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A concept of approximate minimum rank for a covariance matrix is defined, which contains 
the (exact) minimum rank as a special case. A computational procedure to evaluate the ap- 
proximate minimum rank is offered. The procedure yields those proper communalities for 
which the unexplained common variance, ignored in low-rank factor analysis, is minimized. 
The procedure also permits a numerical determination of the exact minimum rank of a cova- 
fiance matrix, within limits of computational accuracy. A set of 180 covariance matrices with 
known or bounded minimum rank was analyzed. The procedure was successful throughout in 
recovering the desired rank. 
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The communality problem in factor analysis can be stated as follows: For a given 
n x n covariance matrix E, find a diagonal matrix U 2 of unique variances such that 
(E - U 2) has the smallest possible rank, subject to the constraint 

X -> U 2 -> O, (1) 

which means that both (X - U 2) and U 2 have to be Gramian (nonnegative definite). The 
diagonal elements of (X - U 2) are c0mmunalities, called proper if they satisfy (1), and 
improper otherwise. 

There is a long history of attempts to solve the communality problem by deter- 
mining the minimum rank of E, that is, the smallest possible rank of (X - U 2) such that 
U 2 satisfies (I). Knowing the minimum rank of X does not necessarily imply that an 
associated matrix U 2 has been found, but it is a first step. In addition, the minimum 
rank is of theoretical interest in its own right. 

The problem of determining the minimum rank by mathematical arguments has 
been solved for n x n matrices with n -< 5, albeit the computations required can be 
rather tedious (P. A. Bekker, personal communication, July 6, 1988). For n > 5, there 
are necessary and sufficient conditions for having a minimum rank 1 or (n - 1), and 
there are some conditions that are either necessary or sufficient for intermediate values 
(Bekker & de Leeuw, 1987) but the problem of determining the minimum rank in 
general has not been solved. 

A more fundamental problem with the minimum rank approach to communalities 
is that the minimum rank tends to be closer to n than to 1. Although cases of high 
minimum rank are of interest in certain fields like structural regression analysis (see 
Bekker & de Leeuw, 1987, sec. 5), they are disturbing for practitioners in psychology, 
who like to have a low minimum rank to obtain an efficient condensation of common 
variance in a low-dimensional space. For this purpose they are, in fact, willing to ignore 
small eigenvalues of (E - U2), and therefore, the minimum rank is of little practical 
value. 
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Practitioners interested in low-rank approximations typically set out to find a ma- 
trix of factor loadings of order n × r for some predetermined value of r, that optimizes 
some criterion-of-fit, for instance, by Lisrel or Minres, and obtain the communalities as 
a by-product. This approach does yield low-rank approximations, but at the cost of 
violating (I). Although nonnegativity of U 2 and of the communalities can be enforced 
in most factor analysis procedures, the resulting (Z - U 2) typically has a number of 
small negative eigenvalues, reflecting a violation of (1). In practice, this violation often 
goes unnoticed because factors with small eigenvalues, including negative ones, are 
usually ignored. Occasionally, however, this yields embarrassing results nonetheless, 
in that the factors maintained explain more than I00% variance. Ignoring factors asso- 
ciated with small eigenvalues would make more sense if these eigenvalues could be 
constrained to be nonnegative. It is the purpose of the present paper to give a method 
of communality estimation that permits low-rank approximations without violating the 
constraint (1). This method is based on a definition of the approximate minimum rank 
of  ~;, and an algorithm that puts this definition to practice. In addition, the (exact) 
minimum rank of Z will be treated as a special case of approximate minimum rank, with 
perfect approximation. It follows that any algorithm for approximate minimum rank is 
also an algorithm for exact minimum rank itself, which can thus be approached numer- 
ically. 

The Approximate Minimum Rank of a Covariance Matrix 

It has been argued above that it is desirable to have proper communalities on the 
one hand, and many zero eigenvalues of (Z - U  2) on the other. Such communalities 
generally do not exist, but an approximation of this ideal is feasible. That is, we may 
find proper communalities that minimize the sum of those eigenvalues ignored in low- 
rank approximations of the common variance. Specifically, it is possible to minimize, 
for arbitrary but fixed r, the function 

n 

f (u  2) = ~ ,~ i (~-  u2), (2) 
i = r + l  

subject to (1) where Ai(Z - U 2) is the i-th largest eigenvalue of (E - uZ). The function 
f has a well-known interpretation in terms of least-squares theory. From Eckart and 
Young (1936) it follows that f measures the squared distance between the matrix of 
common parts of the variables to the best-fitting rank-r matrix, and minimizing f 
amounts to finding a matrix of common parts that is as close as possible to a rank-r 
matrix. The special case r = 0 has been examined before. That is, minimizing the sum 
of all eigenvalues of(Z - U 2) is equivalent to minimizing the sum of the communalities, 
which is known as (constrained) minimum trace factor analysis (Bentler & Woodward, 
1980; Della Riccia & Shapiro, 1982; Ten Berge, Snijders, & Zegers, 1981). 

A computational method for minimizing (2) subject to (1) has been outlined by ten 
Berge and Kiers (1988), and will be specified below. The existence of such a method 
motivates the following definition of approximate minimum rank. 

Definition 1. The approximate minimum rank (amr) of a covariance matrix Z is the 
smallest value of r (r = 1, 2, • • . ,  n - 1) such that the minimum of f(U2), subject to 

-> U 2 -> 0, is below or equal to a tolerance parameter 6 - 0. 

The tolerance parameter 6 can be interpreted as the maximum amount of  unexplained 
common variance that one is willing to tolerate in low-rank approximations. To eval- 
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uate amr(E), one may first try an arbitrary value of r, and then try a higher value of r 
if the obtained minimum of f(U z) > 6, or a lower value if f(U 2) - 6. 

Once amr(Z) has been determined, one also has a solution for U z, which, unfor- 
tunately, need not be unique. The communalities implied by U 2 are proper, which is 
attractive from a mathematical point of view, and those eigenvalues ignored have the 
smallest possible sum, which is attractive from a practical point of view. It is further- 
more clear from Definition 1 that amr(Z) coincides with the exact minimum rank mr(Z) 
if 6 = 0. Implications of this observation will be examined below. First, however, a 
computational solution for the problem of minimizing (2) subject to (1) will be reviewed. 

A Computational Method for Minimizing f(U 2) 

It is well-known that for any symmetric matrix S, the minimum of tr X'SX, subject 
to X'X = Ip, is obtained when X is the n x p matrix containing the last p eigenvectors 
of S, and that this minimum is the sum of the p smallest eigenvalues of S; see, for 
instance, Takeuchi, Yanai, and Mukherjee (1982, p. 26). It follows that the minimum of 
f(U 2) coincides with the minimum of the function 

g ( X , U  2) = tr X'(X - U2)X, (3) 

where X is an n × (n - r) columnwise orthonormal matrix. It is possible to minimize 
g for fixed U 2 as a function of X only, by computing a matrix of eigenvectors, associ- 
ated with the (n - r) smallest eigenvalues of (Z - U2). It is also possible to minimize 
g for fixed X as a function of U 2 only, subject to (1), by maximizing tr X' U2X. The latter 
problem is a weighted minimum trace factor analysis problem (Shapiro, 1982b), which 
can be solved by various iterative algorithms. By alternating between optimizing X and 
U z , the function g(X,U 2) is reduced monotonically. An application of this method to 
factor analysis has been given by ten Berge and Kiers (1988). The remaining part of the 
present paper will be focused on evaluating mr(Z) by means of this method. The specific 
algorithm used for this purpose will be explained in a later section. 

Minimum Rank as a Special Case of AMR 

The minimum rank mr(Z) of a covariance matrix E is the special case of amr(E), 
where 6 is required to be zero: 

Definition 2. The minimum rank mr(E) is the smallest value of r for which f(U 2) 
has a minimum of zero, subject to Z >-- U z >- 0. 

Clearly, Definition 2 is equivalent to the definition of minimum rank that has been 
around for half a century, and the latter definition has merely been rephrased as Def- 
inition 2 for the purpose of interpreting it as the special case of amr(Z) where 6 = 0. 

The practical utility of mr(Z) stems from fields outside psychology. For instance, 
in structural regression analysis (Bekker & de Leeuw, 1987) it is important to determine 
the maximal number of  linear dependencies that may exist between the structural 
(common) parts of the variables. This can be done by finding mr(X), and examining the 
null-space of (Z - U 2 ) .  

From a numerical point of view, mr(E) is a well-behaved quantity because it is 
usually stable if it is at or above the Ledermann bound (Shapiro, 1982a, Theorem 2.3.). 
That is, slightly changing the elements of ~ will not affect mr(E). On the other hand, a 
numerical approach to mr(Z) has a fundamental limitation in that whatever algorithm is 
applied, it has to be terminated in a finite number of iterations. As a result, one may 
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encounter  certain eigenvalues of  (X - U 2) differing slightly from zero merely because 
of  lack of  computational accuracy.  When the smallest (n - r) eigenvalues are very  close 
to zero but not exactly zero,  then one cannot decide whether  this has to be attributed 
to inaccuracy or to an underestimation of  the r needed. What can be done,  however ,  is 
to evaluate the accuracy of  the algorithm in cases where mr(E) is known or at least has 
a known upper  bound. Accordingly, simulation studies were conducted where mr(X) 
was known or bounded,  and it was tested whether  f became close enough to zero when 
the correct  or maximal value of  r was used. To obtain satisfactory results, it was 
necessary to refine the algorithm used by  ten Berge and Kiers  (1988) considerably.  The 
main obstacle was the proper ty  of  the modified Bent ler-Woodward procedure  for con- 
strained minimum trace factor  analysis (Bentler & Woodward,  1980; ten Berge, Sni- 
jders ,  & Zegers,  1981) to yield some very small negative eigenvalues, implying a minor 
violation of  (I), upon termination of  the iterations. In addition, it was deemed necessary  
to have an increased accuracy in cases where f becomes close to zero.  Various checks 
and restart  options had to be inserted before a well-behaved algorithm could be ob- 
tained. The resulting algorithm is the topic of  the next section. 

An Algorithm for Minimizing g(X,U 2) 

For  a given n x n matrix E and a fixed rank parameter  r, we have to minimize (3) 
subject to (1). A monotonic----ally convergent  algorithm can be obtained by iteratively 
optimizing X for fixed U 2 , and U 2 , subject to (I), for  fixed X. These  two steps comprise 
the main iterations. Updating X for fixed U 2 is a straightforward eigenvector  problem 
that requires no further  discussion. However ,  optimizing E subject to (1) for  fixed X is 
rather cumbersome.  This part of  the main iterations requires an iterative procedure  
(inner iterations) that will be discussed shortly. 

In terms of  the main iterations, the algorithm used proceeds  as follows. First,  U 2 
is initialized as a zero matrix. This simple choice for U 2 has proven more successful as 
a start than anything else tried. X is obtained as the n × (n - r) matrix of  eigenvectors 
of  (E - U2), associated with the smallest (n - r) eigenvalues. From then on, U 2 and 
X are iteratively updated,  until the absolute difference between the previous value of  g, 
evaluated upon updating X, and the current value of  g, is smaller than a10-4 ,  where a 
is a positive parameter  that is initialized as unity, but decreased when g approaches 
zero (i.e., when g < .01, continue with a = .01; when g < .001, use a = .001 from then 
on). Upon convergence o f  the main iterations, g is evaluated. I f  g < .000001, compu- 
tations are terminated, and g is considered to have converged to zero. Otherwise,  the 
entire procedure  is restarted, initializing U s as 0-2ere 1 , where 0 -2 is the observed 
variance of  the first variable, and e 1 is the first column of  the n × n identity matrix, 
Again, g is evaluated upon convergence,  and if g <.000001, computat ions are termi- 
nated. Otherwise,  another  restart ,  now with U 2 = 0-22e2e2, is carried out,  and so on. I f  
necessary,  n restarts of  this form are used. If these fail to yield a value of  g < .000001, 
the smallest value of  g obtained is considered to be nonzero for the particular value of  
r adopted.  

Thus far, we have not discussed the inner iterations that optimize U 2 for  fixed X, 
which will be taken up now. Let  the diagonal matrix W 2 be defined as 

W 2 = Diag (XX'). (4) 

It is clear from (3) that minimizing g(X,U 2) for  fixed X is the same as maximizing 

h(U 2) = tr  X'U2X = tr  W2U 2, (5) 
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subject to Y~ >- U z >- 0, or equivalently, subject to 

W Y ` W  >- W 2 U  2 >- O. (6) 

Maximizing (5) subject to (6) is a weighted minimum trace factor analysis (Shapiro, 
1982b) problem for Z, that can be treated as an unweighted problem (Bentler & Wood- 
ward, 1980; ten Berge et al., 1981) for WEW. Accordingly, the algorithm updates W 2 U 2 
iteratively. We adopted the modified Bentler-Woodward procedure (MBWP; ten Berge 
et al., 1981) for these inner iterations. Essentially, the MBWP seeks the global mini- 
mum of the function 

I(T) = tr TT 'C ,  (7) 

where T is an n x n matrix constrained by Diag (TT') >-" I, and C is a given n x n 
covariance matrix, which is WEW in the present context. T is initialized randomly and 
orthonormalized by Gram-Schmidt, in the second main iteration. In subsequent main 
iterations, T is initialized as the last computed T in the previous main iteration. 

The parameter t~, used in the stopping criterion for the main iterations, also plays 
a role in the inner iterations. The inner iterations are terminated as soon as the differ- 
ence between the previous value of 1 and the current value of 1 becomes less than 
al0 -4. Then the smallest eigenvalue of (WEW - W 2 U 2) is evaluated. In theory it 
should be zero, but in practice in turns out to be slightly negative. If this eigenvalue is 
smaller than - a l 0  -5 , the inner iterations are continued until it is equal to or above this 
value. If necessary, T is restarted entirely from scratch. Next, U 2 is evaluated from 
W z U 2, and the algorithm moves to updating X. The accuracy of the algorithm may 
appear to be wasteful as a procedure for determining amr(y`). However, the algorithm 
was especially designed to be accurate in determining mr(Y.). 

A Simulation Study 

To test the efficiency of our procedure in determining mr(E), two types of matrices 
were constructed. First, 90 matrices were constructed with known minimum rank. This 
was done by constructing E -1 rather than Y~ itself. Specifically, if E -1 has an (n - k) 
x (n - k) positive diagonal submatrix in the upper left-hand corner, and a k x k 
submatrix of strictly positive elements in the lower right-hand-corner, and if the lower 
left off-diagonal k × (n - k) submatrix has at least one column of strictly positive 
elements, then mr(y`) = k (P. A. Bekker, personal communication, April 20, 1989). 
Matrices of this pattern were constructed for various values of n and k (see the upper 
half of Table 1) by randomly filling a lower-triangular n x n matrix with elements from 
the uniform [- .5 ,  .5] distribution, except for the off-diagonal elements of a (n - k) x 
(n - k) diagonal submatrix that were set to zero. Next, the nonzero elements below the 
diagonal were copied in the cells above the diagonal to enforce symmetry, and the signs 
of certain negative elements were reflected to obtain the pattern specified by Bekker. 
Finally, the smallest eigenvalue minus .5 was subtracted from each diagonal element to 
enforce positive definiteness, and the resulting matrix was inverted to obtain Y .̀ 

In addition, 90 matrices with bounded mr(Z) were constructed by filling an n × k 
matrix A randomly with dements from the uniform [ - I ,  1] distribution, and adding 
elements from the uniform [0, 1] distribution to the diagonal of AA ' .  The resulting E has 
an explicit communality solution for r = k. The 90 matrices of this type are recorded in 
the lower half of Table 1. 

For the 180 constructed matrices, our algorithm, using r = k, should yield a value 
zero for g(X,U 2) and hence for f. In all cases, it turned out that g was less than .000001 
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T ~  1 

Number o f  Cases Where Only One Start  Was Needed 

one s tar t  

order mr(Z) r replications only 

7x7 4 4 20 16 

8x8 5 5 20 15 

8x8 6 6 20 18 

10x10 8 8 20 20 

10x10 6 6 10 8 

7x7 < 4 4 20 20 
I 

8x8 <_ 5 5 20 18 
I 

8x8 < 6 6 20 20 
I 

10xl0 < 8 8 20 20 
I 

10x10 _< 6 6 i0 6 
I 

upon convergence. Also, the first starting option was already successful in a majority 
of cases, as can be seen from Table 1. Typically, computation times (for each start 
separately) were between one and two minutes on a personal computer. For the ma- 
trices with known mr(E), it is clear that our procedure should yield a nonzero value of 
g when r = k - 1 is used. This was tested in 12 cases. Throughout these cases, the 
obtained value of g was clearly above .000001. In fact, all 12 values were above .01, 
indicating the discriminatory power of our procedure. 

Discussion 

The simulation results presented indicate that a reliable method for determining 
mr(E) has been obtained. It should be noted, however, that the criterion of zeroness 
(<.000001) used in our algorithm has proven adequate only for matrices with elements 
of similar size as used in the simulations. That is, the first 90 matrices had a largest 
eigenvalue 2, implying that the elements in these matrices are in the range [ -2 ,  2]. 
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Similarly,  the remaining 90 matr ices  were  cons t ra ined  to have  e lements  in the range 
I - n ,  n]. I f  the algori thm is to be used for  matr ices  with larger  e lements ,  then e i ther  the 
cr i ter ion o f  ze roness  m a y  have  to be relaxed,  or  the mat r ices  can  be rescaled  to have  
smaller  e lements ,  for  ins tance,  by  using the corre la t ion  matr ix  instead o f  the cova r i ance  
matr ix  ~.  The  s imulat ion studies do not  imply that  the a lgor i thm is efficient in deter-  
mining amr(X). It  should  be noted that  ex t remely  high s tandards  o f  compu ta t iona l  
a c c u r a c y  were  imposed  to dist inguish be tween  g = 0 and g > 0. W h e n  ze roness  is no 
longer  the main issue,  computa t iona l  a c c u r a c y  can be re laxed cons iderab ly .  
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