n x n arrays (n >- 2)
in general have rank n with positive probability and that the occurrence of such a (low)
rank can be detected from certain eigenvalues, which are closely related to Kruskal’s
polynomial in the case n = 2. To set the stage for generalizing Kruskal’s results, it is
convenient to review the determination of the rank of a 2 x 2 × 2 array.

Determining the Rank of a 2 × 2 x 2 Array

Kruskal (1977) has defined the rank of a three-way array in terms of triads. A triad
is an outer product three-way array, of the form a × b × e. For instance, if

then the triad a × b x e is the array consisting of two lateral slices 5ac’ and -ae’.
Equivalently, the triad has the frontal slices 3ab’, ab’, and 4ab’, and the horizontal
slices 2be’ and be’. The rank of a three-way array is defined as the smallest number of
triads needed to decompose it (Kruskal, 1977, I989). If an array X can be written 
X r

= Xi=l ai × bi x ei, then thej-th frontal slice Xj can be written as X ai x bi x
cij = ACjB’, where A contains al .... , ar as columns, B contains b~, ... , br as
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columns, and Cj is the diagonal matrix containing thej-th element of c~, e2,..., er on
the diagonal. Conversely, if each frontal slice Xj of a three-way array can be written as
ACjB’ for some diagonal r × r matrix Cj, then the array can be written as Y’i~ ai ×
bi × ci. It follows that the rank of a 2 × n x n array, sliced up in two frontal slices
X~ and Xz of order n × n, equals the smallest value of r for which X~ and X2 can be
decomposed as

Xl = ADB’; X2 = AEB’, (1)

for certain n x r matrices A and B, and diagonal r × r matrices D and E. For a 2 ×
2 × 2 array, one may equivalently consider the rank of X in terms of lateral or hori-
zontal 2 x 2 slices, but we shall stick to X~ and X2 as frontal slices unless specified
otherwise. The rank of X is zero if and only if X is an array of zeroes. From now on,
it is assumed that X is a nonzero array.

A 2 x 2 x 2 array, containing a nonsingular 2 x 2 slice, cannot have a rank less
than two, because we may turn the array over so that this slice becomes one of the
frontal slices, to which (1) can be applied. Conversely, every nonzero 2 x 2 x 2 array
that doesn’t have a nonsingular slice in any direction has either rank one, or it is
superdiagonal, for instance, like

for a # 0 and/3 ~ 0. To verify this, consider first the case where some slice is zero.
Then the assumed singularity of the "other" slice implies that the array has rank one.
So we ignore this case, and assume that X~ = (xl/tx), where x is a nonzero vector and
A a scalar. If A ~ 0, then the singularity of the lateral slices yields X2 = (,~xlex), for
certain scalars 6 and e. If A = 0, then either this expression is still valid, for a ~ ~ 0, or
we have X2 = (0ly), for arbitrary y, a special case to be treated later. The singularity
of the horizontal slices implies that (1 A)’ = t~(6 e)’ for some ~ ~ 0. So X~ = x(1 
x(~ p.e) and X2 = x(6 e), and a rank one solution has been constructed. Suppose,
however, that XI = (xl0) and X2 = (01y) for arbitrary x and y. Because the horizontal
slices are of rank one, X has the superdiagonal form, defined by having precisely 2
nonzero elements that never occur in the same slice. This array has rank two.

From the foregoing, it is easy to detect 2 × 2 x 2 arrays of rank 0 or 1: the rank
is 0 if and only if the array has zero entries only, and the rank is 1 if and only if each
of the six slices is singular, the superdiagonal matrix excepted, which has rank two. It
remains to deal with 2 × 2 × 2 arrays for which at least one slice is nonsingular, and
which, therefore, have rank 2 or higher. Without loss of generality, it may be assumed
that X~ is nonsingular.

Kruskal (1983) has shown that the rank of a 2 × 2 × 2 array is at most three, using
a rather complicated mathematical argument. A straightforward constructive proof can
also be given.

Proof. Let Xt and X2 be arbitrary 2 × 2 matrices, with X~ nonsingular. For a fixed
value of r, a solution (1) exists if and only if a parallel solution exists for

XIX’~ l = ADB’X~~ and X2Xf~ = AEB’X~~. (2)

Therefore, we may consider a solution (1) for YI = I and Y2 = X2XI-l , instead of X~
and X2, respectively. Defining for n = 2,
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and taking

(Y~! YI2~Y2 = \Y2~ Y~ 

A = ; (Xl) -~B ;
I Y2~,/ 1

D = 1 , and E = 0 (Y22 -- Y21) , (3)

0 0 0

we obtain an explicit solution for (2) or, equivalently, for (I) if B is obtained 
(X’~)-lB. It follows that a 2 x 2 x 2 array cannot have a rank greater than []

The question that remains is to decide whether the rank is two or three, still
assuming nonsingularity of XI. If X2 is proportional to XI, that is, if X2 = AXl for
some scalar A, then of course a rank two solution does exist. Consider, therefore, the
case where X2 is not proportional to X! (nonsingular), and suppose that the array has
rank two. Then it follows from (1) that there exist vectors a~ and 2 (columns of A) a
vectors bl and b2 (columns of B) and scalars d~, d2, e~, and e2 such that

XI = dlalbl + d2a2b~, (4)

and

X2 = e~alb~ + e2a2b~, (5)

with d~ and d2, the diagonal elements of D, nonzero, and E not proportional to D,
which means that e~d{~ # e2d{~. Clearly, both (X2 - d~-~e~X~) and (X2 
d{ ~ e2X~) are singular; hence the equation,

IX2 - AX~I = 0, (6)

must have two distinct real roots. Equation (6) can be expanded 

,~(1)~(2) ~(1)~(2) ~(1)~(2) ~(I)~(2)’t (7)h2lXl[ + At.-~21.~12 + .~12A21 - .~11 ~.22 - .~22.~11 !

with xi~.~) the ij-th element of Xk. This equation has two distinct real roots if and only
if the discriminant is positive. This discriminant is Kruskal’s polynomial. It can be

1 1simplified considerably by working with Y~ = XIX~- = 12 and Y2 = X2X~- instead
of X1 and X2. Then (6) reduces to the characteristic equation of (X2X1-~) and (7)
simplifies to

A2 - A(tr Y2) + IY21 = 0, (8)

which has a positive discriminant if and only if

(tr Y2)2 > 41Y21. (9)

It follows that (9) is necessary for a rank two solution. Conversely, (9) is also sufficient
for a rank two solution, in the case under consideration. That is, if (9) is satisfied, then
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there exist two real and distinct roots A~ and A2 for (6). This allows us to define the rank
one matrices

nlV ~ = (A I - A2)-I(x2 - A2X1), (10)

and

u2v~ = -(Xi - A2)-~(X2 - A~XI). (11)

Their sum ulvi + u2v~ equals Xt and their weighted sum A~u~v~ + A2u2v~ equals X2,
which shows that a rank two solution has been constructed, where u~ and u2 are the
columns of A, vI and v2 are the columns orB, D = 12 and E = (~ ~°2). This shows that
(9) is a necessary and sufficient condition for a 2 × 2 × 2 array to have rank 2, given that
X1 is nonsingular, and given that X2 is not proportional to X~. Of course, if X~ is
singular, but some other 2 x 2 slice of the array is not, then the entire reasoning given
here remains valid. If both Xl and X2 are nonsingular, then we have two characteristic
equations: one for X2X~-~ and one for XIX~~. The associated eigenvalues are in-
versely related. For this reason, it would be ambiguous to speak of "the eigenvalues"
of a2 x 2 x 2array.

Kruskal (1989, p. 10) pointed out that if his polynomial is zero, the rank may 
either 0, 1, 2, or 3, whereas above it was claimed that (9) is necessary and sufficient for
rank 2. There is no contradiction, because we first ruled out the case where all slices are
singular, and in addition assumed that X2 is not proportional to X l. Only after dis-
carding such cases, we arrived at a necessary and sufficient condition for rank 2.

A Generalization to 2 x n x n Arrays

Kruskal (1989, p. 10) pointed out that the polynomial derived from (6) as the 
criminant in (7) is only defined for 2 x 2 x 2 arrays. True as this may be, a similar albeit
more complicated polynomial exists for 2 × 3 x 3 arrays. The rank of such arrays is at
most four. This is evident from Kruskal (1989, p. 10) who pointed out that a 2 × n 
n array has a maximal rank 3n/2 for n even, and (3n - 1)/2 for n odd. Again, as was
done above for 2 × 2 x 2 arrays, we ignore exceptional cases and concentrate on the
case where X~ is a nonsingular 3 x 3 matrix. Then X has either rank three or rank four.
Suppose that a rank three solution exists, and that it satisfies the condition that all
diagonal elements of ED-~ are distinct. Then it follows from (1) that there must 
three distinct real roots for the determinantal equation

IX2 - AXll= 0, (12)

by the same arguments as used above to obtain (6). Again, a discriminant criterion does
exist, which means that a generalization of Kruskal’s polynomial for 2 × 2 × 2 arrays
is feasible. However, evaluating the generalized polynomial for n = 3 is already quite
complicated and for larger n the complications soon become overwhelming. Fortu-
nately, we need not evaluate polynomials to see whether or not certain roots are
distinct and real, if these roots can be obtained directly. Noting that (12) has, for
arbitrary n, the same roots as the characteristic equation

IX2X?~ - All = O, (13)

we may obtain the eigenvalues of X2X~l at once and verify whether or not they are
real and distinct. If they are, then X2X~ ~ has n linearly independent real eigenvectors,
and the eigendecomposition
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X2XfI = KAK-~ , (14)

where A is a diagonal n x n matrix of eigenvalues and K contains the n associated
eigenvectors as columns. From (14) an explicit rank n solution for (l) can be 
structed by taking A = K, B’ = K-~XI, D = I n, and E = A, as is readily verified.
It can be concluded that a 2 x n x n array with at least one n x n nonsingular slice
X1 has rank n if X2X ~-~ has n distinct real eigenvalues. This "eigenvalue criterion" is
easy to use because eigenvalues of asymmetric matrices can be evaluated by standard
numerical routines. It should be understood that, contrary to the n -- 2 case treated in
the previous section, we now have a sufficient condition for rank n, that is not neces-
sary. To see this, construct an arbitrary nonsingular n × n matrix K and an arbitrary
diagonal matrix A with nonzero diagonal elements. Upon defining X I = I and X2 =
KAK-~, it is seen that the 2 x n x n array containing X~ and X2 has rank n,
regardless of distinctness of the diagonal elements in A. So it is not necessary for rank
n to have all eigenvalues distinct. This does not imply, however, that the eigenvalue
criterion can be relaxed: Having merely n real eigenvalues does not guarantee that a
rank n solution can be obtained. For instance, if X~ = 13, and

X2 = 3 ,

0

then the eigenvalues ofX2X1-1 are 2, 2, and
X2XCl = KAK-~. This array has rank 4.

l, yet there is no real matrix K such that

The eigenvalue criterion suggests that the set of 2 × n × n arrays of rank n has
positive volume, which is a generalization of Kruskal’s "surprising" result for n = 2.
An empirical demonstration was obtained by constructing 100 pairs X~, X2 of order
n × n, for n = 2, 3 .... ,8, respectively, with elements sampled form the normal (0, 1)
distribution. The number of cases (out of 100) was counted in which n distinct and real
eigenvalues of X2X~~ were found. For n = 2, 3 .... ,8, respectively, these numbers
were 76, 55, 22, 16, 2, 1, and zero. Clearly, the relative volume of the set of rank-n
arrays of order 2 × n x n rapidly decreases as n increases. The percentage 76 for 2 x
2 × 2 arrays is comparable to the value of 79 reported by Kruskal (1989) and by T. 
Wansbeek (personal communication, June 3, 1989), both of whom used 1000 replica-
tions. Although more than 100 replications may be needed to estimate the percentages
accurately, this seems hardly interesting. The interesting point is that the phenomenon
of 2 x 2 x 2 arrays having nonmaximal rank with positive probability can be general-
ized to 2 x n x n arrays. Equivalently, it can be concluded that a pair of asymmetric
square matrices can be diagonalized simultaneously with positive probability.

Uniqueness

Harshman (1972) has shown that the PARAFAC decomposition of a 2 x n × 
array, as given in (1), is unique if A and B are of full column rank and all diagonal
elements of ED- ~ are distinct. This condition is satisfied if the eigenvalues ofX2X1-1
are real and distinct, as has been shown above. If the eigenvalues are real but not all
distinct, then either a rank n solution does not exist, or it is nonunique. For the n = 2
case, non-uniqueness of a rank two solution arises if X~ and X2 are proportional
nonsingular matrices. Kruskal (1989, p. 12) stated that 2 × 2 x 2 arrays of rank 2 have
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a unique rank 2 decomposition. This statement is correct, once the case of proportional
slices has been excluded.
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