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One of the basic issues in the analysis of three-way arrays by CANDECOMP/PARAFAC (CP) 
has been the question of uniqueness of the decomposition. Kruskal (1977) has proved that uniqueness is 
guaranteed when the sum of the k-ranks of the three component matrices involved is at least twice the rank 
of the solution plus 2. Since then, little has been achieved that might further qualify Kruskal's sufficient 
condition. Attempts to prove that it is also necessary for uniqueness (except for rank 1 or 2) have famed, but 
counterexamples to necessity have not been detected. The present paper gives a method for generating the 
class of all solutions (or at least a subset of that class), given a CP solution that satisfies certain conditions. 
This offers the possibility to examine uniqueness for a great variety of specific CP solutions. It will be 
shown that Kruskal's condition is necessary and sufficient when the rank of the solution is three, but that 
uniqueness may hold even if the condition is not satisfied, when the rank is four or higher. 
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Let X be a three-way data array of  order I x J x K,  containing K frontal slices X1, • • •, X K  

of order I x J .  CANDECOMP/PARAFAC (CP), see Carroll  and Chang (1970) and Harshman 
(1970), in R dimensions decomposes the slices as 

Xk = ACkB ~ + Ek, (1) 

where A is an I x R matrix, B is a J x R matrix, Ck is a diagonal matrix, containing the elements 
of  row k of  a K x R matrix C, k = 1 . . . .  K,  and Ek is a matrix of residuals. The decomposit ion 
is fully symmetric in A, B, and C. That is, they may switch places in (1) if we switch the modes 
of  the array and residual array accordingly. 

Suppose there exists an alternative solution of  the form 

Xk = GDkH ~ + Ek (2) 

with G and H of  the same order as A and B, respectively, and Dk diagonal, containing the 
elements of  row k of  a K x R matrix D, k = 1 . . . . .  K.  A solution for CP is said to be unique 
when, for every other solution of  the form (2), G = A H A b  H = BI1A2, and D = CHA3,  for 
some permutation matrix H and diagonal matrices A1, A2, and A3, with A1A2A3 = IR. It is 
obvious that the residuals play no role at all, in the present context. They will be ignored in the 
sequel. As a matter of  convenience, we shall consider them to vanish, which means that Xk does 
not denote a slice of  the original array, but merely the CP fitted part of  it. 

This paper is concerned with conditions for uniqueness of  CP decompositions.  Kruskal 
(1977) has shown that uniqueness holds under relatively mild  conditions, to be discussed shortly. 
These conditions are necessary and sufficient for uniqueness when R = 2, but they are not 
necessary when R = 1. It has long been conjectured that these conditions are generally necessary 
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and sufficient for R > 1. This paper will prove that Kruskal's condition is indeed necessary and 
sufficient for R = 2 and R = 3, but not for R > 3. We start with a review of  the available 
conditions. 

Previous Results on Uniqueness 

The simplest case of  nonuniqueness arises when A or B or C has two proportional columns. 
For instance, let R = 2, and C = [cl)~c], for some scalar )~ and some vector c = [cl . . . . .  cx] ~. 
Then Xk = ACkB ~ = ckalb~ + )~Cka2b~ = Ck[al I)~a2]B ~ = ck[al I)~a2]TT-1B ~, for any nonsin- 
gular T. If  we choose T other than the product of  a diagonal and a permutation matrix, alternative 
solutions, with [al I)~a2]T instead of  A, become readily available. This argument can be extended 
to the case R > 2: Whenever two columns of  C are proportional, the corresponding columns of 
A and B can be mixed without loss of  fit. In general, it is necessary for uniqueness that neither 
A, nor B, nor C has a pair of proportional columns (Krijnen, 1993, p. 28). 

Another necessary condition for uniqueness is due to Liu and Sidiropoulos (2001). Let X 
be the matrix having Vec(Xk) as its k-th column, k = 1 . . . . .  K. Then the expression (1), again 
dropping Ek, can be written equivalently as 

X = (A • B)C I, (3) 

where A .  B is the Khatri-Rao product (the column-wise Kronecker product) of  A and B. Suppose 
that A • B is not of  full column rank. Then there exists a nonzero vector n orthogonal to the rows 
of  A .  B. Adding n to any column of  C I preserves (3), but produces a different solution for C. It 
follows that full column rank for A .  B (and A • C and B • C) is necessary for uniqueness. 

Kruskal (1977) has proposed a sufficient condition for uniqueness which relies on the fol- 
lowing definition: 

Definition 1. The k-rank of  a matrix is the largest value of  k such that every subset of  k 
columns of  the matrix is linearly independent. 

Note that the k-rank is 1 if there is a pair of  proportional columns in a matrix. Kruskal has proven 
that the condition ka + kB + kc _> 2R + 2 is sufficient for uniqueness in CP, where ka is the 
k-rank of  A, and so on. Sidiropoulos and Bro (2000) have generalized this sufficient condition 
to N-way arrays. Harshman (1972) has shown that it is sufficient for uniqueness to have A and 
B of full column rank, and C of  k-rank 2 or higher. To be precise, Harshman considered the 
case where at least one of  the diagonal matrices Ck in (1), (or a linear combination thereof), C1, 
say, is nonsingular and, in addition, there is another diagonal matrix C2 such that C]-1C2 has all 
diagonal elements distinct. This is equivalent to the case where the k-rank of  C is greater than 1. 

When R = 2, Harshman's conditions are equivalent to Kruskal's condition (and, in fact, 
necessary and sufficient for uniqueness). For R = 1, Kruskal's condition is never met even when 
Harshman's are (Kruskal did provide a separate necessary and sufficient condition for R = 1). 
For R > 2, Kruskal's condition may be satisfied even when Harshman's are not. 

It has been conjectured (Kruskal, 1989, Conjecture 4a) that Kruskal's condition is generally 
necessary and sufficient for uniqueness when R > 1, but a proof has never been given (except for 
R = 2) nor has a counterexample been produced. In the present paper, a method is proposed to 
generate, for any given CP solution (1) with specified ranks and k-ranks, the class of  alternative 
solutions (2), or at least part of  that class. As soon as an alternative solution has been found, 
different from the original one, nonuniqueness has been established. However, whenever the 
class of  alternative solutions is proven empty, we have proven uniqueness for the case under 
consideration. This approach will be used to show that Kruskal's sufficient condition is indeed 
necessary and sufficient for uniqueness when R = 3, but not necessary when R > 3. First, 
preliminary simplifications of  CP solutions will be discussed. 
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Simplifying a CP Solution 

It is clear that any two matrices A and G have proportional columns, up to a permutation, 
if and only if SA and SG have proportional columns up to the same permutation, for every 
nonsingular matrix S. It is also clear that, for k = 1 , . . . ,  K, 

ACkB I = GDkH I <=~ SACkW = SGDkH ~ 

for any nonsingular S. Using the symmetry of the CP decomposition to apply the same principle 
to B and C, it follows that a decomposition based on A, B, and C is identical (up to permutation 
and scale) to one based on G, H, and D, if and only if the decomposition based on SA, TB, 
and UC is identical (up to permutation and scale) to the one based on SG, TH, and UD, for 
arbitrary nonsingular matrices S, T, and U. That is, premultiplying the matrices A, B, or C of 
any CP solution by nonsingular matrices in no way changes the uniqueness properties of that 
solution. In addition, it affects neither the rank nor the k-rank of the matrices involved. Because 
such transformations greatly simplify the manipulation of ranks and k-ranks of A, B, and C, we 
shall use them throughout. 

Firstly, when A, say, is an I x R matrix of rank RA, the singular value decomposition of 
A yields a nonsingular S such that SA has all rows zero except the first RA. Next, removing 
these zero rows from SA, and the corresponding zero slices from the array, does not affect the 
uniqueness properties of the decomposition. Specifically, when the reduced array has a non- 
unique CP decomposition, then so does the full array, because restoring the zero rows in SA and 
the zero slices in the array does not impose any further constraints on B and C. Conversely, when 
the reduced array does have a unique CP decomposition, the Khatri-Rao product B • C is of full 
column rank (the Liu & Sidiropoulos condition, explained above) which implies that it has no 
zero linear combinations of columns (the removed slices of the array) unless when zero weights 
are used (the removed rows of SA), thus uniquely restoring the removed rows of SA. 

After transforming A and/or B, and/or C to reduced versions of full row rank, we may 
further simplify them. Take any nonsingular RA x RA submatrix of the reduced version of A, 
and premultiply the latter by the inverse of that submatrix. We end up with an identity submatrix 

A = 

form, for instance, 

Ei ° 1 
0 

0 . 
1 

This matrix has k-rank 2 because column 4 is a linear combination of columns 1 and 3 (the 
zero element in the fourth column reveals this at once). Note that this k-rank is also the k-rank 
of the original version of A, because neither premultiplying a matrix by a nonsingular matrix, 
nor removing zero rows, has an impact on the k-rank. We are now ready to show that Kruskal's 
condition is indeed necessary when R = 3. 

Necessity of Kruskal's Condition for R = 3 

For R = 3, Kruskal's sufficient condition for uniqueness reads kA q- k,? + kc  _> 8. To prove 
necessity, we shall consider all possible cases where this condition is not met, and show, for each 
case, that alternative solutions exist. The specific cases to be considered are 

a. when the k-rank of A, B, or C is less than 2, 
b. when the k-ranks of A, B, and C are (2,2,2), and 
c. when the k-ranks of A, B, and C are (2,2,3), (2,3,2) or (3,2,2). 

Case a. When one of the three component matrices have k-rank 1, nonuniqueness is imme- 
diate, as has been explained above. 
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Case b. Let kA = ke = kc = 2. Because R = 3, the ranks are also 2 (They cannot be 3 
because a matrix of  full column rank is also of  full k-rank). Hence, without loss of  generality, we 
may pretransform the array in two directions to have 

110 all .110 
A = 0 1 a2 0 1 b2 ' 

with am, a2, bin, and b2 nonzero because the k-ranks are 2. We consider the CP solution in the 
form X = (A • B)C ~, see (3), and examine whether or not A • B is the only Khatri-Rao product 
which generates the columns of  X as linear combinations. Noting that 

i 0 ambm 1 A . B = 0 0 amb2| 
0 a2bm|' (5) 

1 a2b2J 

it can be seen that, in the third column of  A • B, the first and the last element do not have any 
impact on the column space. Hence, we can change them, as long as we maintain the Khatri-Rao 
form. Specifically, we can replace the third column by 

x 

where x is arbitrary (but nonzero), and y is the value that produces a g • h in Khatri-Rao form. 
Equivalently, because Vec(hg I) = g • h, y has to yield a determinant zero for the matrix 

I x  alyb21 (7) 
g h 1 =  a2bm 

That is, y = ama2bmb2/x. We then have g = [1 a2bm/x] ~ and h = [x arab2] ~ to replace the 
third columns of  A and B, respectively. Any nonzero choice for x other than x = ambm will 
render g nonproportional to the vector [am a2] ~, implying a different solution from the one we 
started with. We have thus found a new basis G • H for the column space of A • B. If  a complete 
alternative solution is desired, it remains to find D such that (G • H)D z = (A • B)C  I. This is an 
elementary matrix problem. 

Case c. Although we have three different k-rank distributions to consider, it suffices to con- 
sider any one of  these three. The symmetry of  the CP solution, discussed below (1), guarantees 
that the other two distributions are equivalent, as far as uniqueness is concerned, to the first. We 
shall pick the distribution with k a  = ke = 2, and kc = 3. Although C now has rank and k- 
rank 3, the rank and k-rank of both A and B remain unchanged compared with Case b, and the 
same alternative solution for g and h as was found in (7) can be used to construct an alternative 
CP solution. 

Having shown nonuniqueness in all possible cases ofka +kB +kc < 8, it can be concluded 
that Kruskal 's  condition is indeed necessary and sufficient for R =3 .The  next issue to address is 
the case R = 4. Here it will be shown that Kruskal 's  condition is no longer necessary. 

The Case R = 4, When Kruskal 's  Condition Is Not Met  

When R = 4, it becomes possible to have matrices of  k-rank 2, that have a rank greater 
than 2. This offers the possibil i ty of  constructing arrays where the CP solution has k-ranks 2, 2, 
and 4, while the ranks are 3, 3, and 4. In fact, this allows us to create cases where uniqueness 
holds in spite of failure to satisfy Kruskal ' s  sufficient condition. First, we consider a case where 



JOS M.F. TEN BERGE AND NIKOLAOS D. SIDIROPOULOS 403 

the preliminary simplifying transformations yield a zero element in the last column of  A in a 
different place than for B. That is, suppose we have 

ii °° ao l [i °° boil A =  1 0 a n d  B = 1 0 , 

0 1 0 1 b3_] 
(8) 

with a l ,  a2, b l ,  and b3 nonzero, and C = I4. The k-rank of  both A and B is 2, as can be seen from 
the zero elements in the last columns, A ,, B has full column rank (see (9)), and C has k-rank 4. 
Let  there be another CP solution, so ACkW = GDkH ~, k = 1, . . . ,  4. It will be shown that the 
columns of  A are essentially those of  G, and so on. 

In Khatri-Rao notation, we have (A ,, B) = (G ,, H)D I, with D nonsingular, so A ,, B and 
G ,, H span the same spaces. Hence, every column of  G ,, H must be a linear combination of 
the columns of  A • B. Accordingly, we consider all solutions to the equation (A • B)w = g • h. 
Because 

0 

0 
A o B  = 0 

0 

0 
0 
0 

these solutions are, written as a matrix, of  the 

-1 0 0 albl- 
0 0 0  0 

0 0 alb3 

0 0 a2bl 
1 0 0 
0 0 a233 

0 0 0 
0 0 0 
0 1 0 

general form 

(9) 

Fwl + w4albl 0 w4alb3- 

g h ' =  [ w4;2bl  w20 w4a2b3w3 (10) 

The question is how w = [Wl w2 w3 w4] I can be chosen to have gh I of  rank one. Clearly, if 
w4 = 0, only single diagonal elements of  gh ~ can be nonzero, which retrieves the first three 
columns of  A and B. If  w4 is nonzero, w2 and w3 must be zero, and Wl must render a determinant 
zero for the 2 × 2 submatrix of gh ~ that is left upon deleting row 3 and column 2. It appears that Wl 
must be zero also, which retrieves the fourth columns of  A and B, respectively. It follows that the 
solution we had is the only possible solution, whence uniqueness for A and B has been proven. 
Clearly, D can only be a rescaled permutation matrix, which establishes uniqueness for C also. 

It can be concluded that, in the case under consideration, Kruskal 's  sufficient condition is 
not necessary for uniqueness. In general, for R > 3, it is not necessary. This can be explained as 
follows: When we start with matrices A, B and C, with ranks equal to k-ranks, and kA +k,  +kc < 
2R + 2, we can append R - kA-- 1 rows to A, say, and to the corresponding frontal slices of  the 
array, in such a way that we increase the rank of A without changing its k-rank. Adding slices 
this way makes the number of  constraints increase faster than the number of  free parameters. 
This should, at some point, enforce uniqueness, without affecting the k-ranks. Indeed, this is 
what happens. It explains why having kA + k ,  + kc _> 2R + 2 is sufficient, but not necessary 
for uniqueness, when R > 3. In the final section of this paper, further support to this explanation 
will be offered. 

From the example in (8), it may be tempting to infer that necessary and sufficient conditions 
for uniqueness might be derived from assumptions on rank and k-rank jointly. However, it is even 
more complicated than that. Consider what happens if we change (8) to have the zero elements 
in column 4 of  A and B in the same place. For  instance, we may take the element (3,4) zero in 
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both matrices. Then we can again find all possible alternative solutions. We have 

-1 0 
0 0 
0 0 

0 0 
A o B  = 0 1 

0 0 

0 0 
0 0 
0 0 

All possible vectors (A • B)w = g • h, written as 

0 albl-  
0 alb2 
0 0 

0 
0 
0 

a2bl 
a2b2 

0 

0 0 
0 0 
1 0 

a matrix, are now of the form 

(11) 

I 
Wl + w4albl w4alb2 0 ] 

gh I = w4a2bl w2 + w4a262 0 . (12) 
0 0 w3 

When we set Wl = w2 = w3 = 0, we retrieve the fourth columns of  A and B. However, this 
time, alternative solutions do exist: Upon taking any Wl and w4 with Wl, w4, and Wl + w4albl 
nonzero, and w3 = 0, we still have w2 to get a zero determinant for the upper left 2 × 2 submatrix 
of  gh I. Hence, an infinite number of  alternative solutions exist. We thus have nonuniqueness in a 
case with k-ranks 2, 2, and 4, and ranks 3, 3, 4, due to the fact that the nonzero elements in the 
fourth columns of  A and B now occur in exactly the same place. 

Necessity of  Kruskal's Condition for R = 4 When Ranks are k-Ranks 

The counterexample to necessity of  Kruskal's condition, given in the previous section, 
seems to capitalize on the possibility that k-ranks can be smaller than ranks. If  this explanation 
is valid, then, assuming that ranks and k-ranks coincide, we should have that Kruskal's condi- 
tion is necessary and sufficient for uniqueness. To investigate this conjecture, we examine the 
R = 4 case in greater detail, when all cases with k-ranks less than ranks are excluded. It will be 
proven that Kruskal's condition is indeed necessary and sufficient for uniqueness in this special 
case. Specifically, we show how to construct alternative solutions when ka + kB + kc < 10, and 
ka = rank(A), kB = rank(B), and kc = rank(C). The following cases need to be treated: 

a. when one of  the matrices has rank less than 2, 
b. when two matrices have rank 2, and the third has at least rank 2, 
c. when one matrix has rank 2, one has rank 3, and the third has rank 3 or 4, 
d. when all ranks are 3. 

Case a. We can discard this case at once, as has been explained above. 

Case b. When two ranks are 2, we can, without loss of  generality, take A and B to have 
rank 2. They can be brought in the form 

whence 

l l  0 a13 a141 and B =  [1 0 b13 b147 (13) 
A =  0 1 a23 a24J 0 1 b23 b24J '  

i 0 a13b13 a14b14-] 
A e B = 0 0 a13b23 a14b24] 

0 a23b13 a24b14]" (14) 

1 a23b23 a24b24[ 
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Note that all elements in columns 3 and 4 are nonzero because the ranks are also k-ranks, and 
that these two columns are not proportional. 

Again, like in (5), the column space of A . B  is insensitive to changing the elements (1,3) and 
(4,3), or (1,4) and (4,4). They can be replaced by arbitrary elements preserving the Khatri-Rao 
form. That is, as long as the product of (1,3) and (4,3) remains equal to a13a23b13b23, and that of 
(1,4) and (4,4) remains equal to a14a24b14b24, the column space of A • B is left unchanged, and 
alternative solutions arise in the same column space. 

Case c. When one rank is 2, and another is 3, we can bring A and B in the form 

i i  0 0 bl 1 A =  [10 0 a13 a141  and B =  1 0 b2 , (15) 
1 a23 a24J 0 1 b3 

with 

A , B =  

-1 0 0 a14b1- 
0 0 0 a14b2 
0 0 a13 a14b3 

0 0 0 a24b1 
0 1 0 a24b2 
0 0 a23 a24b3 

(16) 

All possible vectors (A • B)w = g • h, written as a matrix, are now of the form 

Wl + w4a14bl w4a14b2 w3a13 + w4a14b31 
gh' = w4a24bl w2 + w4a24b2 w3a23 + w4a24b3.] " 

Setting only wl, w2, w3, or 1/04 nonzero retrieves the four rank-one matrices associated with the 
columns of A • B. To find a different rank one matrix, take any nonzero w3 and w4 such that 
w3a13 + w4a14b3 and w3a23 + w4a24b3, respectively, are nonzero. This fixes the third column 
of gh I. Then pick Wl to get the first column of gh I proportional to the third column, and w2 to 
get the second column proportional to the third. The resulting rank-one matrix gh ~ can be used 
to replace columns 4 of A and B by g and h, respectively, which shows nonuniqueness. 

Case d. The last case to be dealt with is the case 3-3-3. This case cannot be solved as the 
previous cases, by finding a different Khatri-Rao basis in the column space of A • B. To see this, 
suppose that we add one slice to the array, to have the 3-3-4 case, with C nonsingular. Then we 
would have uniqueness. Uniqueness implies that there cannot be another Khatri-Rao basis for 
the column space of A • B. It follows that, to construct alternative solutions for the 3-3-3 case, 
we shall have to find them outside the column space of A • B. This can be done by manipulating 
the coefficients of a certain quartic equation to the effect that it has four distinct real roots. The 
details of this problem are explained in the appendix. We conclude that Kruskal's condition is 
necessary and sufficient for uniqueness when R = 4, and ranks are equal to k-ranks. 

Discussion 

The approach of finding alternative solutions for any given CP solution has proven useful 
for the study of uniqueness. Twenty-five years after Kruskal' seminal paper, it has become clear 
that Kruskal's sufficient condition for uniqueness is necessary when R = 3, but not when R > 3. 
The reason is that, when R > 3, the possibility arises that A, B, and C, while having k-ranks 2 
or more, have larger ranks than k-ranks. Indeed, when R = 4, and the k-ranks are equal to the 
ranks, Kruskal's condition is necessary and sufficient. 
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It has also been shown that, in cases of  small k-rank, the particular pattern of  zeros, after 
pretransformations to have identity submatrices in A, B, and C, may have a decisive impact on 
uniqueness. This implies that attempts to derive necessary and sufficient conditions for unique- 
ness are doomed to fail unless they take that very pattern into account. 

Paatero (1999) has suggested a numerical method for assessing local uniqueness of  a given 
CP decomposition, by evaluating the Jacobian of  the model  in (1) and counting zero singular 
values. The approach developed above assesses global uniqueness, and it is analytical: It proves 
or disproves uniqueness for a class of  models  obeying certain rank conditions. 

Appendix 

Constructing Alternative CP Solutions When Ranks and k-Ranks Are 3, and R = 4 

Without loss of  generality, we first transform the problem to one where A, B, and C have I3 
in their first three columns and a fourth column a, b, c without zero elements. Next, premultiply 
the new A, B, and C by the inverses of  diag(a),  diag(b), and diag(c), respectively. This keeps 
diagonal matrices in the first three columns, but transforms the fourth columns to [1 1 1] I. Fi- 
nally, rescale the first three columns of  the present A and B to restore the identity matrices, now 
absorbing the inverses of  the necessary constants in the columns of  C. We thus start from 00 ] 

A = B =  1 0 , and C =  y 0 , (A1) 
0 1 0 z 

for certain nonzero constants x, y, and z. As a result of  the transformations, the three frontal 
slices of the array have become symmetric. They can be further simplified by subtracting row 3 
of  C from row 1 and from row 2. It follows that the slices of the transformed array are now of  
the form 

Ei°°l Ei°°l Ei' '] X 1 = 0 0 , X2 = y 0 , and X3 = 1 1 
0 - Z  0 - Z  1 Z + 1 

(A2) 

with x, y, and z nonzero. Because all transformations used are nonsingular, they do not affect 
(non)uniqueness. We shall now examine how an alternative solution {G, H, D} can be found. 

Although there is no necessity to impose that G = H, CP fitting invariably seems to yield 
such solutions for data as given in (A2). Accordingly, we shall also derive alternative solutions 
{G, H, D} subject to the constraint G = H, and with row 1 rescaled to [1 1 1 1]. The latter 
constraint means that the first row of  G has no zero elements. Hence, if such a solution can be 
found, it differs from A in (A1). Let  the notation be 

I 1 1 1 1 1 
G = H = bl b2 b3 b4 , 

C1 C2 C3 C4 

(A3) 

and D I = [ulvlw], of  order 4 x 3. We want to solve (G • G)D I = X93  , with X93 (the vectorized 
data) defined as Exl 

X 9 3 =  X2 , (A4) 
X3 

see (A2), for arbitrary fixed nonzero constants x, y, and z. Remove the three redundant equations, 
and rearrange the remaining rows of  G • G and X93 into matrices 
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G6 = 

b l  b2 b3 b4 

Cl C2 C3 C4 

blCl b2c2 b3c3 b4c4 

1 1 1 1 

b4 
c4 

and X6 = 

0 0 1 
0 0 1 
0 0 1 

x 0 1 
0 y 1 

- z  - z  z + 1 

(A5) 

Note that solving (G • G)D I = X93 is equivalent to solving G6D I = X6.  

Because the first two columns of  X6 are nonproportional,  so are u and v. Hence, the first 
three rows of (;6, being orthogonal to u and v, are linearly dependent. This means that they 
satisfy, for some )~ and 3, bici = ,~bi + 3ci, i = 1 . . . . .  4. Because, in X6, row 3 must  then equal 
)~ times row 1 plus 3 times row 2, we must have )~ + 3 = 1. Hence, bici = ,~bi + (1 - )~)ci. This 
expression implies that 

ci(bi q- L - 1) = Lbi. (A6) 

When bi 7 ~ 1 - ;~, we can write ci explicitly as 

Lbi 
ci - (A7) 

b i q - L - 1  

for some scalar )~. Although this implies loss of  generality, we shall set )~ = 2. As will become 
clear later, this choice still allows solving G6D I = X6. Note that, as a result of  (A7), G6 is fully 
determined by the elements of  its first row. 

Because of  the linear dependency implied by (A6), we can remove the third rows of  G6 and 
X6, and continue with solving GsD I = Xs, with Fb b2bgb l [ 01 

c2 c3 0 0 1 

1 1 and X5 = x 0 1 Gs=/b  b4 / y 
c4 - z  1 +  

(A8) 

We shall now see under what choice of bl ,  b2, b3, and b4 X5 is in the column-space of  G5. Note 
that the orthogonal complement  space of  X5 is spanned by vectors of  the form 

n = 

-- ,St/)  - -  

yz  
xz  
xy  

(A9) 

where w = xy  + xz  + yz + xyz ,  and c~ is a free scalar. If  we take the four columns of G5 
orthogonal to n and linearly independent, then they span the same column space as X5 and a 
solution for GsD I = X5 exists. Any column of  G5 (ignoring the subscript), using )~ = 2, can be 
written as [b 2b/(b  + 1) 1 b 2 4b2/(b + 1)2] I, which is proportional to 

g =  [ b ( b + l )  2 2 b ( b + l )  ( b + l )  2 b 2 ( b + l )  2 4b2] '. (A10) 

Asking that, for arbitrary but fixed c~, each column of  G5 be orthogonal to n of  (A9) amounts 
to asking that each column satisfy nlg = 0. We then seek four real valued roots to the quartic 
equation f i g  = c4b 4 q- c3b 3 q- c2b 2 q- Clb q- co = 0, with coefficients 
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C4 = XZ 

c3 = - . 5 w  + c~ + 2xz 

c2 = - 2 w  + xz  + 4xy  + yz  

cl = - 1 . 5 w  - c~ + 2yz 

C0 = y z .  ( A l l )  

Upon dividing all coefficients by c~, it can be seen that, when c~ tends to infinity, three roots of 
the polynomial  tend to the roots of  

(b 3 - b) = 0, (A12) 

which has roots 1, - 1  and 0. Therefore, by taking c~ sufficiently large, three roots bl ,  b2, and b3 
of  the polynomial  will tend to 1, - 1, and 0, respectively. The fourth root is implied by the well 
known relationship 

--C3/C4 = ( . 5 W  - -  O~ - -  2 x z ) / x z  = bl + b2 + b3 + b4. (A13) 

The right hand side tends to b4 as c~ tends to infinity, whence b4 will tend to plus or minus 
infinity, depending on the sign of  xz. Because no pair of  these roots tend to equality, it fol- 
lows that four distinct nonzero real roots can indeed be obtained by picking a large enough 
(a proof  for this, suggested by Tom Snijders, is available on reques0. These roots can be used 
to fill the second row of  a solution for G, see (A3). The third row follows at once from (A7), 
with )~ = 2. The implied columns of  G5 are orthogonal to n. In addition, they are linearly in- 
dependent. Specifically, by elementary row operations, the four columns of G5 can be trans- 
formed to the form [1 bi b 2 b 3 b4] t, i = 1, 2, 3, 4. The first four rows of  the trans- 
formed matrix define a Vandermonde matrix, which is nonsingular because the four roots are 
distinct. 

An example may be instructive. Let  (A1) be given with x = 1, y = 2, z = 9, so w = 47. 
Solving f i g  = 0 can be done by the Matlab command roots ([9 a - 5.5 - 5 9  - a  - 34.5 
18]). When a = 0, the roots are 3.0774, - 1 . 3 9 8 8  + .0684i, - 1 . 3 9 8 8  - .0684i, and .3313. So let 
us step up c~ to 5.5, say. The roots of  [9 0 - 5 9  - 4 0  18] are 2.8080, -1 .9257 ,  -1 .1925 ,  
and .3102. They fill the second row of  G. From (A7) we find the third row as [1.4748 4.1606 
12.3911 .4735]. Hence, 

G = 
-1.0000 1.0000 1.0000 1.00007 
2.8080 - 1 . 9 2 5 7  - 1 . 1 9 2 5  . 3 1 0 2 | .  
1.4748 4.1606 12.3911 .4735J 

From 

G o G =  

-1.0000 1.0000 1.0000 1.0000- 
2.8080 - 1 . 9 2 5 7  - 1 . 1 9 2 5  .3102 
1.4748 4.1606 12.3911 .4735 
2.8080 - 1 . 9 2 5 7  - 1 . 1 9 2 5  .3102 
7.8847 3.7082 1.4220 .0962 
4.1412 - 8 . 0 1 1 9  -14 .7761  .1469 
1.4748 4.1606 12.3911 .4735 
4.1412 - 8 . 0 1 1 9  -14 .7761  .1469 
2.1750 17.3105 153.5403 .2242 

a n d  X 9 3  = 

1 0 1- 
0 0 1 
0 0 1 
0 0 1 
0 2 1 
0 0 1 
0 0 1 
0 0 1 

- 9  - 9  10 

(A14) 

(A15) 

we solve D I = {(G • G)I (G • G ) } - I ( G  • G)tX93 to find 
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D = 

- - . 0573  .1610 .17817 
.1239 .2386 - . 1 6 3 1 l  

- . 0 7 3 2  - . 0873  .0797 l"  
1.0067 - . 3123  .9053J 

(A16) 

It can be verified that indeed (G • G)D I = X93 , which constitutes an alternative solution to (A1). 
It may be noted that the roots we have used, based on c~ = 5.5, do not yet approach their 

asymptotic values. However, when we take c~ = 1005.5, the roots of  [9 1000 - 5 9  - 1 0 4 0  
18] are - 111.1607, 1.0362, - 1.0039, and 0.0173. Now the asymptotic pattern of  the roots does 
begin to show up, one root being very large in magnitude, one close to 1, one close to - 1 ,  and 
one close to 0, respectively. 
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