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A key property of CANDECOMP/PARAFAC is the essential uniqueness it displays under certain

conditions. It has been known for a long time that, when these conditions are not met, partial

uniqueness may remain. Whereas considerable progress has been made in the study of conditions

for uniqueness, the study of partial uniqueness has lagged behind. The only well known cases are

those of overfactoring, when more components are extracted than are required for perfect fit, and

those cases where the data do not have enough system variation, resulting in proportional

components for one or more modes. The present paper deals with partial uniqueness in cases where

the smallest number of components is extracted that yield perfect fit. For the case of K�K� 2 arrays

of rank K, randomly sampled from a continuous distribution, it is shown that partial uniqueness,

with some components unique and others differing between solutions, arises with probability zero.

Also, a closed-form CANDECOMP/PARAFAC solution is derived for 5� 3� 3 arrays when these

happen to have rank 5. In such cases, any two different solutions share four of the five components.

This phenomenon will be traced back to a sixth degree polynomial having six real roots, any five of

which can be picked to construct a solution. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Carroll and Chang [1] and Harshman [2] independently

proposed CANDECOMP and PARAFAC respectively. Let

X be a three-way array containing K slices Xk, k¼ 1, . . . ,K, of

order I� J. For a fixed number of components r a least

squares fit of CANDECOMP/PARAFAC (CP) yields com-

ponent matrices A (I� r), B (J� r) and C (K� r) minimizing

�tr(E0
kEk) in the decomposition

Xk ¼ ACkB
0 þ Ek ð1Þ

k¼ 1, . . . ,K, where Ck is the diagonal matrix containing the

elements of row k of C.

CP has gained popularity in chemistry, e.g. for performing

second-order calibration or resolving mixtures in fluores-

cence spectroscopy, owing to its property of (essential)

uniqueness. That is, under mild conditions to be discussed

below, CP solutions are identified up to rescaling and joint

permutation of the columns of A, B and C. When the CP

solution fails to meet the conditions for uniqueness, we often

have full non-uniqueness. However, cases of partial unique-

ness, where different solutions have some components in

common, have also been discussed [2]. Compared to the

advances that have been made in the study of uniqueness,

little is known about partial uniqueness. In the present paper

we examine two cases of partial uniqueness. In the first case,

non-uniqueness will be shown to arise with probability zero

when the array values are randomly sampled from a con-

tinuous distribution. In the second case, any two solutions

have most of their components in common, yet no single

component is guaranteed to be common to every solution.

Although such a pattern has been observed before in situa-

tions of overfactoring [2], it now occurs, surprisingly, when

the correct number of components is extracted.

The organization of this paper is as follows. First we

briefly review the most relevant uniqueness results. Next

we consider some recent results about the number of com-

ponents required for a perfect fit in CP under random

sampling of the array elements from a continuous distribu-

tion. This number is the so-called ‘typical rank’ of three-way

arrays. It will be shown that cases of perfect fit usually fail to

display uniqueness. Finally we discuss two cases of partial

uniqueness when the correct number of components is

extracted. In passing, the typical rank of 5� 3� 3 arrays

will be determined.

2. A REVIEW OF UNIQUENESS IN CP

The first uniqueness results of CP date back to Jennrich

(quoted in Reference [2]) and Harshman [3]. The most

general sufficient condition for uniqueness is due to Kruskal

[4]. Kruskal’s condition relies on a particular concept of

matrix rank that he introduced, which has been named

k-rank (Kruskal rank) after him by Harshman and Lundy

[5]. Specifically, a matrix A has k-rank kA when every kA

columns of A are linearly independent and at least one set of

kAþ 1 columns are not. Kruskal [4] proved that the condition
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kAþ kBþ kC5 2rþ 2 is sufficient for essential uniqueness in

CP. More than two decades later the study of uniqueness has

been revived. Sidiropoulos and Bro [6] have given a short-

cut proof for Kruskal’s sufficient condition and generalized it

to n-way arrays (n> 3). Ten Berge and Sidiropoulos [7] have

shown that Kruskal’s sufficient condition is also necessary for

r¼ 2 or 3, but not for r> 3. In practice, the condition is almost

invariably met, because the number of components is

usually small enough. It may be noted that the condition

cannot be met when r¼ 1. However, uniqueness for that case

has already been proven by Harshman [3].

Harshman [2] (p. 39) suggested using the occurrence of

uniqueness as a diagnostic for the correct number of factors.

For ‘adequate’ data sets, having enough systematic trilinear

variation to entail CP solutions with full linear independence

of their columns in two of the three modes and non-propor-

tional columns in the third, he found that CP uniqueness was

inherent to having the ‘correct’ number of components or

less and that non-uniqueness in adequate data sets arose

only from overfactoring. The data sets studied by Harshman

were generated ‘synthetically’ by choosing random matrices

A, B and C of a given order and deriving the data X1, . . . ,XK

from the CP model (1) with zero error matrices Ek,

k¼ 1, . . . ,K. It is tempting to infer from Harshman’s results

that a similar relation between rank and uniqueness (non-

uniqueness, for adequate data sets, is due to overfactoring)

will hold when the three-way array is not generated synthe-

tically through A, B and C fed into the CP model, but instead

X1, . . . ,XK are randomly sampled at once and CP is applied

with the smallest dimensionality that allows perfect fit. That

temptation, as will be shown below, should be resisted. The

rank that will be needed for perfect fit when the three-way

array itself is randomly generated is the so-called ‘typical

rank’ of the array. It is the topic of the next section.

3. SOME RECENT RESULTS ON
TYPICAL RANK

It is well known that the maximal rank a matrix of a given

order may have is also the typical rank, i.e. the rank that will

be observed when the matrix is randomly filled with ele-

ments from a continuous distribution. For instance, when a

5� 3 matrix is constructed randomly, its rank is 3 with

probability one. For three-way arrays the maximal rank is

often higher than the typical rank. The first examples were

given by J. B. Kruskal (unpublished manuscript, 1983). They

have recently been generalized by ten Berge and Kiers [8]

and ten Berge [9]. Typical rank is the rank an array has with

positive probability when its elements are drawn randomly

from a continuous distribution. In most cases this appears to

be a single number, but there are also array formats having

two different rank values with positive probability. For

instance, a 2� 4� 4 array has rank 4 with probability P,

0<P< 1, and it has rank 5 with probability 1�P, whereas the

maximal rank is 6. Arrays of format 2� 4� 4 with rank 0, 1,

2, 3 and 6 can be constructed but will never be encountered

in practice. For all practical purposes, typical rank is the

smallest number of components that allow perfect fit in CP.

That is, when a three-way array is filled with real-life data

from a random sample of subject/objects on a number of

measures at a number of occasions, the array rank will be the

typical rank. Admittedly, real life samples are drawn from

discrete distributions, thus invalidating the assumption of

continuity. However, the chances of finding atypical rank

values in such cases are too remote to be of any practical

concern. An overview of known typical ranks for arrays

containing two or three slices is given in Table I below,

repeated from Reference [9].

At this point, we may verify, for each of the arrays for

which the typical rank is known, whether or not uniqueness

is possible in cases of perfect fit. Because the k-rank of a

matrix cannot exceed its number of rows, having

kA þ kBþ kC5 2rþ 2 (Kruskal’s condition) is impossible

whenever Iþ JþK< 2rþ 2. In addition, the k-ranks of A, B

and C cannot exceed r. It follows that the only cases of Table I

that might involve uniqueness by virtue of Kruskal’s condi-

tion are the 2� 2� 2 array when it has rank 2, the 3� 3� 2

array when it has rank 3, and the 4� 4� 2 array when it has

rank 4. In fact, these are indeed the only cases (the question

marks and omitted cases in Table I included) known to

display uniqueness in numerical experiments. It can be

concluded that non-uniqueness is quite common in situa-

tions where the correct number of factors is extracted. Still,

non-unique cases of perfect fit may display partial unique-

ness. Two of such cases will be examined in the remaining

sections.

4. PARTIAL UNIQUENESS IN A CASE
OF PERFECT FIT: THE K�K� 2 ARRAYS
OF RANK K

Harshman [3] has proven uniqueness for CP solutions when

two component matrices have full column rank and the third

has no proportional columns. This implies that K�K� 2

arrays of rank K will have a unique CP solution when A and

B are non-singular and the 2�K matrix C has no propor-

tional columns. When C does have proportional columns,

partial uniqueness will remain for the components asso-

ciated with the other (non-proportional) columns of C. It

will now be shown that having proportional columns in C is

an event of probability zero when the array is sampled

randomly.

Let the slices be X1 and X2. Suppose that a rank-K solution

exists. Then we can solve X1¼AC1B
0 and X2¼AC2B

0, with

A and B square and non-singular. Hence X1X2
�1¼

AC1C2
�1A� 1, which is an eigenvalue decomposition. Be-

cause a solution in K components is possible by assumption,

all eigenvalues of X1X2
�1 are real. When these eigenvalues

Table I. Typicalrankresults forsomearrayswithK¼ 2 andK¼ 3

K¼ 2 K¼ 3

J¼ 2 J¼ 3 J¼ 4 J¼ 3 J¼ 4 J¼ 5
I¼ 2 {2,3} 3 4 I¼ 5 ? ? ?
I¼ 3 3 {3,4} 4 I¼ 6 6 ? ?
I¼ 4 4 4 {4,5} I¼ 7 7 ? ?
I¼ 5 4 5 5 I¼ 8 8 {8,9} ?
I¼ 6 4 6 6 I¼ 9 9 9 ?
I¼ 7 4 6 7 I¼ 10 9 10 10
I¼ 8 4 6 8 I¼ 11 9 11 11
I¼ 9 4 6 8 I¼ 12 9 12 12
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are distinct, all eigenvectors are essentially unique and A and

B are determined uniquely up to permutation and scale.

However, for any pair of equal eigenvalues the associated

two eigenvectors are determined up to a non-singular

transformation. Here we have a case of partial uniqueness.

Every solution will contain the same components that depend

on the distinct eigenvalues, but the other components are

indeterminate.

The partial uniqueness encountered here arises when a

matrix that depends only on the data in X1 and X2 has two (or

more) equal eigenvalues. It is well known that a square

matrix has two or more equal eigenvalues with probability

zero when the array is drawn randomly from a continuous

distribution. Therefore we may dismiss this case as one of no

practical concern. When a randomly generated K�K� 2

array has rank K, and CP extracts K components, Harsh-

man’s sufficient condition for uniqueness will be satisfied

almost surely.

Harshman [2] (see also References [5,10,11]) discussed

another type of partial uniqueness in a situation of over-

factoring. He reported cases where each solution shares

some components with the solution from which data were

generated, yet there is no part of the solution common to

every solution. This type of non-uniqueness also appears in

cases with no overfactoring. The next example demonstrates

this.

5. PARTIAL UNIQUENESS IN A CASE
OF PERFECT FIT: THE 5� 3� 3 ARRAY
OF RANK 5

Numerical tests with random 5� 3� 3 arrays suggest that

they have rank 6 in most cases, yet sometimes they have rank

5. Also, whenever the rank is 5, different solutions invariably

appear to have four out of five components in common

(there appears to be no uniqueness at all when the rank is

6). In this section it will first be proven that the 5� 3� 3 array

has either rank 5 or rank 6 with positive probability. A

closed-form solution will be derived for the case when the

array has rank 5. From this solution the nature of the partial

uniqueness will be fully clarified.

Let the 5� 3� 3 array have slices X, Y and Z of order 5� 3.

By the method of ten Berge and Kiers [8], the array can be

transformed to have

X ¼

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

2
66664

3
77775; Y ¼

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

2
66664

3
77775 ð2Þ

The transformation is rank-preserving and merely serves to

simplify the problem. We examine under which conditions

a rank-5 CP solution is possible. That is, we desire a

non-singular 5� 5 matrix A, a 3� 5 matrix B and three non-

singular diagonal 5� 5 matrices I5, C and D such that

X ¼ AI5B
0; Y ¼ ACB0; Z ¼ ADB0 ð3Þ

Note that the first of the three diagonal matrices has been set

to I5 by absorbing its elements into A. Suppose the construc-

tion (3) is possible. Then

A�1X ¼ B0; A�1Y ¼ CB0; A�1Z ¼ DB0 ð4Þ

whence

CA�1X�A�1Y ¼ DA�1X�A�1Z ¼ O ð5Þ

At this point, note that B has been removed from the equa-

tions. It remains to find A, C and D. Let aj
0 be row j of A�1.

Then we need to determine five linearly independent solutions

to the vector equation aj
0(cjX�Y)¼ aj

0(djX�Z)¼ 00, where cj
and dj are the jth diagonal elements of C and D respectively.

Set the first element of aj to 1. Owing to (2), the first part of the

vector equation, i.e. aj
0(cjX�Y)¼ 00, is equivalent to

a0j ¼ ½1 ej cj cjej c
2
j � ð6Þ

for some scalar ej. It remains to satisfy aj
0(djX�Z)¼ 00. Let Z

have columns f, g and h. Then

Z� djX ¼

f1 � dj g1 h1

f2 g2 � dj h2

f3 g3 h3 � dj
f4 g4 h4

f5 g5 h5

2
66664

3
77775 ð7Þ

In order to get aj orthogonal to the columns of Z� djX, we

have to get

1
ej

� �

orthogonal to columns of a 2� 3 matrix Wj having, as first

row, row 1 plus cj times row 3 plus cj
2 times row 5 of Z� djX,

the second row consisting of row 2 plus cj times row 4 of that

matrix. Then

1
ej

� �

must be determined to be orthogonal to the columns of

Wj ¼
c2
j f5 þ cjf3 þ f1 � dj c2

j g5 þ cjg3 þ g1 c2
j h5 þ cjðh3 � djÞ þ h1

cjf4 þ f2 cjg4 þ g2 � dj cjh4 þ h2

� �

ð8Þ

Clearly, to get such an ej, we need Wj to be of rank 1. We

shall demand that the submatrix of columns 1 and 2 and

that of columns 1 and 3 have determinant zero. However,

this is not enough. It is possible to get both determinants

zero without having Wj of rank 1: just pick cj and dj such

that column 1 of Wj vanishes, and the determinants vanish.

Accordingly, we shall have to remove that flawed solution

with cj¼ � f2/f4 and dj¼ cj
2f5 þ cjf3 þ f1 afterwards. Because

column 1 is proportional to column 3, we can solve ex-

plicitly for dj from

ðc2
j f5 þ cjf3 þ f1Þðcjh4 þ h2Þ � ðcjf4 þ f2Þðc2

j h5 þ cjh3 þ h1Þ
�djðcjh4 þ h2Þ þ djðc2

j f4 þ cjf2Þ ¼ 0 ð9Þ

With (9), dj can be removed from Wj. The last step is to use

that columns 1 and 2 of Wj are proportional. This entails a

seventh-degree polynomial in cj. The derivation of the coef-

ficients z7, . . . , z0 is given in the Appendix. The seven roots

can be evaluated explicitly by the Matlab command

roots([z7, . . . , z0]). Because the flawed root �f2/f4 has to be

discarded, we are essentially looking at a sixth-degree poly-

nomial equation. When it has six real roots, a rank-5 solution

is immediate. For example, suppose that, after simplifying X

14 J. M. F. ten Berge
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and Y as in (2), we have

Z ¼

1 1 1
1 2 3
1 4 9
1 8 1
0 �1 1

2
66664

3
77775 ð10Þ

Then the Appendix implies that we take

roots(½1 � 3 � 67 10 335 288 21 � 5�), which yields the seven

real roots 9.5098, �6.4927, 2.6391, �1.5467, 0.0964, �0.2058

and �1. The last root is-f2/f4 and has to be removed. We may

pick any five of the six remaining roots to fill C, and the

elements of D are implied by (9). The five values of ej follow

immediately from orthogonality of

1
ej

� �

to an arbitrary column of Wj. Finally, the rows of A�1 are

obtained from (6). After constructing five different rows for

A�1, B follows from B0 ¼A�1X; see Equation (4).

In general, the polynomial has all roots real-valued with

small but positive probability. Empirically, this can be seen

by slightly changing the elements of the Z in (10) and noting

that all roots remain real. When the polynomial has less than

seven real roots, it has at least one pair of complex roots and

hence it has less than six real roots, one of which is flawed.

Therefore a rank-5 solution does not exist in this case. For

such cases, rank 6 is enough, because a 6� 3� 3 array has

typical rank 6 (see Table I), hence a 5� 3� 3 array has at most

typical rank 6. Rank less than 5 has probability zero, because

the nine columns of the array span a five-dimensional space

almost surely. It has thus been proven that the 5� 3� 3 array

has typical rank {5, 6}, which removes a question mark from

Table I. It remains to be seen what partial uniqueness is

implied when the array has rank 5.

Each of the six viable roots gives a value of cj entailing

values for dj and ej. Because only one root can be discarded,

there are exactly six different solutions for the rows of A�1

and the corresponding diagonal elements of C and D. This

already implies that, unless they coincide, any two solutions

share precisely four rows of A�1 and four diagonal elements

in C and in D. In addition, from AB0 ¼X (see Equation (2)),

we have that the columns of B0 are the first three columns of

A�1. From (6) it can be seen that the columns of B have

elements 1, ej and cj. It follows that every pair of different

solutions has also four columns of B in common. Finally,

consider A itself. Every column of A is orthogonal to four

rows of A�1. Because every pair of different CP solutions

share four rows of A�1, their solutions for A must share

precisely one column. The partial uniqueness phenomenon

for 5� 3� 3 arrays is thus fully understood.

The type of partial uniqueness found here resembles what

Harshman [2] found in cases of overfactoring with synthetic

data. There is one difference. Whereas a single component

recovered in two different solutions described in Reference

[2] consists of one column of C, B and A respectively, in our

case it consists of one column of C, one column of B and one

row of the inverse of A respectively.

6. DISCUSSION

Two cases of partial uniqueness in a case of perfect fit have

been discussed. In the first case, when a K�K� 2 array,

sampled randomly from a continuous distribution, happens

to have rank K, partial uniqueness would imply that only a

subset of components is unique and that there is an infinite

set of solutions for the non-unique components. It has been

shown that this specific case of partial uniqueness will not

arise in practice, because Harshman’s [3] sufficient condition

for CP uniqueness will be satisfied almost surely. No as-

sumptions were made about the systematic and error com-

ponents in the three-way design, since all the mathematical

results derived herein hold without such assumptions.

The second type of partial uniqueness discussed arises

when the 5� 3� 3 array happens to have rank 5. In that case

there are exactly six solutions, and each pair must share at

least four components, but no component is common to

every solution. In passing, we have removed a question

mark from Table I by showing that the typical rank of

5� 3� 3 arrays is {5, 6}. Whereas previous simulation studies

have revealed this type of partial uniqueness in cases of

overfactoring, it now arises when the correct number of

factors extracted. This implies that using uniqueness as a

potential criterion for determining the correct number of

factors is not as straightforward as one might wish.
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APPENDIX. THE COEFFICIENTS OF THE
SEVENTH-DEGREE POLYNOMIAL

Dropping the subscripts from cj and dj, we have from (9) that

which can be written as A/B. Write A¼ x3c
3 þ x2c

2 þ x1cþ
x0 and B¼ y2c

2 þ y1cþ y0 for the known scalars x3, x2,

x1, x0, y2, y1 and y0. Then it remains to get c such

that columns 1 and 2 of Wj are proportional. This means

that

d2 � dðcg4 þ g2 þ c2f5 þ cf3 þ f1Þ þ ðc2f5 þ cf3 þ f1Þðcg4 þ g2Þ
�ðc2g5 þ cg3 þ g1Þðcf4 þ f2Þ ¼ 0

d ¼ ðc2f5 þ cf3 þ f1Þðch4 þ h2Þ � ðc2h5 þ ch3 þ h1Þðcf4 þ f2Þ
�c2f4 þ ch4 � cf2 þ h2

¼

c3ðf5h4 � f4h5Þ þ c2ðf5h2 � f2h5 þ f3h4 � f4h3Þ þ cðf1h4 � f4h1 þ f3h2 � f2h3Þ þ f1h2 � f2h1

�c2f4 þ cðh4 � f2Þ þ h2
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This can be written as

d2 þ dðv2c
2 þ v1cþ v0Þ þ ðw3c

3 þ w2c
2 þ w1cþ w0Þ ¼ 0

for known scalars v2; v1; v0;w3;w2;w1 and w0. Thus we need

to solve

A2 þ ABðv2c
2 þ v1cþ v0Þ þ B2ðw3c

3 þ w2c
2 þ w1cþ w0Þ ¼ 0

where

A2 ¼ x2
3c

6 þ 2x3x2c
5 þ ðx2

2 þ 2x3x1Þc4 þ ð2x3x0 þ 2x2x1Þc3

þ ðx2
1 þ 2x2x0Þc2 þ 2x1x0cþ x2

0

AB ¼ x3y2c
5 þ ðx2y2 þ x3y1Þc4 þ ðx3y0 þ x2y1 þ x1y2Þc3

þ ðx2y0 þ x1y1 þ x0y2Þc2 þ ðx1y0 þ x0y1Þcþ x0y0

B2 ¼ y2
2c

4 þ 2y2y1c
3 þ ðy2

1 þ 2y2y0Þc2 þ 2y1y0cþ y2
0

This leads to a seventh degree polynomial in c. The coeffi-

cients zj of cj; j ¼ 7; 6; . . . ; 1; 0, are

z7 ¼ x3y2v2 þ w3y
2
2

z6 ¼ x2
3 þ x3y2v1 þ ðx2y2 þ x3y1Þv2 þ y2

2w2 þ 2y1y2w3

z5 ¼ 2x3x2 þ x3y2v0 þ ðx2y2 þ x3y1Þv1 þ ðx3y0 þ x2y1 þ x1y2Þv2

þ y2
2w1 þ 2y2y1w2 þ ðy2

1 þ 2y2y0Þw3

z4 ¼ ðx2
2 þ 2x3x1Þ þ ðx2y2 þ x3y1Þv0 þ ðx3y0 þ x2y1 þ x1y2Þv1

þ ðx2y0 þ x1y1 þ x0y2Þv2 þ y2
2w0 þ 2y2y1w1

þ ðy2
1 þ 2y2y0Þw2 þ 2y1y0w3

z3 ¼ ð2x3x0 þ 2x2x1Þ þ ðx3y0 þ x2y1 þ x1y2Þv0

þ ðx2y0 þ x1y1 þ x0y2Þv1 þ ðx1y0 þ x0y1Þv2 þ 2y2y1w0

þ ðy2
1 þ 2y2y0Þw1 þ 2y1y0w2 þ y2

0w3

z2 ¼ ðx2
1 þ 2x2x0Þ þ ðx2y0 þ x1y1 þ x0y2Þv0 þ ðx1y0 þ x0y1Þv1

þ x0y0v2 þ ðy2
1 þ 2y2y0Þw0 þ 2y1y0w1 þ y2

0w2

z1 ¼ 2x1x0 þ ðx1y0 þ x0y1Þv0 þ x0y0v1 þ 2y1y0w0 þ y2
0w1

z0 ¼ x2
0 þ x0y0v0 þ y2

0w0
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