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S O M E  U N I Q U E N E S S  R E S U L T S  F O R  P A R A F A C 2  

Jos  M. F .  TEN BERGE AND HENK A.  L.  KIERS 

UNIVERSITY OF GRONINGEN 

Whereas the unique axes properties of PARAFAC 1 have been examined extensively, little 
is known about uniqueness properties for the PARAFAC2 model for covariance matrices. This 
paper is concerned with uniqueness in the rank two case of PARAFAC2. For this case, Harsh- 
man and Lundy have recently shown, subject to mild assumptions, that PARAFAC2 is unique 
when five (covariance) matrices are analyzed. In the present paper, this result is sharpened. 
PARAFAC2 is shown to be usually unique with four matrices. With three matrices it is not 
unique unless a certain additional assumption is introduced. If, for instance, the diagonal 
matrices of weights are constrained to be non-negative, three matrices are enough to have 
uniqueness in the rank two case of PARAFAC2. 
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H a r s h m a n  (1972a), a l so  see  H a r s h m a n  and  L u n d y  (1984, p. 136), has  i n t r o d u c e d  
the  P A R A F A C 2  m o d e l  for  s ca l a r  p r o d u c t  m a t r i c e s  d e r i v e d  f rom d i s t ance  m a t r i c e s ,  and  
fo r  c o v a r i a n c e  m a t r i c e s  d e r i v e d  f rom a c o m m o n  set  o f  va r i ab l e s  m e a s u r e d  in s e v e r a l  
p o p u l a t i o n s .  This  p a p e r  e m p h a s i z e s  the  l a t t e r  i n t e rp re t a t i on .  T h e  P A R A F A C 2  m o d e l  
wi th  r a n k  r d e c o m p o s e s  a set  o f  p c o v a r i a n c e  m a t r i c e s  S I . . . . .  Sp as 

S i  = A C i H C i A '  + E i ,  (1) 

i = 1, . • • , p ,  w h e r e  A is an  n x r (n -> r) ma t r i x  o f  f ac to r  load ings ,  C i is a d i agona l  
m a t r i x  o f  weights  for  p o p u l a t i o n  i,  H is a s y m m e t r i c  r x r ma t r i x  o f  c o v a r i a n c e s  
b e t w e e n  the  f ac to r s ,  and  E i r e p r e s e n t s  the  ma t r i x  o f  r e s idua l  c o v a r i a n c e s  for  p o p u l a t i o n  
i no t  fit b y  the  mode l .  P A R A F A C 2  can  be  c o n s i d e r e d  an  ind i rec t  fi t t ing va r i an t  o f  
P A R A F A C 1 ,  wh ich  is a l so  k n o w n  as  C A N D E C O M P  (Carro l l  & Chang ,  1970). T h a t  is,  
w h e r e  a t h r e e w a y  d a t a  a r r a y  cons i s t ing  o f p  s labs  X 1 , . . .  , X p  is fit in C A N D E C O M P /  
P A R A F A C 1 ,  it is the  sums -o f - squa re s  and  c r o s s - p r o d u c t s  m a t r i c e s  X ) X  i = S i, i = 
1, . . . ,  p ,  tha t  is fit in P A R A F A C 2 .  

C o m p u t a t i o n a l  m e t h o d s  for  fi t t ing the  P A R A F A C 2  m o d e l  in the  leas t  squa re s  s ense  
we re  first  d i s c u s s e d  b y  H a r s h m a n  (1972a). A c o m p l e t e  t r e a t m e n t  o f  fi t t ing this  m o d e l  
sub jec t  to  the  cons t r a in t  tha t  H be  a c o v a r i a n c e  ma t r i x  o r  a c o r r e l a t i o n  ma t r i x  has  b e e n  
g iven  b y  K i e r s  (1993), w h o  has  g iven  a lgo r i thms  fo r  f i t t ing ( I )  w i th  or  w i t h o u t  non-  
nega t iv i t y  c o n s t r a i n t s  on  the  d i agona l  e l e m e n t s  o f  C 1 , . . .  , Cp.  

T h e  p u r p o s e  o f  th is  p a p e r  is  to  e s t ab l i sh  ce r t a in  un ique ne s s  r e su l t s  fo r  
P A R A F A C 2 ,  ana logous  to  the  weU-known un ique  axes  p r o p e r t y  o f  the  P A R A F A C 1  
m o d e l  for  t h r e e - w a y  d a t a  ( H a r s h m a n ,  1972b; K r u s k a l ,  1977, 1989), and  as  a r e f i ne me n t  
o f  a r e su l t  b y  H a r s h m a n  and  L u n d y  (1996). Spec i f i ca l ly ,  le t  {A; H ;  C1, • • • ,  Cp} be  a 
P A R A F A C 2  so lu t ion  for  a g iven  set  o f  m a t r i c e s  S 1 . . . .  , Sp. 
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Definition I. A solution {B; L;  D1 . . . .  , Dp}, with B an n × r matrix, D1,  • • • , 
Dp a set of  diagonal r × r matrices, and L an r x r covariance matrix, is equivalent to 
{A; H; C1 . . . . .  Cp} if and only if, for i = 1 . . . . .  p ,  

Si - Ei =- ACiHCiA  ' = BDiLDiB' .  (2) 

A matrix is called trivial in the sequel when it is the product  of  a permutation matrix 
and a nonsingular diagonal matrix. 

Definition 2. A solution {B; L;  D l , . . .  , Dp } is called trivially equivalent to {A; 
H; Cl ,  • • • , Cp} when it satisfies (2) and B = A T  and L = T-1H(T  ')-1 , for  a trivial 
matrix T. 

For  any given PARAFAC2 solution, trivially equivalent solutions can easily be 
constructed.  Trivial equivalence reflects the inherent indeterminacy of a PARAFAC2 
solution. Although Definition 2 does not yet account  for  every  form of indeterminacy 
(replacing D i by Di A - I  and L by ALA,  where A is a nonsingular diagonal matrix, is 
still permitted),  an identification constraint on C1 and D l ,  to be introduced later, will 
remove this indeterminacy. 

Definition 3. Let  {A; H ;  C 1 ,  . . .  , Cp} be a given PARAFAC2 solution. This 
solution is said to be unique when every  equivalent solution {B; L;  D1, . . .  , Dp} is 
trivially equivalent. 

The question is under  what conditions the PARAFAC2 model has a unique solu- 
tion. Carroll and Wish (1974, pp. 94-96) have pointed out that, whereas two slabs (p  = 
2) is enough for uniqueness in PARAFAC1, more slabs are needed for uniqueness in 
PARAFAC2. This is because in case p = 2 the two symmetric matrices ($1 - E l )  and 
($2 - E2) can be diagonalized simultaneously, which provides ample opportunity for 
constructing nontrivially equivalent solutions. 

Harshman and Lundy  (1996) have given sumcient conditions for uniqueness in 
so-called PARATUCK2 models. For  the specific case of  PARAFAC2 with rank two, 
they have shown that five slabs are enough to have uniqueness. In the present  paper,  
the same result will be obtained from a slightly different line of  proof, and it will be 
sharpened. Under  mild assumptions, PARAFAC2 solutions with rank two will be 
shown unique with three slabs (p  = 3) if a nonnegativity restriction on the diagonal 
matrices C1 . . . . .  Cp is introduced, and nonunique in the unrestr icted case. With four 
slabs, uniqueness holds without the restriction, except  when the data belong to a set 
that has volume zero. To arrive at these results, it is necessary to introduce the as- 
sumptions. 

A Reformulation of  the Problem 

Throughout  this paper, the following assumptions are adopted: 

Assumption 1. The matrix H is positive definite. 
Assumption 2. The matrix A has full column rank r. In the particular case when 

the rank r is 2, to be treated below, this assumption is absolutely 
necessary,  because there is no uniqueness when A has a pair of  
proportional columns. 

Assumption 3. The set of  matrices CI . . . .  , Cp do not contain a proportional  
pair. 
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Assumpt ion  4. The matrices C l . . . . .  Cp are nonsingular. Some results when this 
condition is not met  can be found in Carroll and Wish (1974, pp. 
95-96), see Appendix A. 

In addition to these assumptions,  we set C l = D 1 = I ,  for  purposes  of  identification. 
This can always be achieved by rescaling H and L,  respect ively.  The authors are 
obliged to Richard Harshman  for suggesting this possibility. 

We are now in a position to reformulate the definition of  equivalence.  

Resul t  la .  Let  {A; H ;  C1 . . . . .  Cp} be a given PARAFAC2 solution. For  every  
solution {B; L; D1 . . . .  , Dp} that is equivalent to {A; H; C1, • • • ,  Cp} there exists 
a nonsingular r x r matrix U that satisfies A = B U and 

U C i H C i  U' = Di U H U ' D i ,  (3) 

i =  1 , . . . , p .  

Proof. Let  {B; L;  D 1 . . . .  , Dp} be equivalent to {A; H ;  C 1 ,  o o .  , Cp}. Then 

A C i H C i A '  = B D i L D i B ' ,  (4) 

for i = 1 . . . .  , p .  Using Assumptions  1, 2 and 4, it can be shown that  B is in the column 
space of A. Hence  there must  be a nonsingular matrix N such that B = A N .  Premul- 
tiplying and postmultiplying (4) by ( A ' A ) -  1A' and its t ranspose,  respect ively,  changes 
(4) into the equivalent  expression 

C i H C i  = N D i L D i  N ' ,  (5) 

i = 1, . . .  , p .  Next ,  by virtue of  the identification constraint  C 1 = D 1 = I ,  it can be 
seen f rom (5) for i = l that 

H = N L N ' .  (6) 

Using (6) to eliminate L f rom (5) we obtain C i H C  i = N D i N - 1 H ( N - I ) ' D i N '  , which 
is equivalent to 

U C i H C I  U' = Di U H U ' D i ,  

i = I ,  . . .  , p ,  for U defined as N - 1  

(7) 

[] 

Resul t  lb .  Let  {A; H ;  C1, . . .  , Cp} be a given PARAFAC2 solution. Le t  there be  
a { U; D 1, • • • , Dp } with D l,  • • • , Dp diagonal and U nonsingular,  that satisfies (3) for 
i = I ,  . . .  , p .  Then there exists an equivalent solution {B; L;  D~ . . . .  , Dp} to {A; H ;  
C1 . . . .  , Cp} with D 1 . . . .  , Dp as given, and with B = A U - "  and L = U H U ' .  

Proof. Premultiplying (3) with A U - 1  and postmultiplying with the t ranspose of  
that matrix yields A C i H C i A '  = A U -  1Di U H U , D i  (U,)  - I A ' ,  f rom which the result is 
immediate.  [ ]  

Combining Result  la  and lb yields the following simplification of  uniqueness:  

Corollary 1. Let  {A; H ;  C 1 . . . . .  Cp} be a given PARAFAC2 solution. This 
solution is unique if and only if for every  {U, D l . . . .  , Dp} that satisfies (3) for i = 
1 . . . .  , p ,  with U nonsingular and D 1 . . . .  , D v diagonal, U is trivial. 
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Proof. Let  {A; H ;  C1 . . . .  , Cp } be a PARAFAC2 solution, and suppose that (3) 
is satisfied with U nontrivial. Then Result lb  shows how to construct  a solution {B; L;  
DI ,  . . .  , Dp}, nontrivially equivalent to {A; H ;  C1, . . . ,  Cp}. This implies nonu- 
niqueness. Conversely ,  let {A; H; C1 . . . . .  Cp} be nonunique. Then there is an 
equivalent solution {B; L; D 1 . . . .  , Dp} with B = A N ,  for a nonsingular N that  is 
nontrivial. It  follows f rom Result  la  that the matrix U defined by A = B U  satisfies (3) 
for i = 1, . . .  , p .  F rom B = A N  and A = B U  it is clear that U = N -1 . Because  N 
is nontrivial, so is U. [ ]  

Corollary 1 allows us to examine uniqueness only in terms of  (3) ra ther  than in 
terms of  (2). The corollary will only be used for the case r = 2 in the sequel. Because  
PARAFAC2 is not unique f o r p  = 2 (Carroll & Wish, 1974) we shall only c o n s i d e r p  > 
2. We shall examine for what  value o f p  > 2 all solutions {U; D~,  . . .  , Dp} to (3) 
involve a matrix U that is trivial. 

It  is fundamental  to the results of  this paper  that, when r = 2, the possibilities of  
finding solutions {U; D 1 , • • .  , Dp} for  (3), for fixed {H; C1,  • • • , Cv}, are comple te ly  
determined by  the possibilities to solve the off-diagonal parts  of  these equations.  This 
will be explained in the next  section. 

The K e y  Role of  the Off-Diagonal Elements  in (3) 

By virtue of  Corollary 1, uniqueness conditions for PARAFAC2 can be examined 
in te rms of  the set o f  all possible { U; D 1 , . . .  , Dp } for  which (3) is satisfied, when {H; 
C 1 , . . .  , Cp} is given. Let  u~ and u[ stand for the two rows of  U; let cij be t h e j - t h  
diagonal e lement  of  C i, and dij t h e j - t h  diagonal e lement  of  D i . The key result  of  this 
paper  is the following: 

Result  2. Let  {A; H ;  C l ,  ° ° • , Cp} be a given P A R A F A C  solution. For  any fixed 
value of  i, there exists a pair { U; Di} that satisfies (3), if and only if there exist a matrix 
U and a scalar o- i, with 0 "2 = l ,  such that  the off-diagonal e lement  u~ C i H C i u  2 of  
U C i H C  i U' equals O'iCil ci2UrlHU2 . 

Proof. Let,  for any fixed value of  i, 

U C i H C  i U'  = Di  U H U ' D i .  (8) 

By taking determinants  on both sides of  (8), we find that det (C/2) = det (D2) ,  and 
hence also 

C il C i2 : °r idil di2 , (9) 

where o- i : 1 when the determinants  of  C i and D i have  the same sign, and or i : - -  1 
otherwise.  Note  that tr 1 = 1 due to the identification constraint  C l = D 1 = I2.  Writing 
(M)kl for  the (k, l )  entry of  any matrix M,  we have  f rom (8) that 

( U C i H C  i U')12 = (Di U H U ' D i ) I 2 ,  

hence 

Utl C i H C i n 2  = di ld i2u ' lHU2 = o.icilci2UPlHU2, (10) 

which proves  necessity.  To prove  sufficiency, define H i as C i H C  i and write 

UtlHiU2 = oricilci2UrlHU2, (11) 
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with a i = 1 or - 1. We now construct  the matrix D i as  a function of  U such that (3) is 
satisfied. Le t  di l ,  the first diagonal element of  D i, be determined as 

and determine di2 as  

/ U,1HlUll 1/2 
d .  = , (12) 

{u'2niu2~ i/2 

where ri is the product of o" i and sgn [CilCi2] , and cr i = UtlHiU2/(CilCi2u]Hu2), see 
(II), assuming that u~Hu 2 does not vanish (the case where it does will be treated 
below). It can be seen that the resulting D i UHU'D i has the same diagonal elements as 
UCiHC i U'. It remains to verify, using (12) and (13), that the off-diagonal elements in 
(8) are also equal. Specifically, it must be shown that 

U'I H i u 2  = dil di2 U'I H U 2 .  (14) 

To prove (14), we express the determinant of  U C i H C  i U'  in two different ways. We 
have on the one hand 

I U G H C i U ' I  = IUH~U'I = u ' l H i U l U ' 2 H i u 2  

-- ( U ' I H i U 2 )  2 = U ' l H i U l U ' 2 H i u 2  - C~IC~2(u'IHu2) 2, ( 1 5 )  

where (11) has been used. On the other hand, we also have 

IUCeHCeU'I = IC,121UHU'I -- C2ilC2i2((u'lHUl)(U'2Hu2) - ( u ' l H u 2 ) 2 ) .  (16) 

Subtracting (15) from (16) yields 

CilCi22 2 = ( U , l H i U l ) ( u r 2 n i u 2 ) ( u t l n U l ) - l ( u t 2 H u 2 ) - l ,  (17) 

and hence 

sgn [CilCi2](CilCi2 ) : ( U l l H i u l ) l / 2 ( u P 2 H i u 2 ) l / 2 ( U r l H U l ) - l / 2 ( u t 2 H u 2 )  -1/2. (18) 

Because sgn [CilCi2] equals "gi/O'i = ITi/T i it follows using (12) and (13) that 

1/2 , 1/2 , 1/2 ~ 1/2 O'i(CilCi2) = "I"i(UPlHiUl) ( u 2 H / u 2 )  ( U l H U l ) -  ( u 2 H u 2 ) -  = d i l d i 2 .  ( 1 9 )  

This yields (9). Combining (9) and (I 1) shows that (14) is satisfied. 
When u~Hu 2 = 0, the expression for a i used below (13) is not valid, but the proof  

is much simpler. It is now immediate from (11) that u~Hu 2 = u ] H i u  2 = 0 ,  which 
means that the off-diagonal part of  (3) is satisfied trivially. To construct  D i such that (3) 
is satisfied, use (12) and (13), with or i taken as either 1 or - I .  [ ]  

The importance of  Result 2 is that, in examining solutions for (3) for the rank 2 
case, we have also removed Di,  and need only consider U and o'i, i = 2, . . . ,  p.  
Solving the nonlinear "off-diagonal equat ions"  (I1) generates the complete set of  so- 
lutions equivalent to {A; H ,  D 1 . . . .  , Dp }. The next  step is to express these nonlinear 
equations in terms of  linear equations, to see how nontrivial solutions for U may come 
about,  when the rank is 2. This will be done in the next  section. 
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From Nonlinear to Linear Equations 

Let U and H have element Ukl and hkl , respectively, in row k and column I. Define 
F ei as the row v e c t o r  [Ci21[CilCiEIC2], i = 1, . . .  , p. This enables us to rephrase the 

nonlinear equations of  Result 2 into linear equations: 

Result 3. For a given H and C i (i fixed), a matrix U and a scalar o'i (+ 1 or - 1) that 
satisfy the off-diagonal equation (1 1) exist if and only if the vector  c i is orthogonal to the 
vector  x i, with elements 

Xil = h l l U l l U 2 1 ,  

Xi2 = h 1 2 ( u l l u 2 2  + u 1 2 u 2 1  ) - o r i U l l H U 2 ,  a n d  (20) 

Xi3 = h 2 2 R 1 2 U 2 2 .  

Proof. Equation (11) can be written a s  n ' lHiU 2 - o ' ic i lc i2U' lHU 2 = 0 ,  that is, as 

c i 2 h l l u l t u 2 1  + CilCi2h12(UllU22 + u t 2 u 2 1  ) + c22h22u12u22 

-- oriCilCiEUrlHU2 = e~.xi = O. [ ]  

From Results 2 and 3 the following corollary is immediate: 

Corollary 3. Every  {U; D 1, . . .  , Dp} satisfying (3) for i = l ,  . . .  , p simulta- 
neously satisfies c~xi = 0 for i = 1 . . . . .  p simultaneously. 

Corollary (3) is connected to PARAFAC2 uniqueness in the following way: Every  
solution {B; L ;  D 1 . . . . .  Dp}, equivalent to {A; H ;  C1, • • • , Cp}, defines a nonsin- 
gular matrix U (by A = B U) which may or may not be trivial. This U must satisfy the 
equations c~xi -- 0 for i -- 1, . . .  , p.  When the latter equations can only be satisfied 
when U is trivial, uniqueness of  {A; H;  C1 . . . . .  Cp} has been established. 

It should be noted that the vectors x 1 , . . .  , xp only differ in terms of  o i and that 
Xil and xi3 , the first and third elements, are constant for i = I ,  . . . ,  p.  

Result 4. A PARAFAC2 solution {A; H ;  C 1 . . . .  , Cp} is unique if and only if 

Xil = xi3 = O. 

Proof. When Xil = xi3 = 0, then h l lU l lU21  = 0 and h22u12u22 = 0. From 
Assumption 1 (H positive definite) it follows that u 11 u21 = 0 and u 12 u22 = 0. Because 
U is also nonsingular, U is trivial, which implies uniqueness of  {A; H ;  C1, • • • , Cv}. 
Conversely,  when {A; H;  C1, • • • , Cp} is unique, any equivalent solution defines a U 
that is trivial. Therefore, U l l U 2 1  = 0 and U12U22 = 0 ,  hence h l l U l l U 2 1  = 0 a n d  

h22u12u22 = 0 ,  w h i c h  m e a n s  t h a t  xil  = xi3 = O. [] 

Define C* as t h e p  x 3 matrix consisting of  the row vectors c~/c 2, i = 1, . . .  , p .  
This division is legitimate due to Assumption 4. Define )~i = Ci2/¢il" Then, for p -> 3, 
the upper 3 x 3 submatrix C of  C* has the form 

d =  (22) 
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This is a special case of  a Vandermonde matrix, and its determinant  is well-known 
(Jacob & Bailey, 1971, p. 279) to be 

(3'2 - 1)(3'3 - 1)(3'3 - 3'2). (23) 

This determinant  is zero if and only if there is a proport ional  pair among C1, C2 and 
C3, a case explicitly excluded at the start of  this paper  (Assumption 3). I t  follows that  
C* is of  full column rank 3. 

We now address uniqueness of  PARAFAC2 in the rank 2 case,  for p = 3, p = 5, 
and p = 4, respectively.  

Result 5. In the rank 2 case,  PARAFAC2 solutions are unique when p = 3, and 
0.2 and 0.3 are constrained to be 1 (rather than + 1 or - 1 ) .  

Proof. When 0.1 = 0.2 = 0.3, it can be seen in (20) that Xl = x2 = x3 --- x, and this 
x is orthogonal to every row of  the rank 3 matrix C*,  hence x must  be zero. F rom Result  
4, uniqueness follows. [ ]  

Corollary 5. In the rank 2 case,  PARAFAC2 solutions are unique for p >- 5. 

Proof. When p >- 5, and we have a solution for the off-diagonal equation (11) for 
i = l ,  . . .  , 5, there must  be three equal values of  0.i among 0.1, • • • ,  0.5. When these 
equal values are + 1, we use the corresponding three rows of  C* in Result  5 to obtain 
uniqueness.  When the three equal values are - 1 ,  the proof  of  Result 5 can still be  
applied to obtain uniqueness.  [ ]  

Result  5 implies that uniqueness can be obtained in the rank 2 case for  as few as 
three slabs (p  = 3) if the additional constraint  is adopted that the determinants  of  D E 
and D 3 in (3) have the same signs as those of  C 2 and C a , respectively.  In practical 
applications of  PARAFAC2,  it may sometimes be desired to have nonnegative weights 
only (Harshman,  1972a, p. 38). When such a nonnegativity constraint  is used, the 
determinants  of  C2, C3, DE, D3 are positive and PARAFAC2 solutions (rank 2) are 
unique with as few as three slabs (p  = 3). However ,  without a constraint  of  this sort,  
PARAFAC2 (rank 2) is not unique when p -- 3. For  example ,  let 

92'81 0] 
Then (3) is satisfied for 

[7,0  U =  _1/3 , /)2 = 

0] 
(24) 

and C 1 - -  D 1 = 12, as can readily be verified. I t  should be noted that [D21 = [C2[ and 
ID3[ = - [C3[ ,  so we have a solution with 0.1 = O'2 = l and o- 3 = - 1 .  In cases where  
a solution with 0.1 = 0.2 ---- 1 and 0.3 = - 1 does not exist (solving for U requires a certain 
quadratic equation to have a nonnegative discriminant), it can be shown that a solution with 
o- 1 = 1 and 0.2 = 0.3 = - 1  always does exist. Again, this pertains to the p = 3, rank 2 
situation when there are no constraints on the signs of  the determinants o f D l ,  DE and D 3 . 

PARAFAC2,  constrained by  the assumption of  nonnegat ive matrices of  weights 

O3 
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C1, • • • ,  Cp, poses no computat ional  problems,  because  it can be handled as an option 
in the program by Kiers (1993). However ,  this very constraint  puts Assumpt ion  4 of  this 
paper  in jeopardy:  It  is likely to introduce zero weights. The case where  singular 
nonnegative matrices of  weights are allowed is t reated separately in Appendix A. 

When p = 4, the situation is as follows: 

Result 6. In the rank 2 case,  PARAFAC2 solutions are usually unique for  p -> 4. 

Proof. Solutions for (1 I) with U nontrivial can only exist when,  among the values 
or 1 , o" 2, o- 3 and o" 4, precisely two values are + 1 and two are - 1 .  Le t  the slabs be 
arranged such that o-l = o-2 = 1 and o" 3 = o" 4 = - I .  Define x as the vector  or thogonal  
to the first two rows of  C*,  and y as the vector  orthogonal to the last two rows,  with 
C* defined as 

c * =  72 
Y3 3'2 l" (26) 

74 74 J 
Then x is A[y2 ( -  1 - 3'2) 1]' for some scalar A, and y = / z [ y  33'4 -(3'3 + 74) 1]', for some 
sca lar /z .  Also, x and y have  the same first and the same third element,  see (20). It  
follows that  A = /x and AYE = A7374, so AC 2 = AC3C 4. Clearly, this means  that A = 
/x = 0, hence x = y = 0, in all cases where C2 differs f rom C 3 C 4. I t  follows that rank 
two PARAFAC2 solutions with p = 4 are unique (see Result  4) except  in the case 
where  C z = C 3 C 4. In the latter case ,  which cor responds  to a set of  volume zero,  
nontrivial matrices U can readily be found. For  instance,  expanding (25) with D 4 = 

['50V~ _l/(20w~)l,whenC4isdefinedasC4=[lo .~5],providesacaseinpoint.I-q 
Discussion 

The results of  this paper  are limited to the rank 2 case,  for H posit ive definite. 
Although it seems possible to relax the latter assumption,  it would be far more inter- 
esting to generalize the results for H posit ive definite to higher rank. So far, little has 
been  achieved in this direction. The main obstacle is the failure of  Result 2 to generalize 
to rank >2.  

Compute r  simulations for  the rank 3 case,  using the algorithms by Kiers  (1993), 
suggest that PARAFAC2 is not unique with p < 5. For  p -> 5, uniqueness does seem 
to hold. These  simulation results differ markedly f rom those obtained by  Carroll  and 
Chang, reported by Carroll and Wish (1974, p. 96). Possibly,  these discrepancies are 
due to different levels of  computat ional  accuracy.  

Appendix A 

When a nonnegativity constraint  is introduced for the diagonal matrices C1,  • • • , 
Cp, PARAFAC2 is likely to produce  solutions where  some of  these diagonal matr ices  
are singular. For  this situation, Carroll and Wish (1974, pp. 95-96) have repor ted  some 
uniqueness results due to Carroll. Specifically, Carroll considered cases with r = p and 
C1, • • • , Cp of rank one. In such cases,  there is partial nonuniqueness  (A unique, but 
H nonunique).  The nonuniqueness  of  H disappears if there is one additional p + 1-th 
" s u b j e c t "  with Cp+l nonsingular. In this Appendix,  it will be examined,  for  the rank 
two case only, what is left of  the uniqueness results of  this paper ,  when Assumpt ion  1 
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(H positive definite), Assumption 2 (A of full column rank r = 2) and Assumption 3 (no 
proportional pair among C1 . . . . .  Cp) are maintained, but Assumption 4 (C1, • • • , Cp 
nonsingular) is replaced by a nonnegativity assumption on C l ,  . . .  , C v • 

First, consider the case of only p = 2 slabs. Let  {A; H;  CI ,  C2} be a PARAFAC2 
solution. When C1 and C2 are both of rank one (but non-proportional by virtue of 
Assumption 3), we have nonuniqueness for H as was pointed out by Carroll. When C1 
is nonsingular and C2 of rank one, it is possible to diagonalize C 1 H C I  and C2HC2 
simultaneously, which provides ample room to construct nontrivially equivalent solu- 
tions. So there is nonuniqueness both for A and for H in this case. To obtain unique- 
ness, we need at least p = 3. From now on, we only consider the rank two case with 
p = 3, and show that it is unique under the assumptions stated above. 

When C1, C2 and C3 happen to be nonsingular, all previous derivations remain 
valid, and Result 4 implies that PARAFAC2 solutions are unique. The opposite case 
where CI ,  C2 and C3 are each of rank one can be discarded due to Assumption 3. What 
remains is to consider the case where C1 is nonsingular, C3 is of rank one (S1, $2 and 
$3 can be rearranged to achieve this), and C2 is either of rank one or of rank two. Like 
before, we set C1 = 12 and for every solution {B; L;  D1, D2, D3} equivalent to {A; 
H;  C1, C2, C3} we also set D 1 = 12 . 

In the case where C2 is of rank one we have C2 proportional to [I0 00] and C3 

proportional to [0001],orviceversa.  W h e n  {B; L;  Di  , D2,  D3} i saso lu t ionequ iva len t  

to {A, H;  C1, C2, C3}, it is immediate from (2) for i = 2 and i = 3 that the matrix N 
satisfying B = A N  is diagonal, which means that A is unique (as in Carroll 's cases 
discussed above). From C1 = D1 = 12 ,  it can be inferred that H is also unique, see the 
proof of Result 1. So PARAFAC2 solutions of this type are unique. 

Finally, consider the case where only C3 is a rank one matrix. The element (1, 1) 
of C3 is nonzero or it is arranged to be nonzero by a permutation. When {B; L;  D 1, D 2, 
D 3 }  is a solution equivalent to {A; H;  C1, C2, C3}, it is immediate from (2) for i = 3 
that the matrix N for which B = A N  has element n21 = 0. This means that the element 
u21 of  N -1 = U is also zero. From this point on, we treat this case as a p  = 2 case 
(C1 and C 2 nonsingular), with the restriction that u21 = 0. The restriction implies that 
Xil = 0 in (20). Now consider the construction of (7 as in (22). In the present case, Row 
3 is deleted, and because Xil = 0, the first column of (7 can also be deleted. The [1 H remaining 2 x 2 matrix Y2 y~ must be orthogonal to the vectors [x13] and LX23 ]. 

These vectors are equal because o- 1 = ~2. Because the matrix is nonsingular (Assump- 
tion 3), the vector vanishes, and we have also that xi3 = 0. Uniqueness is now 
immediate from Result 4. 

For  the rank two case, it can be concluded that PARAFAC2 solutions with 
C l ,  • • • ,  Cp constrained to be nonnegative are unique when p -- 3, under the given 
assumptions. 
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