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SUMMARY

This paper is concerned with the question to what extent the concept of rowwise or columnwise orthonormality
can be generalized to three-way arrays. Whereas transforming a three-way array to multiple orthogonality is
immediate, transforming it to multiple orthonormality is far from straightforward. The present paper offers an
iterative algorithm for such transformations, and gives a proof of monotonical convergence when only two
modes are orthonormalized. Also, it is shown that a variety of three-way arrays do not permit double
orthonormalization. This is due to the order of the arrays, and holds regardless of the particular elements of the
array. Studying three-way orthonormality has proven useful in exploring the possibilities for simplifying the
core, to guide the search for equivalent direct transformations to simplicity; see Murakabhi{Psychometrika
1998;63: 255—-261) as an example. Also, it appears in various contexts of the mathematical study of three-way
analysis. Copyrigh] 2000 John Wiley & Sons, Ltd.
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INTRODUCTION

Transforming a matrix to rowwise or columnwise orthonormality is an elementary topic in matrix
analysis. Extensions to three-way arrays, where three-way orthonormality is defined in terms of
orthonormality of the matrices containing all horizontal slices and/or all lateral slices and/or all
vertical slices of the array, do not seem to have been considered from a systematic point of view.
However, the concept of three-way orthonormality does occasionally arise in different areas of three-
way analysis. First of all, a context in which multiple orthonormality has appeared is that of
computational efficiency. Kiers [1] has shown how to implement a CANDECOMP/PARAFAC
analysis [2,3] for large data sets with multicollinearity. One particular step in his method relies on
approximate three-way orthonormality of a three-way array.

Another example can be encountered in Tucker’s three-way principal component analysis (3PCA)
[4]. Application of this method has always been hampered by the lack of simplicity of the so-called
core array, which attributes weights to the joint impact of any triple of components from three
different modes. Recently, advances have been made in efforts to transform the core array in 3PCA to
have a large number of zero weights, thus attaining a solution for 3PCA that possesses largely the
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276 J.M. F. TEN BERGEET AL.

sametype of simplicity thatis charactestic of CANDECOMPPARAFAC. Murakamietal. [5] and
TenBerge andKiers [6] haveofferedexplicit transbrmationsto simplicity for corearraysof order
P x Q x RwhenP=QR — 1 andwhen P > Q andR = 2 respectively. Thesepatterrs of simplicity
werefirst encouneredby aniterative procedurefor obliquesimplicity rotationof core matrices[7],
and, notably, by iterative orthonormalkation of the corein threedirections.For instan@, whena
4 x 3 x 2 arrayis iteratively orthonormalizdin two directiors, andwhen,uponconvegence,one
additionaltransformation is carriedout to the effect that the first frontal slabis diagonalizd (and
hencefully simplified) by its singula vectors wetypically endupwith atransfornmedarraywith 18 of
the 24 elementszero. Thus transformation to simplicity is anothercontextin which the concept of
multiple orthonamality hasappeaed.

Unfortunatly, little is known of iterative orthonomalization of threeway arrays. The present
paperattempsto shedsomelight onconcetualandconmputationalaspect®f transbrmingthree-way
arraysto multiple orthonomality. In particular, mondonical convergene is proven for iterative
orthonomalizafon in two directions.In addition,it is shown that,for arraysof a certainorder,doubke
orthonomality is notpossble. The behavor of the procadureof iterativeorthonomalizaion for such
caseds examired.

BASIC DEFINITIONS

A P x Q matrix X is saidto be columnwise orthonomal when X'X is the idertity matrix |5, and
rowwise orthonomal when XX’ is Ip. It is obvious that, when P#Q, thesetwo forms of
orthonomality areincompdible, becausdr(XX') = tr(X'X). This traceargumen no longer applies
whenwe relax the definttion of rowwiseorthonormalityto ‘proportiorality of XX’ to Ip". Howeve,
evenunderthe relaxeddefinition, double orthonormality for a matrix is not possibé when P#Q,
becawseit would imply that X hasbothrank P andrank Q.

For three-wayarrays, (relaxed) orthonomality in more than one direction is less constraned.
Definethe P x QRmatrix X, =[X4]...|Xg] containingR frontal P x Q slicesof theP x Q x Rthree-
way array X next to eachothe. Define the Q x PR matrix X, = [X4]...|XR] contairing the
transposé frontal slicesof X nextto eachother;this matrix versionof X is idertical to the B-mode
matricized versionof X [8] up to a permuation of the columns.Let X, be the C-made matricized
version of X, definedas the R x PQ matrix with row r obtainedby stinging elements of X,
columnwseoutinto arow vector,r =1,...R.

It is notdiffi cult to seethatarrayscanbe orthonomalin threedirections,in thesensehattheinner
produd matricesX,X 5, XpX}, andX X c arepropotional to anidertity matrix. For instancewhenX
is the 3 x 2 x 2 arraywith frontal slices

10 00
X1=10 a and X,=|a 0 (1)
00 0 1

with a= 00707, thenX hasstrict A-mode orthonormalty becawse[X1|X,] is rowwiseorthonormal;it
hasrelaxedB-mode orthonomality becaise XX}, is proportiona to |, andit also hasrelaxedC-
modeorthonormality becase the sumsof squareof X, and X, are equalandtr(x’lxz) = 0. From
now on, howe\er, we shall ignore the distinction betweenstrict and relaxed orthonomality and
simply say that an array has orthonormalty in any mode when the inner produd¢ matrix for the
elements of thatmodeis propotional to anidentity matrix.

We shallconsiderthreeway arraysof orderP x Q x R, usuallywith P> Q > R > 1.t is easyto
verify thatanorthogonalrotationin onemodeaffectstheinner produds for thatmode butleavesthe
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TRANSFORMINGARRAYS TO MULTIPLE ORTHONORMALITY 277

innerproduds for theothe modesunaffectedForinstan@, whenX4,...,Xg arepostmultplied by an
orthogonarotation matrix T', we havea B-moderotation. This rotationamauntsto postmultiplying
Xa by (Ir®T), premutiplying Xy by T andpostmultiplying X. by (T'®Ip) [8]. It is obvious that
T'XpX, T maydiffer from X, X, butthe B-moderotationwill affectneitherX,X, (the A-modeinner
productmatrix) nor X X (the C-madeinner productmatrix). As aresult,triple orthogonalty, in the
sensehatthe inner produd matrix of a modeis a diagonalmatrix, canbe obtainal at onceby just
threeorthogonalking rotations e.g. by eigenvetors of the inner productmatricesfor eachmode

The straghtforwad transformationsto multiple orthogondity do not generake to multiple
orthonormdity. This means that, in geneal, iterative procedurs are neededto attain multiple
orthonomality, if it canbeattanedatall. We shal now descrike a methodof iteratively transforning
anarray to A- and B-mode orthonormalty, when thatis possibe.

MONOTONICITY OF ITERATIVE DOUBLE ORTHONORMALIZATI ON

Transfomationsto doule orthonormalitycannotbe expressd in closedform. Howeve, aniterative
procedureof altemately orthonomalizing the A-mode andthe B-mode appeas to convege. In this
sectionthe methodis descriled anda convergene proof is developed

Consicerthematrix X40=[X4]...|Xg]. Definethe Q x PR matrix X,o with thetransposdversons
of the frontal slicesof X, nextto eachothea. Iterateasfollows.

Step 1. Orthorormaize the A-mode by taking Xa; = (xaox;o)‘l/zxao. Constret Xy, by
transpomg all frontal slicesof X;.

Step 2. Orthorormalze the B-mode by taking Xy, = (Xblx/bl)il/szl, and constuct the
asso@ted X, by transposg all slices of X,,. Note that we now have B-mode
orthonormality, but not A-mode orthonamality.

Step 3. Orthorormalize the A-mode by taking Xas = (Xa2Xa2) *Xa2. Compute Xps by
transpoing all frontal slicesof X3

Step 4. Orthorormaize the B-mode by taking Xps = (Xbe,X/bs)*l/Zng, and constuct the
asso@ted X 44 by transpomg all frontal slicesof Xy, Note thatwe now haveB-mode
orthonormality, but not A-mode orthonamality.

Etc.

It will now be shownthatthe proceduremondonically increagsa certainfunction. First we need
thewell-knownresultthat,for anygivenn x kmatrix Y of rankn < k, therowwiseorthonomaln x k
matrix Z thatgivesthe bestleastsquaesapproimationto Y is obtainel asz = (YY') ~Y2Y. Thusz
minimizes ||Z—Y||? subjct to the constrant ZZ' =1, HenceZ maxmizes tr(Z'Y) subgct to
ZZ'=1,. This meansthat X,; maxmizes tr(Xa1Xao) subjectto XaiXa = Ip. Likewise, Xy,
maximizestr(Xp2Xp1) Subjectto XpaXp2 = | q; Xaz Maximizestr(X23Xaz) SUbpCtto XasXas = Ip;
Xpa maximizestr(XpaXp3) subjctto XpsXps = lo; andsoon.

A nextstepin proving mondonical convegenceof theiterativeprocesconsistof expressingthe
optimality of thetracefunctionsinvolvedin termsof traceinequaities. We startwith the optimality
of Step3. In Step3 we maximizef (X,3) = tr(x'agxaz) subpctto rowwise orthonomality for X4
Becaug X,; alo has rowwise orthonomality, it cannot outpeform X,s hence
tr(XasXaz2) > tr(XaXa2). In Step 4 we maximize g(Xps) = tr(XpsXps) subjct to rowwise
orthonomality for X4 Becaug Xy, also hasrowwise orthonomality, it cannotoutpaform Xpg,
hencetr(XpaXp3) > tr(Xp2Xp3). Likewise, Step 5 yields tr(XasXas) > tr(XasXas), Step 6 yields
tr(XpeXps) > tr(XpaXps), andsoon.

Thefinal ingredient of the proof is the observaibn that Stepj of the processj =1,2,...,generates
matrices X5 and Xy which have exacly the same elements, differenty arranged Therdore
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tr(X’a,- Xaj+1)) = tr(X'bj Xpi+1)) for every j. With this equalitywe canwrite the optimumtracevalues
associted with the succasivestepsas

tr(XpaXp1) = tr(XaoXa1) after Step2
tr(X agxaz) tr(X basz) after Step3
tr(XpaXpa) = tr(XasXas) after Step4
tr(X'asXas) = tr(XpsXps) after Step5

andsoon. Thetracevalueafter Step3 is at leastashigh astr(X'aZXal), which is the optimum trace
value obtainal by Step2; the tracevalue after Step4 is at leastashigh astr(X/bsxbz), which is the
optimumtracevalueafter Step3; andsoon. This showsthattheiterative proceduref A- andB-mode
orthonomalizaion indeedgeneraésa mondonically increasng seriesof tracevalues.

It isimportantto seethattheseriesof tracevaluesis boundedabove Specifically, whenj is odd,the
sumof squaed elemants of X (rowwise orthonamal) is P, andthe sumof squaesof X1 is Q,
becawsethatmatrix hasthe sameelementsasthe columnwiseorthonomal matrix Xy 1). Therefore,
by the Schwarzinequalty, we obtainthe upperbound tr(X iXaj+1)) < (PQ)l/2 Theexistenceof an
upperboundimpliesthattheiterationsmug convegeto astablevalue of theoptimaltrace. Theupper
boundwill be attainedif andonly if X5 andX,q, 1) are proportiona, which meansthat A- and B-
modeorthonomality would havebeenattained.As we shall seebelow, this is not alwayspossible.

Theiterativeprocesof orthonomalizing the A-mode andthe B-mode hasbeendescibedin terms
of a specific, uniquelydefinedtransformation Forinstane, B-mode orthonomality is implemented
by premultiplying Xy; by (xb,xb,) 2 Howeve, any otherway of orthomrmallzmgXbJ Would also
be permited. Techntally, this means that any further premultipication of (XbJXbJ) by an
orthonomal matrix would also beallowed,becase,aswe haveseerearlier,orthogonarotationsin a
modedo not affect the rowwise inner productsof any othermode andthey do not affect the inner
produ¢ matrix of the samemode when that modeis orthonormal.If we allow sucha rotation,
however we destroythe optimal fit and optimal trace propertieswhich we have usedaboveto
demonsgtate convegence Therefore it is convenent to consder an alternative function, also
optimized by the orthonomalizing transformation, but independem of any further rotation. Sucha
function will now be definedin termsof the singula valuesof the matrix to be orthonormalkzed.

Supposehatwe orthonormalzeamatrix Y rowwiseby definingZ = (YY) ~Y2Y. Thentheoptimal
trace value involved is tr(Z'Y) =tr(YY")¥2=tr(D), where Y =PDQ’ is the singular value
decompotiion of Y. Clearly, premutiplying thetransbrmaton matrix (YY) ~*/? by anorthonormal
matrix T will give atracevaluetr(TD) thatdiffersfrom tr(D). Howeve, thesumof singula valuesof
Y is fixed andwill not be affectedby T. Thereforethe sum of singula valuesof the matrix to be
orthonomalizedcanbe evaluatecasa monotongally increasng function of theiterative processof
orthonomalizing the A-mode andthe B-mode. Specfically:

e after Step1l, the function valueis the sumof singular valuesof X 5,
e after Step2, the function valueis the sumof singular valuesof Xyq;
e after Step3, the function valueis the sumof singular valuesof X ,;

andsoon. Theseriesof function valuesthusobtainel is identicalto the optimal tracevaluesobtained
by the specificorthonormalization of the type Z = (YY’) ~*2Y, but it remahs unalteredwhenany
othertype of orthonormalring transbrmationis used.

Theconvegenceproof aboveshowsthatthe algorithmmustconvergeo a stablevaluefor thesum
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of singularvalues.This meansthatat sonme pointthefunctionvaluecanberegadedashavingreached
convergene. Whenthe function value hasattainedits upperbound(PQ)*? double orthonomality
has indeed been attained and addtional iterationswould not affect the elements of the array.
Howevae, thereis no guaranteethatthe upperboundwill be attained.Situationswherethis happens
inevitably will be discussd in the nextsectio.

NECESSARY CONDITIONS FORA- AND B-MODE ORTHONORMALITY

Supposéghattheiterative methodof doubleorthonomalizaion is appliedto a5 x 3 x 2 array.Then
the iterationsdo convepge in termsof the sum of singular values,but they do not achievedouble
orthonomality. In fact, the sumof singula valuesconvegesto 3[864,which falls shortof the upper
bound+/PQ = /15 = 31873. In the preent sectim, suchdiscre@ncieswill be explaired.

Consicer anarray X of orderP x Q x R, with P> Q > R > 1. We shal only concen oursdves
with caseswhere P < QR, becauseA- and B-mode orthonomality is never problenmatic when
P =QR, andit is impossibe when P > QR.

Supposethat the array has doubke orthonormalty. That is, supposewe have XXz = Alp and
XpXp = pl o for certan scalas A andu. Without lossof generaty we set) = 1, son = P/Q. Because
Xa Is rowwise orthonomal, it canbe completedto a squae orthonomal matrix. Let Y, be sucha
complding matrix (compkement)containing R submatr¢esY 4,...,Y g of order(QR — P) x Q. Then

the matrix
{xa] _ [xl...|xR}
Ya Yi|...|YR
is squae and orthonormal. This implies that XX + YL Y, = lg,r=1,...,R. Summng overr
yields

D (XX + YY) =Rlg (2)

r

whence using Y, (X;X;) = XpX» = P/Qlq, we have

> (YiYr) =Rlg - (P/Q)lg = (R-P/Q)lq 3)

r

From (3) it is evidentthat Zr(Y}Yr) is propotional to the idertity matrix |o. This means thatthe
Q x R(QR—P) supermdrix [Y1|...|Yr] hasrank Q. Henceit musthaveat least Q columns.From
theseconsiderabns we havethe following necesary condtion for doubleorthonomality.

Resultl

For arrayswith P < QR, orthonormaity in A- and B-mode simultaneousy is not feasiblewhen

R(QR-P) <Q (4)

At thispoint it will beinstructiveto revisitthe5 x 3 x 2 caseThematrices Y, andY, areof order
1 x 3, yet[Y;|Y,] mug haverank 3. This cannotbe, becausét hasonly two columns Therédore a
5 x 3 x 2 arraycannothaveorthonormalty in A- andB-modesimultaneouslyIncidentally, B- and
C-modeorthonormalty for this arrayis possble, butthatis of noconcerrhere Thesheeffactthat(4)
is violated meansthat A-mode orthonomality is incompdible with B-mode orthonormalty for a
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5 x 3 x 2 array.In thesequelve shal saythata5 x 3 x 2 arrayis AB-unfeasible. Thereasoris that
its complemen, the 1 x 3 x 2 array,is AB-unfeasibe.

Theunfeasibiliy Resut 1 canbeextendedy consileringtheQ x PRmatrixXp = [X1| ... |XR]. It
is readily verified that this matrix resiss AB-orthonormaity if andonly if the original matrix X,
resists AB-orthonormaity. Therdore a P x Q x R array is AB-unfeasilbe if and only if the
complementary(PR— Q) x P x R array is AB-unfeasilte. This yields the following.

Result2

When,for certan valuesof P, Q andR, with P > Q, aP x Q x R arrayis AB-unfeasible becaseit
violates (4), then the complanentary array, which is of order (PR—Q) x P x R, is also AB-
unfeasble, andvice vers.

Again, an exanple will be instructive. The 3 x 1 x 2 array is AB-unfeasible. Therefore,upon
transpoing the frontal slices, it is clearthat the 1 x 3 x 2 array is AB-unfeasilte. Therdore its
complement,the 5 x 3 x 2 array,is AB-unfessible; soits complemen, the 7 x 5 x 2 array, is also
AB-unfeasible;soits conplementthe9 x 7 x 2 array,is also AB-unfeasible;andsoon. It shoul be
notedthatthe latter two arraysdo saisfy (4). Still, arraysof this sizeareAB-unfeasible becasethey
aregeneratd, by iterative completionto orthonormalty, from a smdler AB-unfeasille array.

The 5x 3 x 2 array is a special caseof the arrayswith P=QR—1, extersively studiedin
Referencd5]. All arraysof this classviolate (4) if andonly if Q > R, becasewhen(4) is violatedwe
haveR(QR—P) =R(QR—QR+ 1)=R < Q.

In orderto showthat an array of a specificorderis AB-feasibk, we canadopttwo approachs:
eitherwe run the iterative methodfor a randan array of the desiredorderto convegenceto see
whethe or not doubleorthonomality results,or we work our way backto smallerarraysby using
Result2 backwads.Forinstane, when we needto deternine whetheror nota9 x 6 x 2 arrayis AB-
feasible,we notice that it is complementaryto the 6 x 3 x 2 array, which clearly is AB-feasible.
Therdorethe9 x 6 x 2 array is alsoAB-feasible A few exampeswith R = 2, where (4) reduesto
2P > 3Q, aregivenin Tablel.

For arrayswith P > Q > 3, AB-feasibility requires that P/Q < 8/3; see(4). WhenQ = 3, there is
no violation of (4) becaseP<QR impliesthatP < 9. WhenQ =4 andR = 3, the smallestvalue of
P which violates (4) is P=11. All caseswith smaller P appea to be AB-feadgble. In geneal,

Tablel.

o

AB-feasible

violates(4)

AB-feasible(trivial)

AB-feasible

violates(4)

satisfieq4), butis complementaryo a5 x 3 x 2 array
violates(4)

violates(4)

AB-feasible(complementango a6 x 3 x 2 array)
satisfieg4), butis complementaryo a5 x 7 x 2 array
satisfieg(4), butis complementaryo a4 x 7 x 2 array
violates(4)

POOWOWOWON~NOOO U A
N~N~Nouuoaah~phwww| O
NNNNNNNDNDNDNDDNDN pu)

[l
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AB-unfeasibility is to be expeded whenthe ratio of the highestdimenson of the array (P) to the
smallestdimenson (R) is high. This explairs why mog instanceseportedaboveinvolve arrayswith
R=2.

Sofar, we have exclusively beenconcenedwith AB-feasbility in termsof the dimensonsP, Q
andR of the arrays.Howeve, whenthe arraysarefeasiblein that sensetherestill may beinterral
barriersaganst double orthonomality. For instance when X, is rank-defiéent, havinga rank less
than P, transbrmaions will not be ableto restoe the rank, so A-mode orthanormality will not be
possibe. A more subte counterexampleis the following. When

Xy = (5)

o OO

00
00
0 a
10

(o NeNeN
(ool e
oo o

with a=v/0-5, thenthearrayhasno exteior barriersagainstAB-feasbility, norarethereproblens of
rank deficiency Still, this arrayresiss a transformation to double orthonomality. Cleaty, the array
hasA-mode orthonormalty, andorthonormalkzing the B-modewould rescalehetwo unit elemantsto
a. ThenextA-mode orthonomalizationwould resetthesevaluesat unity, andwe will bebackwhere
we stated. It is temptingto believethat, for this array,the iterative procedures trappedat a locd
maximum Howevae, this explanaion is invalid, becausechanging the array by arbitrary initial
transformations is of no avail. We are facing an array which cannotbe transbrmed to AB-
orthonomality eventhough its orderis compaible with AB-orthonormaity. Fortunatly, it canbe
shown that such arraysarise in pradice with probability zera This is becausearrays of order
4 x 3 x 2 canalmostsurelybe transforned to a simple form which doesallow AB-orthonormality
[6]. For all practical purpogswe canthereforesaythata4 x 3 x 2 arrayis AB-feagble. In the next
section we examire the iteraive double orthonomalization procadure when appled to AB-
unfeasble arrays.

THE ITERATIVE PROCBOURE APPLIED TO UNFEASIBLE ARRAYS

It hasbeenshown abovethatdoubk orthonormalty will notarisewhenthearraysareAB-unfeasilie.
In thatcasethe upperbound(PQ)*? to the sumof singular valuesof thefinal arraywill notbesharp.
For instane, for 5 x 3 x 2 arraysthe procedurewill convegeto anarraywith frontal slices

100 000
010 000
X;=|0 0 a| and X,=|a 0 0 (6)
000 010
000 001

with a = 1/0-5. ThisarrayhasA-modeorthonomality, butthe B-modeinnerprodud matrixis merely
diagonaJ with diagonal elements13, 2 and 183. Thus the sum of singular values of X, is
2V/1.5 + /2 = 3-864, which falls shortof the upperbound /(3 x 5) = 3873. The disaepancyof
thesevalueswill now be explainedin generalterms.

Specificaly, we shall now describea shaper upperboundthan (PQ)Y2 for AB-unfeasiblecases
which satsfy (4). Let

Q> R(QR-P) (7)
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SupposéhatX, = [X4]...|Xg] hasorthonormalty for the A-mode, but merelyorthogondity for the B-

mode, which means that 3, X X; is a diagonalmatrix A not proportion4 to lq. Constructthe
(QR—P) x QRmatrixYa=[Y4]...|YRr] astheonethatcomplegesX, to a squareorthonomal matrix.

Then the Q x R(QR—P) matrix Y, = [Y'1|...|YR] has (almest surely) rank R(QR—P)<Q and
satisfis YY), = RI o — A. It follows thatRI o — A hasQ—R(QR— P) diagonalelementsero,hence
A hasQ— R(QR—P) diagonalelemantsequalto R. Becausethe sumof all diagonalelementsf A is

P, the other QRP—PR=R(QR—P) diagnal elements sum to P—R(Q—QR’+PR)=

(R*—1)(QR—P). Becaus the squae roots of the diagonal elemants are the singular values that
are mondonically increagd, their sumhasto be at a maximum when the iterative procedure has
attainedts maximumyvalue.lt is well knownfrom the Schwarznequality thatthe sumof asetof non-
negative numbkerswith a fixed sumof squareds at a maxmum when thee numtersareall equal,
which meanghattheyareall [(R?>— 1)/R]*2. Therefoe the sumof singular valuesof Xy, (thetraceof

AY?) is boundedaboveby

[Q — R(QR— P)|RY2 + (QR? — PR)[(R? - 1)/R]"/? ()

This upperboundcan be usedto verify convergene in termsof the functon value when double
orthonomalizaion is appliedto arraysthatviolate (4).

It shoutl be noted that the upperbound(8) equals,/PQ whenQ = QRP—PR. Forthe 5 x 3 x 2
array, which saisfies (7), we find the upperbound v/2 + 2y/1.5 = 3.864, which is the very value
reportal above. This showsthat the iterative processhas indeed attainedthe maxmum value.
Likewise,for the 7 x 4 x 2 arraythe upperbound,/PQ = /28 = 51292 cannotbe attaned, but (8)
yields 2v/2 + 21/1-5 = 5.278,which is indeedthe value attainedin pradice.

It isimportantto notethatthe maximumreportedn (8) exclusivey appiesto casesvhich are AB-
unfeasble on account of Resultl. Findingthe maximumfor complementarycaseswhich owetheir
AB-unfeasibility to Result 2, is far more comgicated.

The mondonicity of the iterative procedurein combinationwith the boundediessof the sumof
singula values,still doesnot imply that the proceduremust always convege to its upperbound.
Howeve, pradical experierte invariably revealsthat the upperbourd is indeed attaned.

ORTHONORMALITY IN THREEDIRECTIONS,AND AN EXAMPLE

Sofar, we haveexclusively dealtwith the clarificaion of iterative A- andB-modeorthonormalkza-
tion. Howeve, it is obvious that the processcan be genealized to also include C-made
orthonomalizafon, by insertinganotherorthonomalizing stepinto the processUnfortunatly, this
processs much lessunderstoodthan that of doubk orthonormalkation. There is no mondonical
increa® of thesumof singula valuesof thearray,nor of anyotherobvious function thatis improved
by orthonormalzation. Nevertheless pradical experiece has consisently revealed that such a
processdoesconvege to triple orthonomality whenthe arrayis ABC-feasible In fact, for certain
arraysjterativetransfornationto AB-orthonornality alreadytendsto give C-modeorthonomality as
a bonus.The 8 x 3 x 3 arrayis a casein point. Howeve, the precisecondiions for this to occur
remainanoher matterof furtherreserch.

To denonstratethe pradical utility of iterative orthonomalization, we presentan examplefrom
threeway principal componentanalyss. The dataare takenfrom Reference[9] and consistof a
numberof pollution measuresfor the Meaudret river taken at different locaions and at different
times.A Tucker3 componentanalyss, with threecompaentsfor locations threefor the measuresof
pollution andtwo for thetime of year, resuts in the corematrix, consising of two 3 x 3 slices(Table
I). This array can be transbrmedto triple orthonomality by iterative transbrmations A final
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Tablell.

2307 —-00151 0031 | —o0065 —0308 —0R07
o6l 0038 —0[496 0318 0421 0301
0034 00376 0715 | —0047 —0[006 0047

Tablelll.

0817 0000 0000 000 0000 0000
0000 0r208 0000 0000 0000 —0mz07
0000 0000 0[208 0000 0zo7 0000

orthogonérotation,basedon a singular value decompogion of thefirst slice of the array, generags
the transformed core as Tablellll. It is clearthat the array hastriple orthogorality in every mode.
More importantly, the array displays an amaing degree of simplicity, which grealy reduesthe
cognitive complexity of the core This demonstrags the power of iterative orthonomalization in
simplifying the corearray.

DISCUSSION

In pradice, the iterative algarithm presentdin this paperinvariably seens to convergeto its upper
bound,which meanghatdoubleorthonormalty is obtainedafter convergene when the orderof the
array is feasble. By implication, the maximum of the sum of singuar valuesis relatedto double
orthonomality. A refereeraisedthe intriguing queston of how intermedate valuesof the sum of
singula valuesmight berelatedto measuresof (departirefrom) doubke orthonomality. The present
authorshavenot found a simple ansver. Howeve, it shoutl be obvious thatthe singular valuesdo
dependdirectly on departurefrom single orthonomality when orthonormalty holdsfor the other
mode.

Specificaly, supposene implementStep1 of the algorithm, which yields X,, of orderP x QR
with sumof squared’. Stepl alsoprescribeghatwe permutethe arrayto getXy; of orderQ x PR,
still with sum of squaes P. Now the distan® betwe@& X,; andits nearestrowwise orthonamal
matrix depend on its singula valuesonly. That is, when X, =PDQ'’ is the SVD of Xy, thenits
nearestowwise orthonormalmatrix is PQ’, andthe sumof square®f PDQ' — PQ' is P+Q— 2tr(D).
Becaus the algorithm mondonically increagsthe sumof these singular values, it bringsthe array
closerto orthonomality for the modewhich is goingto be orthonomalizedin the next step.In this
sensejntermedate valuesof the sumof singularvaluesarealsorelatedto doublke orthonormalty.

It shoul beclearthatthis papethasbeenmeant to openthetopic of multiple orthonomality. Much
work remainsto be donebefore the topic canbe closed.
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