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SOME C L A R I F I C A T I O N S  OF T H E  C A N D E C O M P  A L G O R I T H M  A P P L I E D  
TO I N D S C A L  

l o s  M . F .  TEN BERGE AND HENK A . L .  KIERS 

UNIVERSITY OF GRONINGEN 

Carroll and Chang have claimed that CANDECOMP applied to symmetric matrices yields 
equivalent coordinate matrices, as needed for INDSCAL. Although this claim has appeared to 
be valid for all practical purposes, it has gone without a rigorous mathematical footing. The 
purpose of the present paper is to clarify CANDECOMP in this respect. It is shown that 
equivalent coordinate matrices are not granted at global minima when the symmetric matrices 
are not Gramian, or when these matrices are Gramian but the solution not globally optimal. 
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Carroll  and Chang (1970) and Har shman  (1970) have independently suggested the 
same method of analyzing three-way arrays  and christened this method C A N D E C O M P  
and PARAFAC,  respectively.  I f  Z is a p x q × rn three-way array containing rn frontal  
slabs ZI  . . . . .  Z,n, C A N D E C O M P / P A R A F A C  seeks to minimize the function 

m 

f(X, Y, 91, . . . ,  Din) :  ~ I l l+-goiY' l l  2, (I) 
i=1  

were X is a p x r matrix,  Y is a q x r matrix,  D i is a diagonal r x r matrix,  and r is a 
fixed rank-parameter .  Carroll and Chang (1970) also considered the function 

m 

g(X, O l ,  . - . ,  D i n ) =  ~ l ls;-  go;g'tt z, 
i=1 

(2) 

where,  for  i = 1 , . . . ,  m, Si is a given symmetr ic  p × p matrix,  and Xi and D i are as 
in (1). This function is to be minimized in the well-known I N D S C A L  method.  To  
minimize (2), Carroll and Chang suggested using C A N D E C O M P ,  and justified this by 
claiming that,  when the C A N D E C O M P  process  (applied to S l ,  . . . ,  Sm) finally con- 
verges,  X and Y will be equivalent in the sense that their columns will be  equal up to 
scalar multiplication. More  recently,  the claim has been  repeated  by Carroll  and 
Pruzansky  (I984), among others.  

Ten  Berge,  Kiers ,  and de Leeuw (I988) have  shown that,  for  a contr ived set o f  
matr ices,  nonequivalence may  hold at certain accumulat ion points of  the C A N D E -  
C O M P / P A R A F A C  process .  Their  result, however ,  is not incompatible  with the equiv- 
alence claim of Carroll and Chang, because f has no minimum, and hence C A N D E -  
COMP does not converge  for the data set and rank (r = 2) they considered.  Practical  
exper ience  with C A N D E C O M P  has shown that equivalence is indeed guaranteed for all 
practical  purposes .  However ,  mathematical  proofs for equivalence have been absent .  
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The purpose of  the present paper is to examine equivalence from a mathematical point 
of  view, as a further clarification of CANDECOMP applied to INDSCAL.  

The organization of  the present paper is as follows. First, the phenomenon of  
equivalence (X and Y proportional columnwise) is related to symmetry  of  the matrices 
X D i Y ' .  Symmetry  is necessary and in most cases sufficient for equivalence; hence,  
examining conditions for symmetry is relevant for examining equivalence. Next ,  we 
consider the case m = 1 for (1) and (2), and show that asymmetry  is possible in the case 
of  certain indefinite matrices. This permits the construction of  cases where CANDE-  
COMP has asymmetric solutions, when applied to indefinite matrices Sl . . . .  , Sin, for  
m > 1. Finally, the case where S l . . . . .  Sm are Gramian (nonnegative definite) is 
treated. Surprisingly, it is shown that the CAN D ECO MP function does have stationary 
points where nonequivalence holds. On the other  hand, equivalence can be shown to 
hold at the global minimum of  the CANDECO MP function if r = 1 or if X and Y are 
constrained to be columnwise orthonormal.  Neither  a proof  nor a counterexample to 
symmetry  have been found for r > l and X and Y unconstrained,  at the global minimum 
of the C A N D E C O M P  function. 

From Equivalence to Symmetry  

When C A N D E C O M P  is applied to symmetric matrices Sl . . . .  , S m, upon con- 
vergence we obtain " regress ion"  matrices 

Si = X D i  Y ' ,  (3) 

for i = 1 . . . .  , m. If  a CANDECOMP solution is to be of  use for INDSCAL,  X must 
equal Y, or at least X and Y should be proportional columnwise (equivalent). It is 
important  to note that equivalence is directly related to symmetry  of  the regressions, 
henceforth referred to as " s y m m e t r y " .  Results 1 and 2 below pinpoint this relationship. 

Resul t  1. Equivalence is sufficient for symmetry.  

Proof. Trivial. [ ]  

Harshman (1972) has shown that, given the regression matrices $1, • • • , Sin, the 
set of  matrices X, Y and D1, • • • ,  Dm that satisfy (3) is unique up to certain permuta- 
tions and scalar multiplications, provided that at least one pair D i, Oj satisfies the 
conditions that they are nonsingular, all diagonal elements of DiDj -1 are distinct, and 
X and Y have full column rank. The latter conditions, referred to as the "uniqueness  
condi t ions" ,  also play a role in the next  result. 

Resul t  2. Equivalence is necessary for symmetry if the uniqueness conditions of  
Harshman are satisfied. 

Proof. Let  it be assumed that symmetry  holds, and that for a pair D i and Dj,  both 
nonsingular, the diagonal elements of D i D j  I are distinct. Then, we have 

X D i  Y' = Y D i X ' ,  (4) 

and 

X D j  Y' = Y D j X ' .  (5) 

Because X and Y span the same column-space, X = Y T  for some nonsingular matrix T, 
and hence,  
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and 

Clearly, (6) and (7) imply that 

SO 

TDi -- Di T' ,  (6) 

TDj = Dj T' .  (7) 

Di-1TDi = T' = D j l T D j ,  (8) 

T D i D f  I = D i D f ~ T .  (9) 

Because all elements o f D i D f  -I are distinct by hypothesis, it follows that T is a diagonal 
matrix, and equivalence of X and Y is obtained. [] 

It should be noted that in the case where symmetry holds without equivalence, the 
very violation of the Harshman conditions permits a simplified expression for the 
nonequivalent parts of X and Y, from which equivalent solutions can also be found. 
Nevertheless, equivalence is not granted in that case. 

An implication of Results 1 and 2 is that instead of examining equivalence of X and 
Y, we may focus on symmetry of the regression matrices XDI  Y' ,  • • • ,  XDm Y'.  It 
should be obvious at once that symmetry is guaranteed in cases of perfect fit. It is also 
clear that symmetry is necessary and sufficient for equivalence if r = 1. 

Fitting a Single Symmetric Matrix by CANDECOMP 

For m = 1 and Zl = S (symmetric), the function f reduces to 

f(X, r )  = [IS - x r ' l l  2, (10) 

because D1 = D can be absorbed into X or Y, without loss of generality. Minimizing 
(I0) by CANDECOMP can be interpreted as the m = I case of INDSCAL. Unrealistic 
as this may be, this case reveals how asymmetry may come about. 

When X is optimal given Y, and Y is optimal given X, we have normal equations 

Y' = ( X ' X ) - I x ' s ,  (11) 

and 

X ' =  ( Y ' Y ) - 1 Y ' S .  (12) 

Let Px and Py be defined as Px = X ( X ' X )  -1X '  and Py = y ( y , y ) - I  y,, respectively. 
Then (11) and (12) can be written equivalently as 

P x S  = X Y ' ,  (13) 

and 

P y S  = YX ' ,  (14) 

respectively. The regression X Y '  is then 

X Y '  = P x S  = S P y  = P x S P y .  (15) 

Although X Y '  is often believed to be symmetric when (15) holds (e.g., Levin, 1988, 
p. 416), symmetry does not follow from (15). To show this, consider the case where 
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s,=(0 , ,0,  

It is well-known that a best-fitting rank-one solution can be obtained by taking X --- 
Y = (X/~ V~-.5)', the first eigenvector of S*, associated with the largest eigenvalue I of 
S* (see Eckart & Young, 1936). However, asymmetric solutions also exist. For exam- 
ple, i fX '  = (3 l) and Y' = (. 1 .3), (15) is also satisfied, but X Y '  is now asymmetric; 
that is, 

Both solutions yield a global minimum of 1 for f. The construction of the matrix S* of 
(16) was inspired by a sufficient condition for symmetry of X Y ' ,  to be derived shortly. 
First, however, it is convenient to obtain some preliminary results. Let S = KAK'  (K'K 
= KK' = I; A diagonal) be an eigendecomposition of S, and let X and Y be expressed 
in terms of K as 

X = K U ,  

for some n x r matrix U. Also, let Pu be defined as 

Pu = U(U'U) -1U'.  

(18) 

(19) 

Result 3. For p = 1, 2 . . . . .  the matrix Px commutes with S p if and only if Pu 
commutes with A t' . 

Proof. We have Px Sp = SPPx iff X ( X ' X ) - I X ' K A P K  ' = K A P K ' X ( X ' X ) - I X  ' iff 
KU(U'U) -1U'APK ' = KAP U(U'U) - i  U'K' iff Pu Ap = APPu. [] 

Result 4. If (15) holds, Pu commutes with A z. 

Proof. From (15), it follows that 

PxS  2 = S P y S  = S(SPx)  = SEPx, 

and from Result 3 (for p = 2), PuA 2 = AZPu. 

(20) 

[]  

. 

Result 5. If (15) holds, then X Y '  is symmetric if and only if Pu commutes with A. 

Proof. Clearly, X Y '  = YX' iff SPx = Px S iff AP u = Pu A, using Result 3 for p = 
[] 

From now on, it is assumed that (15) holds. Result 4 then implies that PuA 2 = 
A2pu, and the question is under what conditions do we have PuA = APu. Because Pu 
commutes with A 2, Pu is a block-diagonal matrix with nonzero blocks along the diag- 
onal, the orders of which correspond with the multiplicities of the diagonal elements of 
A 2. If the elements of A have the same multiplicities as those of A 2, then PuA = APu 
and symmetry holds (Result 5). It follows that asymmetry requires that, for a certain 
scalar A, both A and -A are eigenvalues of S. On the other hand, having such eigen- 
values of opposite signs is not sufficient for asymmetry. In the remainder of the present 
section, necessary and sufficient conditions for asymmetry will be examined in detail. 

For reasons of simplicity, let it be assumed that S has only one eigenvalue A, with 
multiplicity s, such that - A is also an eigenvalue of S, with multiplicity t. Then K and 
A can be rearranged to the effect that 
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A = 

o o) (!1 
?,Is 0 - 

0 - A I t  

0 

A,  

o), 
(21) 

where A t is a diagonal matrix containing the (n - s - t) eigenvalues of  S that differ f rom 
A and -A.  Clearly, A 2 then has the form 

o o o) 
A 2I(s + t) ' 

and it follows from P,,A 2 = A2Pu that Pu has the form 

(22) 

0) 
Pu = P2 ' (23) 

where P1 commutes  with A 2 and also with AI. Therefore ,  it depends entirely on P2 
whether  or not P ,  commutes  with A. 

If  X and Y are replaced by XT and Y(T- 1), respectively,  where T is an arbitrary 
nonsingular matrix, then neither XY' ,  nor Pu, nor the validity of  (15) are affected. 
Therefore ,  a T may be inserted that transforms U into a columnwise or thonormal  
matrix T u, with Pu = Tu T'u. Because of  (23), T,  can further be rotated to an n x r 
matrix of  the form 

• l[ 0) 
• (24) 

where T 2 has the order  (s + t) × u for some u -< r. Noting that P2 = 7"2 T~, it can be seen 
that Pu commutes  with A if and only if T 2 can be rotated to a direct sum of  an 
s x v matrix T2+ and a t x (u - v) matrix T 2_ of  the form 

T2 = 
t 

(25) 

At this point it becomes clear how asymmetric  solutions for XY '  may come about. 
For  instance, let u = 1. Then T2 is a vector,  and T2 T~ commutes  with A* if and only 
if T2 has zero elements throughout the first s or the last t elements.  If  there is at least 
one nonzero element both among the first s and among the last t elements of  T2, that is, 
if T2 " t ru ly  mixes"  eigenvectors associated with A with eigenvectors associated with 
-A ,  then asymmetry  of X Y '  is guaranteed, and we have symmetry  otherwise. 

It is instructive to verify this result for the solution XY '  in (17). The matrix S of  
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(16) has eigenvalues I and - 1, and associated eigenvectors k'l = (V[-.-.-~ V[--.5) and k~ = 
(X/~ -W~-.5), respectively.  The matrix X was constructed as 

X = ~ / -2(2kl  + kz) = (31), (26) 

which is a true mixture of  kj and k 2, thus producing asymmetry.  Note  that Pu = P2 in 
this case. 

It should be pointed out that constructing asymmetry  is more involved when u > 
1, because mixtures of  eigenvectors can arise merely by rota t ing/ '2 .  For  the purposes 
of  the present  paper, however ,  it suffices to have a method of  constructing asymmetric  
solutions in the u = 1 case. This will become clear in the next  section when asymmetr ic  
I N D S C A L  solutions will be examined. 

Asymmetr ic  INDSCAL Solutions: The Indefinite Case 

For  m = I, asymmetr ic  solutions can be constructed if and only if S 1 = S has one 
or more eigenvalues of  opposite sign. This condition for asymmetry  can readily be 
applied to INDSCAL with m > 1. Specifically, consider 

and 

S1 = - I  , 
0 

$2 = - 2  , 
0 

both of  which have eigenvalues of  opposite sign. I f  we let 

(27) 

and 

(28) 

X = - ~ 0 , (29) 

D1 = / 2 ,  and  

, 

then X and Y are nonequivalent and XD1 Y' and X D  2 Y' are asymmetric.  This solution 
yields a global minimum for the C A N D E C O M P  function, as can be verified as follows. 
The regression matrices are 

X D I  Y' = 1/6 - 2 - 2 , (32) 
1 2 
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and 

XD2 Y' - 1/6 4 - 4 , (33) 
l0 4 

which implies that the residual sum of squares (1) is 5. From Eckart and Young (1936) 
it is well-known that the best Rank 2 approximation of a symmetric matrix yields a 
residual sum of squares equal to the smallest squared eigenvalue. These values are 1 
and 4, for S1 and S 2, respectively. It follows that 5 is a lower bound to the CANDE- 
COMP loss function (1) for this S 1 and $2, and that we have asymmetric solutions for 
INDSCAL at a global minimum of the CANDECOMP function. 

The existence of asymmetric solutions does not exclude the existence of symmet- 
ric solutions, nor does it imply that the CANDECOMP algorithm will converge to 
asymmetric solutions if started anywhere but at the X and Y of (29) and (30). The main 
purpose of considering asymmetric examples is to narrow down the variety of condi- 
tions, under which symmetry proofs are feasible. 

It may be conjectured that asymmetry cannot occur at stationary points of the 
CANDECOMP function if the matrices S I, . , . ,  S m are Gramian. Surprisingly, how- 
ever, even this conjecture is false, as will be shown in the next section. 

Asymmetric INDSCAL Solutions: The Gramian Case 

Let a stationary point of the CANDECOMP function be defined as a set of values 
for X, Y, and D 1 . . . . .  D m satisfying the normal equations 

and, for i = 1 . . . .  , m, 

Y =  ~ S i X D  i D j X ' X D j  , 
i = 1  = 1  

X = ~ SiYDi Dj Y' YDj 
i = 1  = 1  

- l  

(34) 

(35) 

Diagvec (Di) = ( X ' X *  Y '  Y )  - l  Diagvec (X'Si Y), (36) 

where * denotes the elementwise (Hadamard) product of matrices, and Diagvec (-) 
denotes the vector containing the diagonal elements of the matrix between parentheses. 
Clearly, the CANDECOMP process is terminated if and only if these equations are 
satisfied jointly, within limits of computational accuracy. 

The following example represents a stationary point of the CANDECOMP func- 
tion for Gramian matrices: let 

and 

S 1  = 3 , 
0 

(37) 

(3 
$ 2  = - 1 3 , 

0 0 
(37) 
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and consider the r = 1 solution 

X = ; Y = , (39) 

with D l = [1] and D 2 = [ - I ] .  It is evident that the solution lacks equivalence and 
symmetry. It can be verified that neither Sl nor S 2 have eigenvalues of opposite sign, 
but (Sl - $2) does. 

It is important to see that the solution (39) is not globally optimal. That is, the value 
for f obtained is 39 whereas it can be shown that f >- 2I, with equality and hence the 
global minimum 21 if we take 

with D 1 = [41 and DE = [21. Disregarding joint reflection of X and ¥, there is only one 
other globally optimal solution, namely 

X = Y = - , (41) 

with D 1 = [2] and D2 = [4]. It follows that asymmetry in the present example can only 
occur at l o c a l  optima of the CANDECOMP function. In fact, this property is of a more 
general nature, as will be explained below. First, however, it is instructive to examine 
the nature of the nonoptimality of solution (39). It is easy to verify that the X and Y of 
(39) are globally optimal given D l and D2. That is, no other pair X*, Y* can yield a 
lower residual sum of squares for the D I and D 2 given. This shows that any attempt to 
prove symmetry, for Gramian matrices $ 1 ,  • .  • ,  S i n ,  using merely the joint optimality 
of X and Y, conditional on DI and D2, is doomed to fail. It seems that global optimality 
of Dl . . . .  , D m must be included in any proof of symmetry for Gramian matrices. 

Alternatively, one might expect the matrices D l ,  • • • ,  D m  to be nonnegative at the 
global minimum for Gramian matrices, and hence, be tempted to prove symmetry for 
optimal X and Y, given nonnegative matrices D1 . . . .  , D m . However, it is not difficult 
to construct counterexamples showing that globally optimal INDSCAL solutions for 
Gramian matrices can have negative elements in D 1 ,  • • • ,  D m .  

A proof for symmetry at the global minimum of the CANDECOMP function for 
Gramian matrices has not been found, nor have any counterexamples occurred. How- 
ever, for Gramian matrices symmetry can be shown to hold at solutions that minimize 
(I) subject to the constraint that X and Y are orthonormal columnwise. This will be 
taken up in the next section. 

INDSCAL with Orthonormality Constraints 

Kroonenberg (1983, p. 118) considered minimizing the INDSCAL loss function (2) 
subject to the constraint X ' X  = I r. An algorithm that accomplishes this for Gramian 
matrices has been given by ten Berge, Knol, and Kiers (1988). The algorithm is based 
on the observation that the CANDECOMP function, constrained by X ' X  = Y ' Y  = I ,  

can be simplified to 
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m 

f(X, Y, D1,  . . .  , Din) = X (tr Z[Z  i - -  2 tr Z;XD i  Y' + tr D~). (42) 
i = l  

It is straightforward that the optimal Dl . . . .  , D m can now be expressed in terms of  X 
and X as 

D i = Diag (X 'Z i  Y) = Diag (X 'S i  Y) ,  (43) 

i = 1, . . . ,  m, in the constrained INDSCAL case. Accordingly, the problem that 
remains is to maximize 

m 

h(X, Y) = ~ tr (Diag X ' S i  y)2, 
i = 1  

(44) 

subject to X ' X  = Y ' Y  = Ir. This sets the stage for the following equivalence result: 

Result  6. At every stationary point of h(X, Y) we have X = Y if Sl ,  • • • ,  Sm are 
Gramian and at least one of these matrices, Sj say, is nonsingular. 

Proof. For i = 1 , . . .  , m, we have 

IlDiag (X 'S iX)  - -  Diag (Y'S i Y)ll 2 >- 0; (45) 

hence, summing over i yields 

m 

h(X, X) + h(Y, Y) -> 2 ~'~ tr {(Diag X ' S i X ) ( D i a g  Y ' S i Y ) } .  
i = 1  

From the Schwartz inequality applied to (sil/2xl)'(sil/2yl), we have 

(46) 

h(X, Y ) =  (x[SiYl) 2<- Z (xiSiXl)(y[SiYl)  
i = l  l = l  i = l  I = l  

(47) 

m 

= tr ~ {(Diag X ' S i X ) ( D i a g  Y ' S i Y ) } .  
i = I  

Combining (46) and (47) shows that 

h(X, X) + h(Y, Y) -> 2 h(X, Y). (48) 

At stationary points of  h we have X optimal given Y, and Y optimal given X, implying 
that 

2 h(X, Y) = h(X, Y) + h(X, Y) > h(X, X) + h(V, Y), (49) 

and it follows that (48) holds as an equality. This implies that, for I = 1 , . . .  , r, S~/2 
x I = Aisl/Xy I (A t > 0), and the inference x t -- Yl (l = 1 . . . .  , r) is immediate. []  

Result 6 has no direct bearing on CANDECOMP except for the case r = 1. The 
global minimum of CANDECOMP, applied to Gramian matrices, coincides with the 
global maximum of h(X, Y) if r = 1, and equivalence is guaranteed at this global 
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maximum.  This explains why (39) and similar counterexamples  could only be con- 
structed for  nonoptimal  solutions. Unfortunately,  for  r > 1 the or thonormal i ty  con- 
straint is act ive and Result  6 is accordingly of  no avail in proving symmet ry  for  uncon-  
strained C A N D E C O M P  at the global minimum. 

Discussion 

The question whether  or  not equivalence for X and Y holds upon convergence  of  
C A N D E C O M P  applied to Gramian matr ices remains unsett led,  except  for r = I. How-  
ever ,  we have  nar rowed down the range of  possibilities by showing that  symmet ry  
proofs  for Gramian  $ I ,  • • • , S m ,  if  possible at all, mus t  rely on more  than the condi- 
tional optimali ty o f  X and Y given D 1 ,  • • • , D m  alone. Also, it cannot  be  taken for  
granted that D 1 , . . . ,  D m will be nonnegat ive at global minima of  the C A N D E C O M P  
function. F rom a practical  point o f  view one might be tempted  to avoid a s y m m e t r y  by  
setting X equal to Y in each  computat ional  cycle of  C A N D E C O M P .  Carroll  and Chang 
(1970, p. 288) have explicitly considered and rejected such an approach,  for  good 
reasons:  as the paramete rs  approach conditional optimali ty,  setting X equal to Y may  
i n c r e a s e  the residual sum of  squares,  thus disturbing the monotonicity of  C A N D E -  
COMP.  Therefore ,  setting X equal to Y in each cycle hardly contr ibutes  to the math-  
ematical  t rea tment  of  symmet ry  in I N D S C A L .  
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