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A C O N T R I V E D  2 x 2 x 2 ARRAY O F  R A N K  T H R E E  
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Kruskal, Harshman and Lundy have contrived a special 2 x 2 x 2 array to examine formal 
properties of degenerate Candecomp/Parafac solutions. It is shown that for this array the Cande- 
comp/Parafac loss has an infimum of 1. In addition, the array will be used to challenge the 
tradition of fitting lndscal and related models by means of the Candecomp/Parafac process. 
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Carroll and Chang (1970) and Harshman (1970) have independently suggested the 
same method of analyzing three-way arrays, and christened these methods "Candecomp" 
and "Parafac", respectively. Specifically, let Z denote a p x q x m array containing m 
frontal slabs Zi,  i = 1 . . . . .  m. Then the Candecomp/Parafac process (CP-process) seeks to 
minimize the function 

f ( X ,  Y, C) = ~ II Zi -- XC~ Y' II 2, (1) 
i= l  

where X is a p x r matrix, Y is a q x r matrix and C~ is a diagonal r x r matrix, with 
diagonal elements equal to the elements of the i-th row of an m x r matrix C. 

Kruskal  (1977) has generalized the concept of matrix rank to n-way arrays. For  n = 3 
the rank of the array Z, as defined by Kruskal, is the smallest value of r for whichf (X,  Y, 
C) can attain its lower bound zero. 

Kruskal,  Harshman and Lundy (1983, 1985) have analyzed a particular 2 x 2 x 2 
array at great length. The array consists of two frontal slabs 

which will be referred to as the " K H L  data" henceforth. The K H L  data array has Rank 3. 
It has proven to be highly instructive for the study of so-called "degenerate solutions" that 
can be obtained with the CP-process (Kruskal, Harshman,  & Lundy, 1983, 1985; and 
Harshman & Lundy, 1984, p. 280). Applying the CP-process to the K H L  data with r = 2 
produces a degenerate solution. That  is, X, Y and C approach certain matrices of Rank 1. 
In addition, Kruskal, Harshman and Lundy (1983) have claimed t ha t f (X ,  Y, C) does not 
have a minimum but has an infimum, in this case. 

The present paper is focussed on the latter claim, for which no formal proof  has been 
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published so far. Specifically, it is the ma in  purpose  of  the present  paper  to show t h a t f ( X ,  
Y, C) has an inf imum of  I for the K H L  data,  when r = 2. 

In addition, some at tent ion will be paid to the " symmet ry  claim". Tha t  is, Carrol l  
and Chang  (1970) have claimed that,  when applied to symmetr ic  da ta  the CP-process  will, 
after convergence,  produce  a solution where X and Y are equal. This  claim serves as a 
rat ionale for fitting Indscal  and related models  by the CP-process .  The  K H L  da ta  will be 
used to refute this rationale.  

Solving for C in Terms  of X and Y 

Before adressing the K H L  data,  it seems convenient  to consider  the minimiza t ion  of 
f ( X ,  Y, C) in general. Because C i can be opt imized independent ly  of  Cj ( j  # / )  we m a y  
first consider  the p rob lem of minimizing,  for given X and Y, 

f~(Ci) = II Zi - XC~ Y' II 2 = tr Z'~Z i - 2 tr X ' Z  i YC~ + tr X'XC~ Y'YC~, (3) 

for a rb i t ra ry  p × q matr ices  Z~, i = 1 . . . . .  m. Let w~ and c~ be the vectors  conta ining the r 
d iagonal  elements of  X'Zi  Y and C~, respectively, and define 

B -- (X 'X  x Y'Y),  (4) 

where x s tands for the element-wise ( H a d a m a r d )  p roduc t  of  matrices.  I t  can  be verified 
that  the elements of  the vector  Bci are the d iagonal  e lements  of  (X'XC~ Y' Y), and that  B is 
a G r a m i a n  matr ix  (Schur, 191 l, p. 14). Therefore,  assuming that  B is nonsingular ,  we can 
express f/(Ci) equivalently as 

fi(Ci) = tr Z'~Z i -- 2w'ic i + c'iBcl = tr Z'iZ i - w'~B-lwl + II B - 1 t 2 w l  - -  Bl/2ci tl 2. (5) 

Clearly, fi (C~) has a m i n i m u m  value 

min fi (Ci) = tr Z; Z l - w; B-t_w i, (6) 

which will be at tained if and only if 

c~ = B -  I w~, (7) 

i = 1, . . . ,  m, assuming that  B is nonsingular .  
Finally, summing  over  i yields 

m i n f ( X ,  Y, CIC) = ~ tr Z ' i Z i -  tr B - I W W  ', (8) 
i=1 

where W is the r x m matr ix  conta in ing the vectors  w~, i = 1 . . . . .  m, column-wise.  
The  p rob lem of  m i n i m i z i n g f ( X ,  Y, C IC) over  X and Y can  thus be conver ted  into 

the p rob lem of  maximizing 

yr(X, Y) = tr B - I W W  ' = ~ tr Z'~Z~- m i n f ( X ,  Y, CIC) (9) 

provided that  B is nonsingular .  As a ma t t e r  of  convenience,  the identification constra ints  

Diag  (X'X)  = Diag  (Y 'Y)  = I, (10) 

will be adop ted  th roughou t  this paper.  

Addit ional  Theory  for 2 x 2 x 2 Arrays  

So far our  t rea tment  of  minimizing f ( X ,  Y, C) has been complete ly  general,  apar t  
f rom the requirement  tha t  B must  be non-singular .  In  this section the special case of  
2 x 2 x 2 ar rays  will be e laborated,  tha t  is, the case p = q = m = 2. 
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First, suppose  that  we set r = 1. Then  B is the 1 x 1 identi ty matr ix ,  see (4) and  (10), 
and  W reduces to the 1 x 2 'ma t r ix '  

W = [x'Zly,  x 'Z  2 y]. (11) 

F rom (9) and (10) it is clear that  maximizing 01(X, Y) amoun t s  to maximizing 

tr W W '  = (x'Zty) 2 + (x'Z 2 y)2. (12) 

Next,  consider  the case r = 2. Using (10) we can define 

( s i n a i  s i n f l ~  ( s i n y  sin66) (13) 
X = k c o s ~ t  c o s f l ]  and Y = k c o s y  cos ' 

for certain ~t, fl, y and 3. Fo r  future reference we also define 

2 - sin (~t - fl) sin (y - 6) = I X I" I Y I, (14) 

and 

# - cos (~ - / ~ )  cos (y - 6 ) .  

Solutions for the K H L  D a t a  With r = 2 

(15) 

For  the K H L  data  the above  definitions imply that,  for r = 2, we have 

B = ( I #  ~) ,  and  W W ' = (  1 # _ 2  # - 1  2 ) ,  (16) 

thus yielding, for nonsingular  B or, equivalently,  for #2 < 1, 

g2(X, Y) = 2 + 2#2(1 _ # 5 ) - 1  _= h(~t, fl, y, 3). (17) 

Not ing  that  tr ~. Z~ Z t = 4 for the K H L  da ta  we arr ive at  

i n f f ( X ,  Y, C) = 4 -- sup g2(X, Y) = 4 - sup h(~t, fl, ),, 6) (18) 

if B is nonsingular .  
Using the expressions obta ined  above,  we can readily derive the following results for 

the K H L  data.  

Lemma 1. I f  both  X and Y are singular, then, for r = 2 ,  m i n f ( X ,  Y, C ) = 3 ;  
otherwise i n f f (X ,  Y, C) is given by (18). 

ProoJ~ First, note that, for r = 2, B is singular if and only if #2 = 1, or, equivalently,  
if and only if bo th  X and Y are singular. It  follows that  (18) applies when either X or  Y or 
both  are nonsingular.  Next,  consider the case where X and Y are indeed singular. Then  
XCi Y', the fitted par t  of  Zi ,  can be writ ten as c~" xy' where x and  y are the first co lumns  
of  X and Y, respectively, and c~' is a scalar. I t  follows that,  wi thout  loss of  fit, we m a y  
consider  the case r = l instead o f t  = 2. Applying (12) to the special case of  the K H L  da ta  
yields tr  W W '  = 1 and therefore m i n f ( X ,  Y, (7) = f ( X ,  Y, C) = 3. 

Lemma 2. For  r = 2 we have  1 < f ( X ,  Y, C) _< 3. 

Proof. The  case where B is s ingular  follows f rom L e m m a  1. In the nonsingular  case 
we note that  (# + 2) and ( # -  2) are cosines hence (# + 2)2<: 1 and  ( # -  2)2<:  1. I t  
follows that  J2#21 <: I - #2 _ 22 < 1 --  #2 i f 2  # 0. I f 2  ---- 0 then h(~t, fl, y, 6) = 2; i f 2  # 0 
then we have f r o ~  #2 < 1 that  - - I  < 2#2(1 -- #2)-1 < 1 hence 1 < h(~, fl, y, 3) < 3. I t  



582 PSYCHOMETRIKA 

follows tha t  1 < f ( X ,  Y, C) < 3 in the nons ingu la r  case. Therefore,  1 < f ( X ,  Y, C) < 3 for 
/ ' ---- '2.  

Theorem 1. We h a v e f ( X ,  Y, C) > 1 for all X,  Y, and  C and  i n f f ( X ,  Y, C) = 1. 

Proo f  The first pa r t  is immedia t e  from L e m m a  2. To  prove  the second par t ,  t ake  
/~ = & = 0 and  ~, = ~t. Then  2 = 1 --  # and  h(~t, 0, ct, 0) = 2 + 2#(1 + #) -1 .  If  we let ~t tend 
to 0 then/~ = cos 2 ~t tends to 1, h(~, 0, ~t, 0) tends to 3, a n d f ( X ,  Y, C) tends  to 1. 

The  technical  in t e rp re ta t ion  of  Theo rem 1 is tha t  f ( X ,  Y,  C) is d i scon t inuous  at  
ct = /~  = 3' = 6 = 0, w h e r e f ( X ,  Y, C) = 3 (cf. L e m m a  1), and  t h a t f ( X ,  Y, C) does  not  have 
a min imum,  jus t  as has been c la imed by Kruska l ,  H a r s h m a n  and  L u n d y  (1983). An 
immedia t e  consequence  for the CP-p rocess  is tha t  it canno t  converge  to a so lu t ion  with 
f ( X ,  Y, C) = 1 because  such a so lu t ion  does  not  exist. 

S y m m e t r y  of  the Solu t ions  

Car ro l l  and  C h a n g  (1970, p. 287) have c la imed tha t  " the  basic  s y m m e t r y  of  the da ta" ,  
reflected in Z i = Z '  i, i = 1 . . . . .  m, guaran tees  that ,  when the CP-p rocess  f inally converges,  
X and  Y will have p r o p o r t i o n a l  columns.  This c la im of  " symmet r i c  so lu t ions"  for sym- 
metr ic  d a t a  has been repeated ,  a m o n g  others ,  by H a r s h m a n  and  L u n d y  (1984, p. 135) and  
Car ro l l  and  P ruzansky  (1984, p. 382), as a ra t iona le  for using the CP-p roces s  to fit Indsca l  
and  related models .  

In  o rde r  to relate  this ra t iona le  to the above  deve lopment ,  we m a y  revisit  the p r o o f  
of Theo rem 1. Clear ly,  this p r o o f  implies  that  f ( X ,  X, C) > 1 for all X and  C while inf  

f ( X ,  X, C ) =  1. Thus  it is seen that  requir ing  symmet ry  (X = Y) does  not  involve ad-  
d i t ional  loss. O n  the o ther  hand,  t ru ly  asymmet r i c  so lu t ions  can also be cons t ruc ted .  If  we 
let ct - fl = 3' - 6 then h(~t, fl, 3', &) = 2 + 2/a(1 + #) -1  with /~2 = c o s  2 (0c - -  f l ) .  Therefore,  
le t t ing fl = ~ - e and  & = ~ --  e, with e tending  to zero, a l r eady  gives h(~t, fl, 3', &) tending  
to 3, hence f ( X ,  Y,  C) tending  to 1. Because 0t and  3' need no t  be the same, this implies  
that  X and  Y can be very different. In  fact, app ly ing  the CP-p roces s  to the K H L  d a t a  
reveils that  a symmet r i c  accumula t ion  po in ts  can occur.  

I t  should  be no ted  tha t  we have no t  d i sp roved  the c la im tha t  the CP-process ,  when 
convergent ,  converges  to symmet r i c  so lu t ions  for symmet r ic  da ta .  In  the example  we have 
examined,  the CP-p rocess  is nonconvergent ,  and  the accumula t i on  po in ts  in the sequences 
genera ted  by the CP-p rocess  can be ei ther  symmetr ic  or  asymmetr ic .  However ,  we have 
shown tha t  using the CP-p rocess  to fit Indscal  and  re la ted  mode l s  is no t  general ly  
justif ied,  because  the a l ledgedly  symmet r ic  so lu t ions  are  not  guaranteed .  
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