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In chemometric applications of Tucker three-way principal component analysis, core arrays are often

constrained to have a large majority of zero elements. This gives rise to questions of non-triviality

(are the constraints active, or can any core of a given format be transformed to satisfy the constraints?)

and uniqueness (can we transform the components in one or more directions without losing the

given pattern of zero elements in the core?). Rather than deciding such questions on an ad hoc basis,

general principles are to be preferred. This paper gives an overview of simplicity transformations on

the one hand, and typical rank results on the other, which are suitable to determine whether or not

certain constrained cores are trivial. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that a square matrix X with SVD X¼PDQ0

can be transformed to a diagonal matrix D¼P0XQ. The

transformation brings about the maximum simplicity (in

terms of the number of zero elements) that can be obtained

by non-singular transformations. As a bonus, it also reveals

the rank of X as the number of non-zero elements in D. For

three-way arrays consisting of K slices X1, . . . , XK, similar

transformations to simplicity are possible but typically more

complicated. Such transformations can be helpful in finding

the rank of the three-way array. The topics of simplicity and

rank of three-way arrays have implications for the analysis of

three-way arrays by Tucker three-way PCA (3PCA), for

CANDECOMP/PARAFAC (CP) and, notably, for hybrid

models in between the two. The present paper gives a

summary of results.

The organization of this paper is as follows. First, the main

features of CP, 3PCA and hybrid models in between will be

reviewed. Next, maximal simplicity results and typical rank

results for three-way arrays will be discussed. Finally, some

applications, revolving around issues of non-triviality and

uniqueness of hybrid models, will be discussed.

2. CANDECOMP/PARAFAC (CP)

Carroll and Chang [1] and Harshman [2] independently

proposed CANDECOMP and PARAFAC respectively. Let

X be a three-way array holding slices X1, . . . , XK of order I� J.

For any given number of components r, CP yields compo-

nent matrices A, B and C, with r columns, minimizingP
trðE0

kEkÞ in the decomposition

Xk ¼ ACkB
0 þ Ek ð1Þ

where Ck is the diagonal matrix having the elements of row k

of C in the diagonal, k¼ 1, . . . , K.

Under mild conditions to be discussed below, CP has the

property of essential uniqueness, which means that the col-

umns of A, B and C are determined up to joint permutations

and rescaling. Clearly, rescaling columns of A (or B or C) by

a diagonal matrix L is always allowed, provided that the

inverse of L is accounted for elsewhere. For instance, when

slice Xk is decomposed as Xk¼ACkB
0 þEk, the fitted part

ACkB
0 can equivalently be expressed as

ACkB
0 ¼ALL�1CkB

0 ¼ALCkL
�1B0 ¼ (AL)Ck(BL

�1)0, showing

that AL may replace A when BL�1 replaces B. Also, simul-

taneous permutations of columns of A and B and diagonal

elements of Ck, k¼ 1, . . . , K, are allowed. However, apart

from rescaling and permuting columns of A, B and C, there

is usually no transformational freedom in CP.

Although CP uniqueness is not the topic of this paper, a

brief digression may be in order. The first uniqueness proofs

of CP date back to Jennrich (quoted in Reference [2]),

Harshman [3] and Kruskal [4], who showed that CP has

essential uniqueness, as explained above, under mild sufficient

conditions. After decades of silence the topic of CP unique-

ness has recently been revived. Sidiropoulos and Bro [5]

have given a short-cut proof for Kruskal’s sufficient condi-

tion and generalized it to n-way arrays (n> 3). Ten Berge and

Sidiropoulos [6] have shown that Kruskal’s sufficient condi-

tions are necessary for r¼ 2 or 3 but, surprisingly, not for r> 3.

CP has acquired great popularity from its application to

arrays with symmetric slices. The scalar product version of
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the INDSCAL method of Carroll and Chang [1] relies on CP,

hoping that, upon convergence, CP will yield A and B equal.

In practice, this always seems to work. Then each (sym-

metric) slice is decomposed as

Xk ¼ ACkA
0 þ Ek ð2Þ

Ck diagonal, k¼ 1, . . . , K, in the least squares sense. Again,

INDSCAL has essential uniqueness under mild conditions.

3. TUCKER THREE-WAY PCA

Tucker three-way PCA (3PCA) has been proposed by Tucker

[7]. Kroonenberg and De Leeuw [8] have offered an alter-

nating least squares algorithm. It yields matrices A, B and C,

with P, Q and R columns respectively, and a P�Q�R core

array G such that the sum of squares of elements of E is

minimized in the decomposition

X ¼
XP
p¼1

XQ

q¼1

XR
r¼1

gpqrðap � bq � crÞ þ E ð3Þ

where ap � bq � cr is the so-called outer product of three

vectors. It is the three-way array holding slices apb
0
q, each

multiplied by an element of cr.

It is important to note that CP is a constrained version of

3PCA, where P¼Q¼R and the core array is unit super-

diagonal: gpqr¼ 0 unless p¼ q¼ r, in which case gpqr¼ 1.

Hence the ith frontal slice of G is eie
0
i, where ei is column i

of I. In 3PCA there are no uniqueness properties like we have

for CP. This can be seen from the matrix form of 3PCA,

where X ¼ ½X1j . . . jXK� is decomposed as

X ¼ ½X1j . . . jXK� ¼ AGðC0 � B0Þ þ ½E1j . . . jEK� ð4Þ

with G ¼ ½G1j . . . jGR� the matricized core array. If S, T and U

are non-singular matrices, we may equivalently write the

fitted part AGðC0 � B0Þ as

AGðC0 � B0Þ ¼ AðS0Þ�1S0GðU� TÞðU�1 � T�1ÞðC0 � B0Þ
¼ AðS0Þ�1S0GðU� TÞðU�1C0 � T�1B0Þ

ð5Þ

Clearly, we may switch to new component matrices

A(S0)�1, B(T0)�1 and C(U0)�1 associated with a new core

array S0GðU� TÞ. This invariance property implies that

there is no uniqueness in 3PCA. Without loss of fit we may

pre-multiply all frontal slices of G by S0, post-multiply

them by T and ‘mix’ them (take linear combinations) by

U. These transformations are called Tucker transformations

[9].

4. HYBRID MODELS IN BETWEEN
3PCA AND CP

To introduce the concept of hybrid models, an example will

be instructive. Consider a 3� 3� 3 core array G of 3PCA in

matrix form. All its elements, denoted by ?, are uncon-

strained:

G ¼
? ? ?
? ? ?
? ? ?

? ? ?
? ? ?
? ? ?

? ? ?
? ? ?
? ? ?

������

3
5

������

2
4 ð6Þ

In CP, on the other hand, the ith frontal slice of the core is

eie
0
i, which gives the fully constrained core

G ¼
1 0 0
0 0 0
0 0 0

0 0 0
0 1 0
0 0 0

0 0 0
0 0 0
0 0 1

������

3
5

������

2
4 ð7Þ

Hybrid models have partially constrained cores. For in-

stance, we have six free parameters in

G ¼
1 0 0
0 0 ?
0 ? 0

0 0 ?
0 1 0
? 0 0

������

������
0 ? 0
? 0 0
0 0 1

2
4

3
5 ð8Þ

When dealing with such partially constrained models in

between CP and 3PCA, two questions are of interest. First,

there is the question of (non-)triviality: do Tucker transfor-

mations of an unconstrained solution exist which satisfy

the constraints? If so, we can run 3PCA first and instil the

constraints afterwards, using the freedom of transforma-

tion. Secondly, there is the question of uniqueness: are

Tucker transformations possible (other than trivial trans-

formations such as rescaling or permuting columns of A

and rows of G simultaneously) that preserve the pattern of

zeros? If not, there is no transformational freedom left and

the solution is unique. Obviously, both non-triviality and

uniqueness are desirable characteristics of a constrained

core. In the particular hybrid core of (8) the model seems to

be trivial with positive probability, and it is essentially

unique, just like CP [10]. A discussion of the hybrid core

(8) in the context of log–linear modeling can be found in

Reference [11].

An even better understood case of constrained cores is that

of order 3� 3� 2. When the two slices can be diagonalized

simultaneously, it is possible to arrive at the form

1 0 0
0 x 0
0 0 0

0 0 0
0 y 0
0 0 1

������

3
5

2
4 ð9Þ

However, it is generally possible to transform the array to

the form

1 0 0
0 1 0
0 0 1

0 0 0
0 0 x
0 y 0

������

3
5

2
4 ð10Þ

with x2¼ y2. Hence cores of the form (10) are trivial. They

have been proven partly unique [9].

A practical example that arose in chemometrics is the flow

injection analysis system with UV diode array detection of

Nørgaard and Ridder [12]. Kiers and Smilde [13] have

proven partial uniqueness for the implied core array, con-

strained to have slices

G1 ¼
0 0 0 1
0 0 0 0
0 0 1 1

2
4

3
5; G2 ¼

1 0 0 0
1 1 0 0
0 0 0 0

2
4

3
5 ð11Þ

Although it may seem intuitively obvious that such a con-

strained core, containing a zero row in each slice, is non-

trivial, a formal proof for this has not been given. This will be

done below.

18 J. M. F. ten Berge
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Another example from chemometrics arose in Gurden et al.

[14], who used a hybrid core of the form

G ¼

1 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 1 0
0 0 0
0 0 0
0 0 0

����������

����������

0 0 0
0 0 0
0 0 1
0 0 0
0 0 0

2
66664

����������

0 0 0
0 0 0
0 0 0
0 0 1
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 1

����������

3
77775

ð12Þ

Non-triviality and uniqueness of this core have been dis-

cussed by ten Berge and Smilde [15]. We shall revisit their

approach to the non-triviality issue below.

Although answers to questions of non-triviality and un-

iqueness can sometimes be given on an ad hoc basis, general

rules to decide about triviality and uniqueness are to be

preferred. Some rules can be obtained from maximal simpli-

city results and some from typical rank results. The next

sections will be devoted to such rules.

5. TUCKER TRANSFORMATIONS
TO MAXIMAL SIMPLICITY

The search for methods to simplify three-way core arrays

started with numerical approaches. For instance, Kiers [16]

derived three-way Simplimax, an iterative rotation method

aimed at finding a core with a specified (small) number of

non-zero elements. However, iterative orthonormalization

[17] has also been successful in a variety of cases.

The results from these iterative procedures led to a search

for direct algebraic solutions for simplicity transformations.

In some cases, direct solutions are straightforward. For

instance, consider a core of order 5� 2� 2. It is trivial to

find S such that

S0G1 ¼

1 0
0 1
0 0
0 0
0 0

2
66664

3
77775
; S0G2 ¼

0 0
0 0
0 0
1 0
0 1

2
66664

3
77775

ð13Þ

All it takes is constructing a 5� 5 matrix by putting an extra

random column in between G1 and G2 and taking S0 as the

inverse of that matrix. In this case there is no need to invoke

T or U. However, cases like this, with P>QR, do not arise in

3PCA, because they would represent a case of overfactoring

(see Reference [7], p. 288).

A more complicated class of cases arises when the array has

two slices, with 2Q>P>Q. Ten Berge and Kiers [18] have

shown how to find transformation matrices S and T such that

Again the solution is non-unique, because U has not been

invoked. Further explicit simplicity results have been given

by Rocci and ten Berge [9]. More importantly, they have

considered the question of what constitutes maximal simpli-

city. For instance, they proved that P�Q� 2 arrays with

2Q>P>Q cannot have fewer than 2Q non-zero elements, as

in (14). This is a powerful result, because all hybrid cores

involving more than maximal simplicity are non-trivial. Unfortu-

nately, except for two-slice arrays and cases where

P¼QR� 1 [19], little has been achieved in the way of

maximal simplicity results.

There is an alternative: we may also use typical rank

results. Before considering those, however, we revisit the

constrained core of (11). The number of six non-zero ele-

ments by itself does not imply non-triviality, because it is

generically possible to attain a simple form (14), which gives,

in this case,

H1 ¼
1 0 0 0
0 1 0 0
0 0 1 0

2
4

3
5; H2 ¼

0 1 0 0
0 0 1 0
0 0 0 1

2
4

3
5 ð15Þ

also having only six non-zero elements. However, the very

proof that six non-zero elements is the smallest possible

number for an array of this format can be invoked to show

that the form (11) is non-trivial; see the proof of Result 4 in

Reference [9]. Specifically, if we first transform the array to

the simple form (15) and then seek further transformations to

obtain slices of rank 2, like we have in (11), we arrive at a

contradiction. Starting with the slices given in (15), any

transformation will yield slices of the form

S0ðu1jH1 þ u2jH2ÞT, j¼ 1,2, with S and T non-singular, u1j

and u2j being the elements of column j of U, also non-

singular. Because multiplying by S or T preserves the rank,

a transformed slice can have rank less than 3 only if

u1jH1 þ u2jH2 has rank less than 3, which requires that

u1j ¼ u2j ¼ 0, rendering column j of the (non-singular) trans-

formation matrix U zero. The contradiction implies that the

core (11) of Nørgaard and Ridder [12] is non-trivial.

6. TYPICAL RANK OF THREE-WAY
ARRAYS

Each pair of vectors {a,b} defines a rank-1 matrix ab0, and vice

versa. A rank-1 matrix has proportional rows and propor-

tional columns. The rank of a matrix X is the smallest number

of rank-1 matrices generating X as their sum. These matrix

concepts immediately transfer to three-way arrays. Specifi-

cally, each triplet of vectors {a,b,c} defines a three-way array

of rank 1, and vice versa. That is, the outer product a � b � c is

the three-way array which has all slices proportional to the

rank-1 matrix ab0, the constants of proportionality being the

elements of c. A rank-1 array has proportional slices in each

direction. Parallel to the definition of matrix rank, the rank of

three-way array X is defined as the smallest number of rank-

1 arrays generating X as their sum [4,20] (also J. B. Kruskal,

unpublished manuscript, 1983). For example, the 3� 3� 2

array X with matricized form

½X1jX2� ¼
2 3 1
3 5 1
4 7 1

1 3 �1
3 7 �1
5 11 �1

������

3
5

2
4 ð16Þ

has rank 2 because it can be written as the sum of two non-

proportional rank-1 arrays

1 2 0

2 4 0

3 6 0

2 4 0

4 8 0

6 12 0

�������

3
75þ

1 1 1

1 1 1

1 1 1

�1 �1 �1

�1 �1 �1

�1 �1 �1

�������

3
75

2
64

2
64 ð17Þ

S0G1T ¼
IQ

O

2
66664

3
77775
; S0G2T ¼

O

IQ

2
66664

3
77775

ð14Þ
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The rank of a three-way array has a direct link to CP: it is the

smallest number of components that is enough for a full CP

decomposition.

Usually, matrices have the maximal rank they can have,

given their order. For instance, a randomly generated 7� 5

matrix has rank 5 almost surely. This does not hold for three-

way arrays. There is a gap between typical rank (the rank an

array format has with positive probability under random

sampling from a continuous distribution) and maximal rank

(J. B. Kruskal, unpublished manuscript, 1983). For instance, a

4� 4� 2 array has maximal rank 6 and typical rank 4.5.

Kruskal [20] has given a general expression for the maximal

rank of P�Q� 2 arrays. In the present context we focus on

typical rank, which is more relevant from a practical point of

view.

The first results on typical rank go back to J. B. Kruskal

(unpublished manuscript, 1983). Recently, a few general

principles have been obtained. Because Tucker transforma-

tions leave the rank of an array unaffected, transformations

to simplicity have proven very helpful in the study of

typical rank. Tables I and II demonstrate some of the

results. Table I is based on ten Berge and Kiers [18], who

solved the typical rank issue for all P�Q� 2 arrays. Table

II gives some values for P�Q� 3 arrays from ten Berge

[21], with the addition that the typical rank of 5� 3� 3

arrays has recently been shown to be {5,6}, [22]. The bold

face entry in Table II for the typical rank of 5� 5� 3 arrays

is based on ten Berge and Smilde [15], who applied it to the

array (12). This array is the sum of five linearly indepen-

dent rank-1 arrays, hence its rank is 5. Because arrays of

format 5� 5� 3 have almost surely rank 6 or higher, the

array (12) is non-trivial. This demonstrates how typical

rank results can settle questions of non-triviality of hybrid

core arrays in between 3PCA and CP.

7. DISCUSSION

Although recently some advances have been made both in

simplicity results and in typical rank results, much remains

to be done. As far as simplicity is concerned, the two-slice

arrays have been settled, but for three-slice arrays only the

3� 3� 2, 3� 3� 7 and 3� 3� 8 cases have been solved [9].

Yet numerical approaches often reveal extreme simplicity as

in (8) for 3� 3� 3 arrays. A closed-form solution for this

form of simplicity is still sorely wanted.

As far as typical rank is concerned, more cases have been

solved. Still, general recipes as exist for typical rank over the

complex field are absent for the real field. The solutions that

do exist often rely on solving up to fourth-degree

polynomials. The prospects for extending these results by

dealing with higher order polynomials seem remote.

The typical rank results discussed in this paper do not

apply to arrays of symmetric slices. In general, it seems that

symmetry often entails a lower typical rank, which means

that we need fewer components for a full INDSCAL decom-

position of symmetric slices than for CP of non-symmetric

slices of the same order. However, in a number of cases the

typical rank of symmetric arrays is as high as that of their

non-symmetric counterparts. Further details can be found in

Reference [23].

Just like CP is a constrained version of 3PCA, INDSCAL is

a constrained version of three-mode scaling (see Reference

[24], p. 49), a variant of 3PCA applied to arrays of symmetric

slices. It has A¼B, and the core consists of symmetric slices

also. The typical rank results for symmetric arrays might

apply here, to scrutinize a constrained simple core array for

possible triviality. However, we are not aware of any recent

applications of three-mode scaling.
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