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EXPLICIT CANDECOMP/PARAFAC SOLUTIONS FOR
A CONTRIVED 2 x 2 x 2 ARRAY OF RANK THREE
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Kruskal, Harshman and Lundy have contrived a special 2 x 2 x 2 array to examine formal
properties of degenerate Candecomp/Parafac solutions. It is shown that for this array the Cande-
comp/Parafac loss has an infinum of 1. In addition, the array will be used to challenge the
tradition of fitting Indscal and related models by means of the Candecomp/Parafac process.
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Carroll and Chang (1970) and Harshman (1970) have independently suggested the
same method of analyzing three-way arrays, and christened these methods “Candecomp”
and “Parafac”, respectively. Specifically, let Z denote a p x ¢ x m array containing m
frontal slabs Z,,i =1, ..., m. Then the Candecomp/Parafac process (CP-process) seeks to
minimize the function

m
fX,Y,00=> 11Z,— XC,Y'|? {1
i=1
where X is a p x r matrix, Y is a ¢ x r matrix and C, is a diagonal r x r matrix, with
diagonal elements equal to the elements of the i-th row of an m x r matrix C.
Kruskal (1977) has generalized the concept of matrix rank to n-way arrays. For n =3
the rank of the array Z, as defined by Kruskal, is the smallest value of r for which f(X, Y,
C) can attain its lower bound zero.
Kruskal, Harshman and Lundy (1983, 1985) have analyzed a particular 2 x 2 x 2
array at great length. The array consists of two frontal slabs

1 0 01
Z = s
1 (0 _ 1), and Z, (1 0>, 2

which will be referred to as the “KHL data” henceforth. The KHL data array has Rank 3.
It has proven to be highly instructive for the study of so-called “degenerate solutions” that
can be obtained with the CP-process (Kruskal, Harshman, & Lundy, 1983, 1985; and
Harshman & Lundy, 1984, p. 280). Applying the CP-process to the KHL data with r = 2
produces a degenerate solution. That is, X, Y and C approach certain matrices of Rank 1.
In addition, Kruskal, Harshman and Lundy (1983) have claimed that f(X, Y, C) does not
have a minimum but has an infimum, in this case.

The present paper is focussed on the latter claim, for which no formal proof has been
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published so far. Specifically, it is the main purpose of the present paper to show that (X,
Y, C) has an infimum of 1 for the KHL data, when r = 2.

In addition, some attention will be paid to the “symmetry claim”. That is, Carroll
and Chang (1970) have claimed that, when applied to symmetric data the CP-process will,
after convergence, produce a solution where X and Y are equal. This claim serves as a
rationale for fitting Indscal and related models by the CP-process. The KHL data will be
used to refute this rationale.

Solving for C in Terms of X and Y

Before adressing the KHL data, it seems convenient to consider the minimization of
f(X, Y, C) in general. Because C, can be optimized independently of C; (j # i) we may
first consider the problem of minimizing, for given X and Y,

filC)=12Z,~XC,Y V) =tr Z}Z, - 2tt X'Z,YC; + tr X'XC,Y'YC,, 3

for arbitrary p x g matrices Z;,i = 1, ..., m. Let w, and c; be the vectors containing the r
diagonal elements of X'Z; Y and C,, respectively, and define

B=(X'X x Y'Y), 4)

where x stands for the element-wise (Hadamard) product of matrices. It can be verified
that the elements of the vector Bc, are the diagonal elements of (X’XC,; Y'Y), and that B is
a Gramian matrix (Schur, 1911, p. 14). Therefore, assuming that B is nonsingular, we can
express f;(C;) equivalently as

f(C)=1tr Z,Z, — 2wjc; + ¢, Be; = tr Z;Z; — w;B™'w, + | B 2w, — B¢, |%. (5)
Clearly, £f;(C,) has a minimum value
min f;(C) = tr Z;Z, — w;B"'w,, (6)
which will be attained if and only if
¢; =B 'w, )
i=1,..., m, assuming that B is nonsingular.
Finally, summing over i yields

minf(X, Y, C|C)= ¥ tr Z,Z,— tt B'WW/, ®)
i=1

where W is the r x m matrix containing the vectors w;,i = 1, ..., m, column-wise.
The problem of minimizing f(X, Y, C|C) over X and Y can thus be converted into
the problem of maximizing

9. (X, Y)=tr B'WW' =Y tr Z}Z,—min f(X, Y, C|C) )]
provided that B is nonsingular. As a matter of convenience, the identification constraints
Diag (X’X) = Diag (Y'Y) = I, (10)
will be adopted throughout this paper.

Additional Theory for 2 x 2 x 2 Arrays

So far our treatment of minimizing f{X, Y, C) has been completely general, apart
from the requirement that B must be non-singular. In this section the special case of
2 x 2 x 2 arrays will be elaborated, that is, thecase p =g =m = 2.
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First, suppose that we set r = 1. Then B is the 1 x 1 identity matrix, see (4) and (10),
and W reduces to the 1 x 2 ‘matrix’

W=[xZy,xZ,y] 1y
From (9) and (10) it is clear that maximizing g,(X, Y) amounts to maximizing
tr WW’' = (X'Z,y)* + (xZ, y)* 12)
Next, consider the case r = 2. Using (10) we can define
(T (R o
for certain a, f3, y and . For future reference we also define
iA=sin{fa—f)sin(y—9)=|X|-|Y} (14)
and
= cos (x — f) cos (y — ). (15)

Solutions for the KHL Data With r = 2

For the KHL data the above definitions imply that, for r = 2, we have

B=(1 “), and WW'=( ! ”""1>, (16)
u 1 u—A 1
thus yielding, for nonsingular B or, equivalently, for p? < 1,
g2(X, Y) =2+ 2p(1 — p*)~" = h(w, B, v, b). (17)
Noting that tr ) Z;Z, = 4 for the KHL data we arrive at
inf f{X,Y,C)=4—sup g,(X, Y)=4 —sup h(a, B, 7, ) (18)

if B is nonsingular.

Using the expressions obtained above, we can readily derive the following results for
the KHL data.

Lemma 1. 1If both X and Y are singular, then, for r =2, min f(X, Y, C) = 3;
otherwise inf (X, Y, C) is given by (18).

Proof. First, note that, for r = 2, B is singular if and only if u?> = 1, or, equivalently,
if and only if both X and Y are singular. It follows that (18) applies when either X or Y or
both are nonsingular. Next, consider the case where X and Y are indeed singular. Then
XC,Y’, the fitted part of Z,, can be written as ¢} xy’ where x and y are the first columns
of X and Y, respectively, and ¢} is a scalar. It follows that, without loss of fit, we may
consider the case r = 1 instead of r = 2. Applying (12) to the special case of the KHL data
yields tr WW’ = 1 and therefore min f(X, Y, C)=f(X, Y, C) = 3.

Lemma2 Forr=2wehavel <f(X,Y,C)<3.

Proof. The case where B is singular follows from Lemma 1. In the nonsingular case
we note that (u + A) and (u — A) are cosines hence (u+ 4> <1t and (u—A)* <1 It
follows that {2u4| <1 — u? — A2 <1 — p? if 1#0.If L = O then h(x, B,7,8) =2;if A#0
then we have frofm u® <1 that —1 <2ud(1 —u®) "' <1 hence 1 <h(x, B, 7, 6) <3. It
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follows that 1 < f(X, Y, C) < 3 in the nonsingular case. Therefore, 1 < f(X, Y, C) < 3 for
r=2. -

Theorem I. Wehave f(X,Y,C)> 1forall X, Y,and Cand inff(X, Y, C) = 1.

Proof. The first part is immediate from Lemma 2. To prove the second part, take
p=6=0andy=a Then A =1— pand h(a, 0, &, 0) = 2 + 2u(1 + w)~ 1. If we let « tend
to 0 then p = cos? a tends to 1, h(z, 0, &, 0) tends to 3, and f(X, Y, C) tends to 1.

The technical interpretation of Theorem 1 is that f(X, Y, C) is discontinuous at
a=f=y=06=0, where f(X, Y, C) = 3 (cf. Lemma 1), and that f(X, Y, C) does not have
a minimum, just as has been claimed by Kruskal, Harshman and Lundy (1983). An
immediate consequence for the CP-process is that it cannot converge to a solution with
f(X, Y, C) =1 because such a solution does not exist.

Symmetry of the Solutions

Carroll and Chang (1970, p. 287) have claimed that “the basic symmetry of the data”,
reflected in Z; = Z;, i = 1, ..., m, guarantees that, when the CP-process finally converges,
X and Y will have proportional columns. This claim of “symmetric solutions” for sym-
metric data has been repeated, among others, by Harshman and Lundy (1984, p. 135) and
Carroll and Pruzansky (1984, p. 382), as a rationale for using the CP-process to fit Indscal
and related models.

In order to relate this rationale to the above development, we may revisit the proof
of Theorem 1. Clearly, this proof implies that f(X, X, C) > 1 for all X and C while inf
f(X, X, C) = 1. Thus it is seen that requiring symmetry (X = Y) does not involve ad-
ditional loss. On the other hand, truly asymmetric solutions can also be constructed. If we
let « — B =y — 6 then h(x, B, 7, 8) = 2 + 2u(1 + p)~* with u? = cos? (x — B). Therefore,
letting B = o — & and 8 = y — &, with ¢ tending to zero, already gives h(«, B, 7, 8) tending
to 3, hence f(X, Y, C) tending to 1. Because « and y need not be the same, this implies
that X and Y can be very different. In fact, applying the CP-process to the KHL data
reveils that asymmetric accumulation points can occur.

It should be noted that we have not disproved the claim that the CP-process, when
convergent, converges to symmetric solutions for symmetric data. In the example we have
examined, the CP-process is nonconvergent, and the accumulation points in the sequences
generated by the CP-process can be either symmetric or asymmetric. However, we have
shown that using the CP-process to fit Indscal and related models is not generally
justified, because the alledgedly symmetric solutions are not guaranteed.
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