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SUMMARY

This paper is concerned with the question to what extent the concept of rowwise or columnwise orthonormality
can be generalized to three-way arrays. Whereas transforming a three-way array to multiple orthogonality is
immediate, transforming it to multiple orthonormality is far from straightforward. The present paper offers an
iterative algorithm for such transformations, and gives a proof of monotonical convergence when only two
modes are orthonormalized. Also, it is shown that a variety of three-way arrays do not permit double
orthonormalization. This is due to the order of the arrays, and holds regardless of the particular elements of the
array. Studying three-way orthonormality has proven useful in exploring the possibilities for simplifying the
core, to guide the search for equivalent direct transformations to simplicity; see Murakamiet al. (Psychometrika
1998;63: 255–261) as an example. Also, it appears in various contexts of the mathematical study of three-way
analysis. Copyright 2000 John Wiley & Sons, Ltd.
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INTRODUCTION

Transforming a matrix to rowwise or columnwise orthonormality is an elementary topic in matrix
analysis. Extensions to three-way arrays, where three-way orthonormality is defined in terms of
orthonormality of the matrices containing all horizontal slices and/or all lateral slices and/or all
vertical slices of the array, do not seem to have been considered from a systematic point of view.
However, the concept of three-way orthonormality does occasionally arise in different areas of three-
way analysis. First of all, a context in which multiple orthonormality has appeared is that of
computational efficiency. Kiers [1] has shown how to implement a CANDECOMP/PARAFAC
analysis [2,3] for large data sets with multicollinearity. One particular step in his method relies on
approximate three-way orthonormality of a three-way array.

Another example can be encountered in Tucker’s three-way principal component analysis (3PCA)
[4]. Application of this method has always been hampered by the lack of simplicity of the so-called
core array, which attributes weights to the joint impact of any triple of components from three
different modes. Recently, advances have been made in efforts to transform the core array in 3PCA to
have a large number of zero weights, thus attaining a solution for 3PCA that possesses largely the
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sametypeof simplicity that is characteristic of CANDECOMP/PARAFAC. Murakami et al. [5] and
TenBergeandKiers [6] haveofferedexplicit transformationsto simplicity for corearraysof order
P�Q� R whenP = QR7 1 andwhen P>Q andR = 2 respectively.Thesepatterns of simplicity
werefirst encounteredby an iterative procedurefor obliquesimplicity rotationof corematrices[7],
and,notably, by iterative orthonormalization of the core in threedirections.For instance, whena
4� 3� 2 array is iteratively orthonormalized in two directions, andwhen,uponconvergence,one
additionaltransformation is carriedout to the effect that the first frontal slab is diagonalized (and
hencefully simplified) by its singular vectors, wetypically endupwith atransformedarraywith 18of
the 24 elementszero.Thus transformation to simplicity is anothercontextin which the concept of
multiple orthonormality hasappeared.

Unfortunately, little is known of iterative orthonormalization of three-way arrays. The present
paperattemptsto shedsomelight onconceptualandcomputationalaspectsof transformingthree-way
arraysto multiple orthonormality. In particular,monotonical convergence is proven for iterative
orthonormalization in two directions.In addition,it is shown that,for arraysof acertainorder,double
orthonormality is notpossible.Thebehavior of theprocedureof iterativeorthonormalization for such
casesis examined.

BASIC DEFINITIONS

A P�Q matrix X is said to be columnwise orthonormal when X'X is the identity matrix IQ, and
rowwise orthonormal when XX ' is IP. It is obvious that, when P=Q, these two forms of
orthonormality are incompatible, becausetr(XX ') = tr(X'X). This traceargument no longerapplies
whenwe relax thedefinition of rowwiseorthonormalityto ‘proportionality of XX ' to IP’. However,
evenunderthe relaxeddefinition, double orthonormality for a matrix is not possible when P=Q,
becauseit would imply that X hasboth rankP andrankQ.

For three-wayarrays,(relaxed)orthonormality in more than one direction is less constrained.
DefinetheP�QRmatrixXa = [X1j…jXR] containingR frontal P�Q slicesof theP�Q� R three-
way array X next to each other. Define the Q� PR matrix Xb � �X 0

1j . . . jX 0
R� containing the

transposed frontal slicesof X next to eachother;this matrix versionof X is identical to theB-mode
matricized versionof X [8] up to a permutation of the columns.Let Xc be the C-mode matricized
version of X, defined as the R� PQ matrix with row r obtainedby stringing elements of Xr

columnwiseout into a row vector,r = 1,…,R.
It is notdifficult to seethatarrayscanbeorthonormal in threedirections,in thesensethattheinner

product matricesXaX
0
a, XbX

0
b andXcX

0
c areproportional to anidentity matrix.For instance,whenX

is the 3� 2� 2 arraywith frontal slices

X1 �
1 0
0 a
0 0

24 35 and X2 �
0 0
a 0
0 1

24 35 �1�

with a = 0⋅707, thenX hasstrict A-mode orthonormality because[X1jX2] is rowwiseorthonormal;it
hasrelaxedB-mode orthonormality becauseXbX

0
b is proportional to I2, andit also hasrelaxedC-

modeorthonormalitybecausethe sumsof squaresof X1 andX2 areequalandtr�X 0
1X2� � 0. From

now on, however, we shall ignore the distinction betweenstrict and relaxedorthonormality and
simply say that an array hasorthonormality in any modewhen the inner product matrix for the
elementsof that modeis proportional to an identity matrix.

We shallconsiderthree-way arraysof orderP�Q� R, usuallywith P�Q� R> 1. It is easyto
verify thatanorthogonalrotationin onemodeaffectstheinner products for thatmode, but leavesthe
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innerproducts for theother modesunaffected.For instance,whenX1,…,XR arepostmultiplied by an
orthogonal rotationmatrix T', we havea B-moderotation.This rotationamountsto postmultiplying
Xa by (IR6T'), premultiplying Xb by T andpostmultiplying Xc by (T'6IP) [8]. It is obvious that
T
0
XbX

0
bT maydiffer from XbX

0
b, but theB-moderotationwill affectneitherXaX

0
a (theA-modeinner

productmatrix) nor XcX
0
c (theC-modeinner productmatrix). As a result,triple orthogonality, in the

sensethat the inner product matrix of a modeis a diagonalmatrix, canbe obtained at onceby just
threeorthogonalizing rotations, e.g.by eigenvectorsof the innerproductmatricesfor eachmode.

The straightforward transformationsto multiple orthogonality do not generalize to multiple
orthonormality. This means that, in general, iterative procedures are neededto attain multiple
orthonormality, if it canbeattainedatall. Weshall nowdescribeamethodof iteratively transforming
anarray to A- andB-modeorthonormality, when that is possible.

MONOTONICITY OF ITERATIVE DOUBLE ORTHONORMALIZATI ON

Transformationsto double orthonormalitycannotbeexpressed in closedform. However, aniterative
procedureof alternatelyorthonormalizing theA-mode andtheB-modeappears to converge.In this
sectionthe methodis described anda convergence proof is developed.

Consider thematrix Xa0= [X1j…jXR]. Define theQ� PRmatrix Xb0 with thetransposedversions
of the frontal slicesof Xa0 next to eachother. Iterateasfollows.

Step 1. Orthonormalize the A-mode by taking Xa1� �Xa0X
0
a0�ÿ1=2Xa0. Construct Xb1 by

transposing all frontal slicesof Xa1.
Step 2. Orthonormalize the B-mode by taking Xb2 � �Xb1X

0
b1�ÿ1=2Xb1, and construct the

associated Xa2 by transposing all slices of Xb2. Note that we now have B-mode
orthonormality,but not A-mode orthonormality.

Step 3. Orthonormalize the A-mode by taking Xa3� �Xa2X
0
a2�ÿ1=2Xa2. Compute Xb3 by

transposing all frontal slicesof Xa3.
Step 4. Orthonormalize the B-mode by taking Xb4 � �Xb3X

0
b3�ÿ1=2Xb3, and construct the

associatedXa4 by transposing all frontal slicesof Xb4. Note that we now haveB-mode
orthonormality,but not A-mode orthonormality.

Etc.

It will now beshownthat theproceduremonotonically increasesa certainfunction.First we need
thewell-knownresultthat,for anygivenn� k matrixY of rankn� k, therowwiseorthonormaln� k
matrix Z thatgivesthebestleastsquaresapproximationto Y is obtained asZ = (YY ')71/2Y. ThusZ
minimizes kZ7Yk2 subject to the constraint ZZ ' = In. Hence Z maximizes tr(Z'Y) subject to
ZZ ' = In. This means that Xa1 maximizes tr�X 0

a1Xa0� subject to Xa1X
0
a1� IP. Likewise, Xb2

maximizestr�X 0
b2Xb1� subjectto Xb2X

0
b2 � IQ; Xa3 maximizes tr�X 0

a3Xa2� subject to Xa3X
0
a3� IP;

Xb4 maximizestr�X 0
b4Xb3� subject to Xb4X

0
b4 � IQ; andsoon.

A nextstepin provingmonotonicalconvergenceof theiterativeprocessconsistsof expressingthe
optimality of thetracefunctionsinvolved in termsof traceinequalities. We startwith theoptimality
of Step3. In Step3 we maximizef �Xa3� � tr�X 0

a3Xa2� subject to rowwiseorthonormality for Xa3.
Because Xa1 also has rowwise orthonormality, it cannot outperform Xa3, hence
tr�X 0

a3Xa2� � tr�X 0
a1Xa2�. In Step 4 we maximize g�Xb4� � tr�X 0

b4Xb3� subject to rowwise
orthonormality for Xb4. Because Xb2 also hasrowwise orthonormality, it cannotoutperform Xb4,
hencetr�X 0

b4Xb3� � tr�X 0
b2Xb3�. Likewise, Step 5 yields tr�X 0

a5Xa4� � tr�X 0
a3Xa4�, Step 6 yields

tr�X 0
b6Xb5� � tr�X 0

b4Xb5�, andsoon.
Thefinal ingredientof theproof is theobservation thatStepj of theprocess,j = 1,2,…,generates

matrices Xaj and Xbj which have exactly the same elements, differently arranged. Therefore
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tr�X 0
ajXa�j�1�� � tr�X 0

bjXb�j�1�� for every j. With this equalitywe canwrite theoptimumtracevalues
associated with the successivestepsas

tr�X 0
b2Xb1� � tr�X 0

a2Xa1� after Step2

tr�X 0
a3Xa2� � tr�X 0

b3Xb2� after Step3

tr�X 0
b4Xb3� � tr�X 0

a4Xa3� after Step4

tr�X 0
a5Xa4� � tr�X 0

b5Xb4� after Step5

andsoon. The tracevalueafterStep3 is at leastashigh astr�X 0
a2Xa1�, which is theoptimum trace

valueobtained by Step2; the tracevalueafter Step4 is at leastashigh astr�X 0
b3Xb2�, which is the

optimumtracevalueafterStep3; andsoon.This showsthattheiterative procedureof A- andB-mode
orthonormalization indeedgeneratesa monotonically increasing seriesof tracevalues.

It is importantto seethattheseriesof tracevaluesis boundedabove.Specifically,whenj is odd,the
sumof squaredelementsof Xaj (rowwiseorthonormal) is P, andthesumof squaresof Xa(j�1) is Q,
becausethatmatrix hasthesameelementsasthecolumnwiseorthonormal matrix Xb(j�1). Therefore,
by theSchwarzinequality, we obtaintheupperbound tr�X 0

ajXa�j�1�� � �PQ�1=2. Theexistenceof an
upperboundimpliesthattheiterationsmust convergeto astablevalueof theoptimaltrace.Theupper
boundwill be attainedif andonly if Xaj andXa(j�1) areproportional, which meansthat A- andB-
modeorthonormality would havebeenattained.As we shall seebelow, this is not alwayspossible.

Theiterativeprocessof orthonormalizing theA-modeandtheB-modehasbeendescribedin terms
of a specific,uniquelydefinedtransformation.For instance, B-modeorthonormality is implemented
by premultiplying Xbj by �XbjX

0
bj�ÿ1=2. However, anyotherway of orthonormalizingXbj would also

be permitted. Technically, this means that any further premultiplication of �XbjX
0
bj�ÿ1=2 by an

orthonormalmatrixwouldalso beallowed,because,aswehaveseenearlier,orthogonal rotationsin a
modedo not affect the rowwise inner productsof any othermode, andthey do not affect the inner
product matrix of the samemode when that mode is orthonormal.If we allow such a rotation,
however, we destroythe optimal fit and optimal trace propertieswhich we have usedaboveto
demonstrate convergence. Therefore it is convenient to consider an alternative function, also
optimized by the orthonormalizing transformation, but independent of any further rotation.Sucha
function will now be definedin termsof the singular valuesof the matrix to beorthonormalized.

SupposethatweorthonormalizeamatrixY rowwiseby definingZ = (YY ')71/2Y. Thentheoptimal
trace value involved is tr(Z'Y) = tr(YY ')1/2 = tr(D), where Y = PDQ' is the singular value
decomposition of Y. Clearly,premultiplying thetransformation matrix (YY ')71/2 by anorthonormal
matrixT will giveatracevaluetr(TD) thatdiffersfrom tr(D). However, thesumof singular valuesof
Y is fixed andwill not be affectedby T. Thereforethe sumof singular valuesof the matrix to be
orthonormalizedcanbeevaluatedasa monotonically increasing function of the iterativeprocessof
orthonormalizing the A-mode andthe B-mode.Specifically:

* after Step1, the function valueis the sumof singular valuesof Xa0;
* after Step2, the function valueis the sumof singular valuesof Xb1;
* after Step3, the function valueis the sumof singular valuesof Xa2;

andsoon.Theseriesof function valuesthusobtained is identicalto theoptimal tracevaluesobtained
by the specificorthonormalization of the type Z = (YY ')71/2Y, but it remains unalteredwhenany
othertype of orthonormalizing transformationis used.

Theconvergenceproofaboveshowsthatthealgorithmmustconvergeto astablevaluefor thesum
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of singularvalues.Thismeansthatatsomepointthefunctionvaluecanberegardedashavingreached
convergence. Whenthe function valuehasattainedits upperbound(PQ)1/2, double orthonormality
has indeed been attainedand additional iterations would not affect the elements of the array.
However, thereis no guaranteethat theupperboundwill beattained.Situationswherethis happens
inevitably will be discussed in the next section.

NECESSARY CONDITIONS FORA- AND B-MODE ORTHONORMALIT Y

Supposethattheiterative methodof doubleorthonormalization is appliedto a5� 3� 2 array.Then
the iterationsdo converge in termsof the sumof singular values,but they do not achievedouble
orthonormality. In fact, thesumof singular valuesconvergesto 3⋅864,which falls shortof theupper
bound

�������
PQ
p � �����

15
p

= 3⋅873. In the present section, suchdiscrepancieswill be explained.
Consider an arrayX of orderP�Q� R, with P�Q� R> 1. We shall only concern ourselves

with caseswhere P<QR, becauseA- and B-mode orthonormality is never problematic when
P = QR, andit is impossible when P>QR.

Supposethat the array hasdouble orthonormality. That is, supposewe haveXaX
0
a � �IP and

XbX
0
b � �IQ for certain scalars� and�. Without lossof generality weset� = 1, so� = P/Q. Because

Xa is rowwiseorthonormal, it canbe completedto a square orthonormal matrix. Let Ya be sucha
completing matrix (complement)containingR submatricesY1,…,YR of order(QR7 P)�Q. Then
the matrix

Xa

Ya

� �
� X1 j . . . jXR

Y1 j . . . jYR

� �
is square and orthonormal.This implies that X

0
rXr � Y

0
rYr � IQ; r � 1; . . . ;R. Summing over r

yields X
r

�X 0
rXr � Y

0
rYr� � RIQ �2�

whence,using
P

r�X
0
rXr� � XbX

0
b � P=QIQ, we haveX

r

�Y 0
rYr� � RIQÿ �P=Q�IQ � �Rÿ P=Q�IQ �3�

From (3) it is evidentthat
P

r�Y
0
rYr� is proportional to the identity matrix IQ. This means that the

Q� R(QR7P) supermatrix �Y 0
1j . . . jY 0

R� hasrankQ. Henceit musthaveat least Q columns.From
theseconsiderationswe havethe following necessarycondition for doubleorthonormality.

Result1

For arrayswith P<QR, orthonormality in A- andB-modesimultaneously is not feasiblewhen

R�QRÿ P� < Q �4�
At thispoint it will beinstructive to revisit the5� 3� 2 case.ThematricesY1 andY2 areof order

1� 3, yet �Y 0
1jY

0
2� must haverank 3. This cannotbe,becauseit hasonly two columns. Therefore a

5� 3� 2 arraycannothaveorthonormality in A- andB-modesimultaneously.Incidentally, B- and
C-modeorthonormality for thisarrayis possible,but thatis of noconcernhere. Thesheerfact that(4)
is violated meansthat A-modeorthonormality is incompatible with B-mode orthonormality for a
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5� 3� 2 array.In thesequelweshall saythata5� 3� 2 arrayis AB-unfeasible.Thereasonis that
its complement, the 1� 3� 2 array,is AB-unfeasible.

Theunfeasibility Result 1 canbeextendedby consideringtheQ� PRmatrixXb � �X 0
1j . . . jX 0

R�. It
is readily verified that this matrix resists AB-orthonormality if and only if the original matrix Xa

resists AB-orthonormality. Therefore a P�Q� R array is AB-unfeasible if and only if the
complementary(PR7Q)� P� R array is AB-unfeasible. This yields the following.

Result2

When,for certain valuesof P, Q andR, with P�Q, a P�Q� R arrayis AB-unfeasiblebecauseit
violates (4), then the complementary array, which is of order (PR7Q)� P� R, is also AB-
unfeasible, andvice versa.

Again, an example will be instructive. The 3� 1� 2 array is AB-unfeasible. Therefore,upon
transposing the frontal slices, it is clear that the 1� 3� 2 array is AB-unfeasible. Therefore its
complement,the 5� 3� 2 array,is AB-unfeasible; so its complement, the 7� 5� 2 array,is also
AB-unfeasible;soits complement,the9� 7� 2 array,is also AB-unfeasible;andsoon.It should be
notedthatthelatter two arraysdosatisfy (4). Still, arraysof thissizeareAB-unfeasiblebecausethey
aregenerated,by iterative completion to orthonormality, from a smaller AB-unfeasible array.

The 5� 3� 2 array is a special caseof the arrays with P = QR71, extensively studied in
Reference[5]. All arraysof thisclassviolate(4) if andonly if Q> R, becausewhen(4) is violatedwe
haveR(QR7P) = R(QR7QR� 1) = R<Q.

In order to showthat an arrayof a specificorder is AB-feasible, we canadopttwo approaches:
either we run the iterative methodfor a random array of the desiredorder to convergenceto see
whether or not doubleorthonormality results,or we work our way backto smallerarraysby using
Result2 backwards.For instance,when weneedto determinewhetheror nota9� 6� 2 arrayis AB-
feasible,we notice that it is complementaryto the 6� 3� 2 array,which clearly is AB-feasible.
Therefore the9� 6� 2 array is alsoAB-feasible.A few exampleswith R = 2, where (4) reducesto
2P� 3Q, aregiven in TableI.

For arrayswith P�Q� 3, AB-feasibility requires that P/Q� 8/3; see(4). WhenQ = 3, there is
no violation of (4) becauseP<QR implies that P< 9. WhenQ = 4 andR = 3, the smallestvalueof
P which violates (4) is P = 11. All caseswith smaller P appear to be AB-feasible. In general,

TableI.

P Q R

4 3 2 AB-feasible
5 3 2 violates(4)
6 3 2 AB-feasible(trivial)
6 4 2 AB-feasible
7 4 2 violates(4)
7 5 2 satisfies(4), but is complementaryto a 5� 3� 2 array
8 5 2 violates(4)
9 5 2 violates(4)
9 6 2 AB-feasible(complementaryto a 6� 3� 2 array)
9 7 2 satisfies(4), but is complementaryto a 5� 7� 2 array

10 7 2 satisfies(4), but is complementaryto a 4� 7� 2 array
11 7 2 violates(4)
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AB-unfeasibility is to be expected whenthe ratio of the highestdimension of the array (P) to the
smallestdimension (R) is high.Thisexplainswhy most instancesreportedaboveinvolvearrayswith
R = 2.

So far, we haveexclusively beenconcernedwith AB-feasibility in termsof the dimensionsP, Q
andR of the arrays.However, whenthe arraysarefeasiblein that sense, therestill may be internal
barriersagainst doubleorthonormality. For instance,whenXa is rank-deficient, havinga rank less
thanP, transformations will not be able to restore the rank, so A-mode orthonormality will not be
possible. A more subtle counter-exampleis the following. When

X1 �
1 0 0
0 a 0
0 0 a
0 0 0

2664
3775 and X2 �

0 0 0
0 0 a
0 a 0
1 0 0

2664
3775 �5�

with a =
�������
0�5p

, thenthearrayhasnoexterior barriersagainstAB-feasibility, norarethereproblemsof
rankdeficiency. Still, this arrayresists a transformation to doubleorthonormality. Clearly, thearray
hasA-modeorthonormality, andorthonormalizingtheB-modewouldrescalethetwo unit elementsto
a. ThenextA-modeorthonormalizationwould resetthesevaluesatunity, andwewill bebackwhere
we started. It is temptingto believethat, for this array,the iterativeprocedureis trappedat a local
maximum. However, this explanation is invalid, becausechanging the array by arbitrary initial
transformations is of no avail. We are facing an array which cannot be transformed to AB-
orthonormality eventhough its order is compatible with AB-orthonormality. Fortunately, it canbe
shown that such arraysarise in practice with probability zero. This is becausearraysof order
4� 3� 2 canalmostsurelybe transformed to a simpleform which doesallow AB-orthonormality
[6]. For all practical purposeswe canthereforesaythata 4� 3� 2 arrayis AB-feasible. In thenext
section we examine the iterative double orthonormalization procedure when applied to AB-
unfeasible arrays.

THE ITERATIVE PROCEDURE APPLIED TO UNFEASIBLE ARRAYS

It hasbeenshown abovethatdoubleorthonormality will notarisewhenthearraysareAB-unfeasible.
In thatcasetheupperbound(PQ)1/2 to thesumof singular valuesof thefinal arraywill notbesharp.
For instance, for 5� 3� 2 arraysthe procedurewill converge to anarraywith frontal slices

X1 �

1 0 0
0 1 0
0 0 a
0 0 0
0 0 0

266664
377775 and X2 �

0 0 0
0 0 0
a 0 0
0 1 0
0 0 1

266664
377775 �6�

with a =
�������
0�5p

. ThisarrayhasA-modeorthonormality, but theB-modeinnerproduct matrix is merely
diagonal, with diagonal elements1⋅5, 2 and 1⋅5. Thus the sum of singular values of Xb is
2
�������
1�5p � ���

2
p � 3�864,which falls shortof the upperbound

���������������3� 5�p
= 3⋅873.The discrepancyof

thesevalueswill now beexplainedin generalterms.
Specifically, we shall now describea sharper upperboundthan(PQ)1/2 for AB-unfeasiblecases

which satisfy (4). Let

Q> R�QRÿ P� �7�
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SupposethatXa = [X1j…jXR] hasorthonormality for theA-mode,but merelyorthogonality for theB-
mode,which means that

P
r X

0
rXr is a diagonalmatrix � not proportional to IQ. Constructthe

(QR7P)�QRmatrix Ya = [Y1j…jYR] astheonethatcompletesXa to asquareorthonormalmatrix.
Then the Q� R(QR7P) matrix Yb � �Y 0

1j . . . jY 0
R� has (almost surely) rank R(QR7P)<Q and

satisfiesYbY
0
b � RIQÿ �. It follows thatRIQ7� hasQ7R(QR7P) diagonalelementszero,hence

� hasQ7R(QR7P) diagonalelementsequalto R. Becausethesumof all diagonalelementsof � is
P, the other QR27PR= R(QR7P) diagonal elements sum to P7R(Q7QR2�PR) =
(R271)(QR7P). Because the square roots of the diagonal elements are the singular values that
are monotonically increased, their sum hasto be at a maximum when the iterative procedure has
attainedits maximumvalue.It is well knownfrom theSchwarzinequality thatthesumof asetof non-
negative numberswith a fixed sumof squaresis at a maximum when these numbersareall equal,
whichmeansthattheyareall [(R271)/R]1/2. Therefore thesumof singular valuesof Xb (thetraceof
�1/2) is boundedaboveby

�Qÿ R�QRÿ P��R1=2 � �QR2ÿ PR���R2ÿ 1�=R�1=2 �8�

This upperboundcan be usedto verify convergence in termsof the function value when double
orthonormalization is appliedto arraysthat violate (4).

It should be noted that the upperbound(8) equals
�������
PQ
p

whenQ = QR27PR. For the 5� 3� 2
array,which satisfies(7), we find the upperbound

���
2
p � 2

�������
1�5p � 3�864, which is the very value

reported above.This showsthat the iterative processhas indeed attainedthe maximum value.
Likewise,for the 7� 4� 2 arraythe upperbound

�������
PQ
p � �����

28
p

= 5⋅292cannotbe attained,but (8)
yields 2

���
2
p � 2

�������
1�5p � 5�278,which is indeedthe valueattainedin practice.

It is importantto notethatthemaximumreportedin (8) exclusively appliesto caseswhichareAB-
unfeasible on account of Result1. Findingthemaximumfor complementarycases,which owetheir
AB-unfeasibility to Result 2, is far morecomplicated.

The monotonicity of the iterative procedure, in combinationwith the boundednessof the sumof
singular values,still doesnot imply that the proceduremust alwaysconverge to its upperbound.
However, practical experience invariably revealsthat the upperbound is indeedattained.

ORTHONORMALITY IN THREE DIRECTIONS,AND AN EXAMPLE

Sofar, we haveexclusively dealtwith the clarification of iterativeA- andB-modeorthonormaliza-
tion. However, it is obvious that the process can be generalized to also include C-mode
orthonormalization, by insertinganotherorthonormalizing stepinto theprocess.Unfortunately, this
processis much lessunderstoodthan that of double orthonormalization.There is no monotonical
increaseof thesumof singular valuesof thearray,norof anyotherobviousfunction thatis improved
by orthonormalization. Nevertheless, practical experience has consistently revealed that such a
processdoesconverge to triple orthonormality whenthe arrayis ABC-feasible. In fact, for certain
arrays,iterativetransformationto AB-orthonormality alreadytendsto giveC-modeorthonormality as
a bonus.The 8� 3� 3 array is a casein point. However, the preciseconditions for this to occur
remainanothermatterof further research.

To demonstratethe practical utilit y of iterativeorthonormalization,we presentan examplefrom
three-way principal componentanalysis. The dataare taken from Reference[9] and consistof a
numberof pollution measuresfor the Meaudret river taken at different locations and at different
times.A Tucker-3 componentanalysis,with threecomponentsfor locations,threefor themeasuresof
pollution andtwo for thetimeof year, results in thecorematrix,consisting of two 3� 3 slices(Table
II). This array can be transformed to triple orthonormality by iterative transformations. A final
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orthogonal rotation,basedon a singular value decomposition of thefirst sliceof thearray,generates
the transformed coreasTable III. It is clear that the array hastriple orthogonality in everymode.
More importantly, the array displays an amazing degree of simplicity, which greatly reduces the
cognitive complexity of the core. This demonstrates the power of iterative orthonormalization in
simplifying the corearray.

DISCUSSION

In practice, the iterative algorithm presented in this paperinvariably seems to convergeto its upper
bound,which meansthatdoubleorthonormality is obtainedafterconvergence when theorderof the
array is feasible. By implication, the maximum of the sumof singular valuesis relatedto double
orthonormality. A refereeraisedthe intriguing question of how intermediate valuesof the sumof
singular valuesmight berelatedto measuresof (departurefrom) double orthonormality. Thepresent
authorshavenot founda simple answer. However, it should be obvious that the singular valuesdo
dependdirectly on departurefrom single orthonormality when orthonormality holds for the other
mode.

Specifically, supposewe implementStep1 of the algorithm, which yields Xa1 of orderP�QR,
with sumof squaresP. Step1 alsoprescribesthatwe permutethearrayto getXb1 of orderQ� PR,
still with sum of squares P. Now the distance between Xb1 and its nearestrowwise orthonormal
matrix depends on its singular valuesonly. That is, whenXb1 = PDQ' is the SVD of Xb1, then its
nearestrowwiseorthonormalmatrix is PQ', andthesumof squaresof PDQ'7PQ' is P�Q72tr(D).
Because the algorithm monotonically increasesthe sumof these singular values,it bringsthe array
closerto orthonormality for themodewhich is going to beorthonormalizedin thenextstep.In this
sense,intermediate valuesof the sumof singularvaluesarealsorelatedto double orthonormality.

It should beclearthatthispaperhasbeenmeant to openthetopicof multipleorthonormality. Much
work remainsto be donebefore the topic canbeclosed.
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