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Kroonenberg and de Leeuw have suggested fitting the IDIOSCAL model by the TUCK- 
ALS2 algorithm for three-way components analysis. In theory, this is problematic because 
TUCKALS2 produces two possibly different coordinate matrices, that are useless for IDIOS- 
CAL unless they are equal. Kroonenberg has claimed that, when IDIOSCAL is fitted by 
TUCKALS2, the resulting coordinate matrices will be identical. In the present paper, this claim 
is proven valid when the data matrices are semidefinite. However, counterexamples for indef- 
inite matrices are also constructed, by examining the global minimum in the case where the data 
matrices have the same eigenvectors. Similar counterexamples have been considered by ten 
Berge and Kiers in the related context of CANDECOMP/PARAFAC to fit the INDSCAL 
model. 
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Fitting the IDIOSCAL model (Carroll & Chang, 1972; Carroll & Wish, 1974) in the 
least squares sense amounts to minimizing the function 

m 

f(x, c 1 , . . . ,  I ls i -  x c y l l  2 (1) 
i = t  

for given symmetric n x n matrices S1 . . . .  , S m .  The columns o f X  (n x r; r ~ n) 
represent group dimensions, idiosyncratically transformed by C 1 , . . .  , C m . Kroonen- 
berg and de Leeuw (1980) suggested fitting the IDIOSCAL model by the TUCKALS2 
(T2) algorithm, using a technique called splitting (de Leeuw & Heiser, 1982, p. 306). 
That is, the two appearances of X in (1) are represented by different matrices X and Y, 
which are optimized independently. Specifically, T2 applied to IDIOSCAL minimizes 

m 

g(X, r, cm)= l l s i -xc ir ' l l  2 (2) 
i = 1  

without the constraint X = Y. This approach is only warranted if, after convergence of 
T2, the constraint is inactive. A claim to this effect has been stated by Kroonenberg 
(1983, p. 257). It is the purpose of the present paper to examine this claim from an 
algebraic point of view. The claim will be shown valid when S1 . . . .  , S m are semidef- 
inite. For the case where one or more of these matrices are indefinite, counterexamples 
will be given, albeit of a highly restricted nature. The counterexamples coincide with 
counterexamples to the claim that CANDECOMP/PARAFAC applied to the IND- 
SCAL problem must yield equal coordinate matrices in a parallel splitting problem, 
treated by ten Berge and Kiers (1991). 
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Some Definitions and Results for IDIOSCAL 

Throughout this paper it is assumed that X and Y are of full rank r. This enables 
one to impose the identification constraints 

X ' X  = Y ' Y  = I t .  (3) 

By virtue of (3), the optimal C i, for fixed X and Y, is known to be 

Ci = X ' S i  Y, (4) 

(Penrose, 1956). As a result, minimizing (2) can be simplified to minimizing 

~(X, Y) = ~ IISi - xx ' s iYY ' l l  z, (5)  
i 

which comes down to maximizing the function 

m 

h(X, Y)= ~ t r X ' S i Y Y ' S i X ,  (6) 
i = 1  

subject to (3). In fact, this is how T2 proceeds. For fixed X, the update for Y is the 
matrix of r principal eigenvectors of Z S i  Y Y ' S i ,  and for fixed Y, the update for X is 
the matrix of r principal eigenvectors of Y S i X X ' S i .  More efficient procedures do exist 
(Kroonenberg, ten Berge, Brouwer & Kiers, 1989), but do not play a role in the present 
paper. 

Equality of X and Y, after convergence of T2, is a prerequisite for a proper 
IDIOSCAL solution. However, suppose that we obtain an X and a Y that differ by a 
rotation. That is, let Y = X T  for some orthonormal T. Then replacing Y by X and 
C i = X ' S  i Y by X ' S i X  yields the same estimates of S i ,  i = I ,  . . .  , m .  Specifically, if 
Y = X T ,  then 

X C i  Y'  = X X ' S i  Y Y '  = X X ' S i X T T ' X '  = X X ' S i X X '  (7) 

which shows that setting Y = X and Ci = X ' S i X  is permitted. Accordingly, we have: 

Def in i t ion  1. A T2 solution has X and Y equ iva l en t  if X = Y T  for some orthonor- 
mal T. 

It follows that equivalence is tantamount to having X X '  = YY'o Equivalence is 
closely related to symmetry of the solution: 

Def in i t ion  2. A T2 solution is s y m m e t r i c  if, for i = I . . . .  , m, X C  i Y '  = Y C ~ X ' .  
Symmetry is tantamount to having X X ' S i Y Y '  = Y Y ' S i X X ' ,  for i = 1 . . . .  , m, 

as follows from (4). 

It is immediate that equivalence implies symmetry. It will be shown below (see 
Result 2) that the reverse is also true, under the assumption that a solution does not 
involve more dimensions than necessary, as pinpointed in the next definition. 

Def in i t ion  3. A solution in r dimensions is p a r s i m o n i o u s  if there is no solution in 
r - I dimensions with the same value of (2). 

The concel~t of parsimony is closely related to that of perfect fit, and the eigen- 
values of Zi S{, in the following manner: 
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Resu l t  1. The following three statements are equivalent. 

a. A (globally optimal) solution in r + 1 dimensions is not parsimonious. 
b. There  is a perfect ly fitting solution in r dimensions. 
c. The last n - r eigenvalues of  Ei  S 2 are zero. 

Proof .  First, equivalence of  Items b and c will be established. Using (7) and the 
eigendecomposition____E S 2 = K A K ' ,  with K an orthonormal n × n matrix, and A 
diagonal, with diagonal entries A 1 >-- A 2 :> " ' "  --> An, we have 

Y) = Y~ IIsi - g x ' s i Y r ' l l  2 = Z trS2 - trY' ~'~ s i x x ' s i v  > - ~_~ trS/z 

- t r Y '  ~ ' ~ s 2 y  > - t r A - ( A 1  + ' " + A , ) = A r + I  + ' " + A n - 0 .  (8) 

Clearly, if ~(X, Y) = 0, the last n - r eigenvalues of Y. S 2 are zero. Conversely,  if 
these last eigenvalues are zero, we have Y S 2 = K r A r K ~ r ,  w i th  K ,  containing the first 
r columns of  K, and A r the upper  left r '-X-r submatrix of  A. It follows from Bekker  
(1988, Theorem 3) that,  for i = 1 . . . .  , rn, K r K r  $ 2  = S 2 , and hence we have K r K ' r S i  
= S i = K r K r S i K r K '  r. Taking X = Y = K , ,  a solution with ~(X, Y) = 0 has been 
constructed in r dimensions. Equivalence of  b and c has thus been proven. 

It remains to prove equivalence of  Items a and b. It is obvious that a solution in 
r + 1 dimensions is not parsimonious if there is a perfectly fitting solution in r dimen- 
sions. To prove the converse  statement,  suppose that a perfectly fitting solution in r 
dimensions does not exist. Then for at least one value of  j ,  we have Sj  different f rom 
X X ' S j  Y Y '  = X C j  Y ' .  Therefore ,  the fit for  S j  can be improved by constructing, f rom 
the best rank 1 approximation to (S j  - X C j Y ' ) ,  a bet ter  fitting solution in r + 1 
dimensions. Specifically, an additional column for X and for Y, and an additional 
nonzero diagonal element for Cj can be found that improve the fit for S j ,  while the 
remaining elements needed to extend C1,  • • • ,  Cm are taken zero, thus leaving the fit 
for S i ,  i = 1, . . .  , m ,  i ~ j ,  unaffected. If  necessary,  the extended X and Y can be 
replaced by columnwise orthonormal n by r + 1 matrices, with parallel adjustments for  
C1 . . . . .  Cm.  It follows that r + 1 is a parsimonious number of  dimensions. This 
completes the proof  of Result 1. [ ]  

Corollary 1. If  both Gy and Gx,  defined as X ' Y .  i (SiYY'Si)X and 
Y' Y i ( S i X X ' S t ) Y ,  respectively,  are singular, the solution is not parsimonious. 

Proof .  It is clear from (6) that the maximum of  h(X, Y) can only be attained if X 
contains the first r eigenvectors of  ~....._S i Y Y ' S i ,  or a rotation thereof,  that may be 
ignored because it does not affect h(X, Y). Similarly, Y must contain the first r eigen- 
vectors of  Z S i X X ' S  i. If  Gy is singular, then so is Y. Si  YY'Si, and the same function 
value for h-('X, Y) can be obtained when X is replaced b--y-the n x (r - 1) matrix X that 
is left when column r of  X is deleted. So h(X, Y) equals h(Y~, Y), which can be written 
as the trace of  the matrix Gx =- Y'  Y. Si-~-'Yt'S i Y. Because Gx equals the sum of  Gx and 
a positive semidefinite matrix, singularity of  Gx implies singularity of  G x . Therefore ,  
the r-th column of  Y can now also be deleted without affecting h(X, Y). It follows that 
the solution in r dimensions is not parsimonious. [ ]  

Corollary 1 makes it possible to treat symmetry and equivalence as the same 
concepts ,  when solutions are parsimonious. It has been noted above that equivalence 
implies symmetry.  The complementary result is the following. 

R e s u l t  2. Symmetry  implies equivalence, for parsimonious solutions. 
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Proof. Suppose that, for i = 1, . . .  , m, symmetry holds. Then X X ' S i Y Y '  = 
Y Y ' S i X X  ' . Postmultiplying by SiX  and summing over  i yields 

X X '  E s i Y Y ' S i X  = X G y  = Y ~_~ Y ' S i X X ' S i X .  (9) 
i i 

If  Gy is nonsingular, is clear from (9) that X is in the column space of  Y. If  Gy is 
singular, but  Gx is not,  we have the same result upon exchanging X and Y in (9). 
Finally, if both Gy and Gx are singular, the solution is not parsimonious,  as follows 
from Corollary 1. [ ]  

When T2 is applied to matrices that are positive or negative semidefinite, equiva- 
lence is guaranteed. This will be proven in the next  section. 

Equivalence for T2, Applied to Semidefinite Matrices 

It is clear that the function h(X, Y) is not altered when Si is replaced by - S i ,  for  
any value of  i. Accordingly, when S l,  • • • , S m  are semidefinite, they are unders tood 
(here and elsewhere) to be taken positive semidefinite throughout.  The next  result 
provides the key to equivalence at the maximum of  h(X, Y). 

Result 3. At the maximum of  h(X, Y), for S 1, . •. ,Sm semidefinite, we have,  for 
i = 1, . . . ,  m, 

S1/2XX'S]/2= s~/ZYY'S]  ̀ 2. (10) 

Proof. Writing h(X, Y)as  

[ V e c ( S ~ / 2 X X t S ~ / 2 [ .  1/2 t 1/2 , • • "[Sm r r  S m  )] 1 YY S I [" 1/2 , 1/2 • IS m X X  S m ) ]  [ V e c ( S  1/2 , 1/2 

and using the property that, for  any pair of  vectors a and b, we have a 'b < max (a'a, 
h'h) unless a = b, we obtain the result at once. 

It can be seen from (10) that it already suffices for equivalence when one of  the 
matrices S1 . . . .  , Sm is nonsingular. Nevertheless,  this assumption is not necessary,  
as will now be shown. [ ]  

Result 4. At the maximum of  h(X, Y), for semidefinite matrices $1 . . . . .  Sin, 
equivalence is guaranteed, if the solution is parsimonious. 

Proof. Define the matrices Ax and Ay as Y S iXX 'S  i and Y. S i Y Y ' S i ,  respec- 
tively. It  is immediate f rom Result 3 that'7~x = Ay ~- A T ~ h e n  the conditions of  Result  
4 are satisfied. Also, both X and Y m'-d-st maximize h(X, Y) = t rX 'AX  = trY 'A Y. It  
follows that X and Y must  contain r principal eigenvectors o f  A,  possibly rotated.  The 
rank of  A must be at least r,  because,  otherwise,  both X and Y could be taken as n x 
(r - I) matrices, in violation o f  the parsimony requirement  imposed on r, see Corollary 
1 above.  Suppose that X X '  ~ YY'.  Then the r-th eigenvalue of  A must have multi- 
plicity 2, at least. Let  H = (hi I" " "lhrthr+l) be a matrix of  r + 1 dominant eigenvectors  
of  A, with Ah r = Arh r and Ahr+ 1 + Arhr+ 1 , and H ' H  = Ir+l. The maximum is also 
attained by taking, instead of  X, the matrix Xp, defined as 

where p can be any 2-vector such that p 'p  = 1. It follows from Result 3 that 

(12) 
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(Ir-1 pO,)H,Si = SiYY,  Si ' (13) Sill 0 p 

regardless of p, for i = 1, . . .  , m. Therefore, the scalar 

hrSiH~ O ,  [lr-I P--/DO')H'Sihr=h'rSiYY'Sihr (14) 

is invariant under the choice o fp .  Define fi as the v e c t o r  (h'rSihr]h'r+l Sihr) ' .  Then it 
follows from (14) that the scalar c, defined as f}pp'fi, is independent of p. Therefore, 
p'(fif} - ci2) p = 0 for every p of  unit length, which implies that fif) (of rank 0 or 1) 
equals cI 2 (of rank 0 or 2), whence fi vanishes. From this we have hrSih  r - -  0, S O  Sih  r 
= 0, for i = 1 . . . .  , m,  and hence Ah  r = 0. This is not possible, because it would 
imply a violation of  parsimony of  r. This completes the proof of  Result 4. []  

Result 4 implies that, regardless of the algorithm used, equivalence holds at max- 
ima of h(X, IO. It follows that T2 applied to IDIOSCAL, for semidefinite matrices, 
cannot be disturbed by splitting problems. In fact, this is already evident from Result 
3. Once we have A x and Ay equal, the T2 algorithm updates X and Y as principal 
eigenvectors matrices of the same matrix A, which guarantees that X and Y will be 
equal. The results obtained above have a wider generality, in that they apply to the 
maxima of the object function of T2, rather than to specific algorithms. 

Having dealt with a class of data matrices where T2 applied to IDIOSCAL must 
yield a proper equivalent solution, we now turn to a class of  matrices where equiva- 
lence is not granted. 

The Global Minimum for IDIOSCAL in the Equal Eigenvectors Case 

When $1 . . . .  , S m  all have the same eigenvectors, with eigenvalues in arbitrary 
orders, the global minimum of (2) can be found explicitly. More importantly, necessary 
conditions for the global optimality of a T2 solution, relevant for symmetry,  can be 
given. These conditions indicate very specifically how asymmetry may come about. 

If  S1, • • • , Sm have the same eigenvectors, then we can write Si = KAiK' ,  for 
i = 1 . . . . .  m, with K orthonormal and A i diagonal. Accordingly, (2) can be rewritten 
a s  

m m 

g(X, Y, C I , . . . ,  C m ) =  E I I K A , K ' - X C ,  Y'II 2= E I I A , -  K'XC, Y'KII 2, 
i = 1  i = 1  

(15) 

which is the same least squares function, with Si replaced by a diagonal matrix A i . For  
reasons of  simplicity, we shall drop the transformation K and examine the minimum of 
(2) with S i = Ai (diagonal) directly. 

For  fixed diagonal matrices A t ,  . . .  , A m we have 

m 

g(X, Y, C1, . . . ,  Cm) = E I I A i -  x c ,  r ' l l  2 
i=l 

m 

E 
i = 1  

H A / -  X(X'X) - lX'Ai  II 2 
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m 

= Z IIAi-XX'Ail l  2 
i = l  

m m 

= ~'~ trA/2 - t r P x  ~] A~, (16) 
i = 1  i = 1  

with Px = X X ' ,  an idempotent matrix. The rationale underlying (16) is that C i Y '  

cannot outperform the linear regression weights for estimating A i from X, i = 1, . . . ,  
m. Let  A 1 , . . . ,  A m be permuted such_.._that Y. A 2 has its diagonal elements in weakly 
decreasing order. Then we have from ten Berge (I983) that 

trPx ~] A? -< trEr ~ A/2, (17) 

where E r is the n × n diagonal matrix with r unit elements, followed by n - r zero 
elements on the diagonal. Combining (16) and (17) gives the lower bound 

g(X, Y, Cl . . . .  , Cm) >- ~ trA~ - trEr ~ a 2. (18) 

The lower bound is in fact the global minimum because it can be attained. That is, 
if we let 

Y=( /0  r)  a n d C i = X ' A ~ Y ,  (19) X =  

i = 1, . . .  , m, (16) holds as an equality, with X ' X  = Y' Y = I r. Clearly, (19) is a 
solution which has the property of symmetry and equivalence. We shall now examine 
under what conditions asymmetry and hence nonequivalence may occur, at the global 
minimum. 

If  a T2 solution is to be globally minimal, then both (16) and (17) must hold as 
equalities. That is, the solution must satisfy 

i = 1, . . . ,  m, and 

Ci Y' = X ' A i ,  (20) 

trPx ~] A z = trEr ~] Ai z. (21) 

Repeating the derivation of (16) and (17) with the roles of X and Y interchanged yields 
the further condition, parallel to (20), that 

C ~ X ' =  Y ' A i ,  (22) 

i = 1 . . . . .  m. Clearly, if the r-th and r + 1-th element of Y A 2 are distinct, then 
Px + Er is the only solution for (21), and hence, for i ~---I, . . .  , m,  

X C i  Y' = P x A i  = ErA i  = A iEr  = A i P x  = YC~X' ,  (23) 

which establishes symmetry.  However,  if this distinctness condition is not met, we may 
or may not have symmetry.  A more general condition can be obtained from (20) and 
(22). Combining these, we have, for i = 1, . . .  , m, 

X C i  Y' = P x A i  = A iPy  (24) 

with Py = YY ' ,  and hence 



TEN BERGE ET AL. 199 

A2px = A i ( A i P x )  = A i P y A i  = P x A i A i  = PxA 2, (25) 

which shows that Px commutes  with A/2. Symmet ry ,  on the other  hand, can be rede- 
fined in the present  context  as having Px commuting with Ai,  i = I ,  . . .  , m ,  see (24). 
The  question is, under  what  condition is it possible that  Px commutes  with A 2 without 
commut ing  with A i . The very  same question has been examined by  ten Berge and Kiers  
(1991, pp. 320-322) in a related context .  They  have shown that this is possible if A i has 
at least two diagonal elements  that differ in sign only, one of  which is among the first 
r e lements  of  AI, while the other  is not. In the present  context ,  we have to deal with 
A1, . . .  , A m simultaneously,  which is quite a bit more  involved. Le t  L be defined as 
the m x r matrix containing the diagonal elements  of  A i in its i-th row, i = 1, . . .  , m. 

Result 5. At the global minimum of  (2) in the equal e igenvectors  case symmet ry  is 
guaranteed unless L can be arranged to have  an r-th column ! r and an r + 1-th column 
it+ 1 equal to -1  r , the f reedom to rearrange columns in L being limited by the require- 
ment  that  the column sums of  squares,  that  is, the diagonal e lements  of  Y. A 2 , must  be 
in weakly  descending order.  

Proof. I t  is convenient  to first reduce the order of  the matr ices involved, without 
affecting any essential proper ty  of  the relevant  equations. Le t  Z A/z be denoted as A, 

i 

and let A be parti t ioned as ( 00) 
A = At  0 , (26) 

0 Au 

with t the multiplicity of  the r-th diagonal element,  s -< r - (s + t), and u = n - 
s - t. At the global minimum of  (2), we can infer f rom (21) that Px is also a block- 
diagonal matrix of  the same dimensions as A, with as a first block the s × s identity 
matrix Is, as a second block a symmetr ic  and idempotent  t × t matrix Pxt of  rank 
r - s, and zeroes elsewhere,  including the last u rows and the last u columns. It  follows 
that symmet ry  holds for XCi Y' if and only if Pxt  commutes  with Ait, the corresponding 
diagonal t x t submatr ix  of  A i. Thus having reduced the problem to one concerning 
submatr ices ,  we now consider  various special cases.  

First,  suppose that A t is a zero matrix. Then Ait is also zero,  for  i = 1 . . . .  , m ,  
and symmet ry  is obvious.  

Next ,  let A t be nonzero ,  and define L t as the m x t submatr ix  of  L,  containing the 
diagonal e lements  of  Alt  . . . . .  Arn t. I f t  = 1, symmet ry  is immediate ,  because  the r- th 
and r + 1-th element  of  A are distinct. So let t > 1. N o w  choose  a value of  i such that 
Ait is nonsingular. In case such a Ait does not exist, replace it by any nonsingular linear 
combinat ion of Al t ,  . . .  , Amt. Next ,  choose a value o f j  ~ i such that A, defined as 
AjtAit  1 , has no pair  of  equal diagonal values. These two steps can always be taken 
unless L t has two proport ional  columns,  a case to be treated separately.  Noting that 
(24) remains valid when Ci and A i are replaced by identically weighted linear combi-  
nations,  we have 

PxtAjt = AjtPyt and Pxt = AitPytA~t I, 

with Py t  defined analogously to e x t .  It  is clear f rom (27) that 

AitPytA~t IAjt = AjtPyt, 

(27) 

(28) 
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which shows that Pyt A = Apy t . All diagonal elements of A being distinct, it follows 
that Pyt is a diagonal matrix. Hence Py is diagonal, whence symmetry is obtained, see 
(24). 

Finally, we need to consider the case where L t has proportional columns. These 
columns are either identical or they differ in sign only. If they are identical, the mul- 
tiplicities of the diagonal elements of A t a r e  the same as those for Ait, i = 1, . . .  , m. 
As a result, A t commutes with the same matrices as does Ait, i = 1 , . . . ,  m. Applying 
this to (24) yields symmetry. The only case that remains is that where At has two 
columns that differ only in signs. In this case asymmetry can always be obtained, by 
taking Px t  nondiagonal. [] 

To facilitate the interpretation of Result 5, a counterexample where the conditions 
of Result 5 are not met will be instructive. Let 

A1 = 2 and A2 = 1 , 
0 - 0 - 

(29) 

and let 

X = and Y = 

(! 0) 
V 3  
-V3 

(30) 

Then we have 

(i ° : i ) ( i  ° i!) X C I  Y' = I and X C 2  Y' = .5 - . 
1 .5 

(31) 

This solution attains the global minimum 5 of (2), yet symmetry is lacking. Another 
counterexample can be found in ten Berge and Kiers (1991, p. 322). Although that was 
derived to show that CANDECOMP/PARAFAC applied to INDSCAL need not yield 
symmetry at the global minimum, it also pertains to T2 applied to IDIOSCAL. This is 
not a coincidence, but follows from the fact that Result 5 and the derivations preceding 
it also apply to INDSCAL, upon redefining P x  and Py a s  X ( X ' X ) - I x  ' and 

y( y, y) - 1 y, ,  respectively. 
Above, it was shown that symmetry is guaranteed in the case of semidefinite 

matrices S1, . . . ,  S,n. Clearly, matrices, with a pair of eigenvalues that differ in signs 
are indefinite, which reconciles Result 5 with Result 4. Also, it was shown that having 
the r-th and the r + 1-th diagonal elements of Y. A/2 distinct implies symmetry in the 
equal eigenvectors case. Clearly, the cou-merexample of (29) and (30) violates this 
condition. 

Discussion 

Comparing the theoretical results for splitting in IDIOSCAL with those for IND- 
SCAL (ten Berge & Kiers, 1991), it can be seen that the situation is much better for 
IDIOSCAL than for INDSCAL, because the case of semidefinite matrices has been 
solved for IDIOSCAL (Result 4), whereas a parallel result for INDSCAL is lacking. In 
fact, if such a result for INDSCAL will ever be obtained, it will only pertain to global 
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minima, because cases of asymmetry at l o c a l  minima in INDSCAL, applied to semidef- 
inite matrices, have already been encountered (ten Berge & Kiers, 1991, p. 324). 

Practical experience with T2 applied to IDIOSCAL seems to give no problems with 
asymmetry whatsoever. The positive Result 4 of this paper, and the observation that 
counterexamples for indefinite matrices could only be constructed in highly artificial 
circumstances, should further strengthen our confidence in T2 as a suitable method for 
IDIOSCAL. 

Kiers (1989) has developed an alternative IDIOSCAL algorithm which preserves 
equivalence throughout the computations. In view of the efficiency of  T2, and its 
theoretical and practical properties in the application to IDIOSCAL, there seems to be 
no need to abandon T2 in favor of  such an equivalence preserving algorithm. 

Kiers, C16roux and ten Berge (in press) considered an application of IDIOSCAL in 
the context of  optimal matrix correlations. In this context, the symmetric matrices 
S 1,  • . .  , S m  to be analyzed are Gramian. The latter property enabled Kiers et al. to 
develop a monotonically convergent algorithm that preserves equivalence throughout 
the computations, as an alternative to TUCKALS2. Result 4 of  the present paper 
implies that there was no need to develop such an algorithm because TUCKALS2,  
applied to Gramian matrices, cannot be disturbed by splitting problems. 
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