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Abstract

A peculiar property of three-way arrays is that the rank they typically have does not nec-
essarily coincide with the maximum possible rank, given their order. Typical tensorial rank
has much been studied over algebraically closed fields. However, very few results have been
found pertaining to the typical rank of three-way arrays over the real field. These results refer
to arrays sampled randomly from continuous distributions. Arrays that consist of symmetric
slices do not fit into this sampling scheme. The present paper offers typical rank results (over
the real field) for arrays, containing symmetric slices of order 2 × 2 and 3 × 3. Symmetric
arrays often appear to have lower typical ranks than their asymmetric counterparts. This paper
also examines whether or not the rank of a symmetric array coincides with the smallest number
of dimensions that allow a perfect fit of INDSCAL. For all cases considered, this is indeed true.
Thus, a full INDSCAL solution may require fewer dimensions for a symmetric array than a full
CP decomposition applied to an asymmetric array of the same size. The reverse situation does
not seem to arise. Next, we examine in which cases CP solutions inevitably are INDSCAL
solutions. Finally, the rank-reducing impact of double standardizing the slices is discussed.
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The rank of a matrix X is defined as the smallest number of rank-one matrices
(outer products of two vectors) that generate X as their sum. Equivalently, the rank of
X is the smallest number of components that give a perfect fit in Principal Component
Analysis. That is, when X can be decomposed as X = AB′, for matrices A and B with
R columns, and when no such decomposition exists with less than R columns, the
rank of X is R.

Similarly, the rank of a three-way array (over the real field) is defined as the small-
est number of (real valued) rank-one three-way arrays (outer products of three vec-
tors) that generate the array as their sum [5,6]. The rank of a three-way array is also
the smallest number of components that give a perfect fit in CANDECOMP/PARA-
FAC [2,3]. Specifically, let the three-way array X of order I × J × K be composed
of I slices X1, . . . , XI , of order J × K . Then a perfect fit in CANDECOMP/PARA-
FAC implies that there exist matrices A (J × R), B (K × R) and diagonal matrices
C1, . . . , CI of order R × R such that, for i = 1, . . . , I ,

Xi = ACiB′. (1)

The smallest value of R for which (1) can be solved is the (three-way) rank of the
array X. It is well-known that non-singular transformations of the array in any direc-
tion do not affect the rank of that array.

A peculiarity of the rank of a three-way array is the distinction between the maxi-
mal rank an array may have, and its typical rank, that is, the rank it has with positive
probability. For instance, a 3 × 2 matrix has rank 2 with probability 1, and 2 is also
the maximal rank of such a matrix, but a 2 × 4 × 4 array typically has rank 4 or 5, yet
such arrays have maximal rank 6. That rank, however, will never be observed when
the elements of the array are sampled randomly from a continuous distribution, also
see Ten Berge [10].

Recently, some advances have been made in the study of the typical rank of three-
way arrays over the real field [10,12]. The results rely on the assumption of random
sampling of the entire array from a continuous distribution. Symmetric arrays, con-
sisting of symmetric slices, do not fit into this sampling scheme. The present paper
offers a first exploration of the typical rank of symmetric arrays. As has been men-
tioned above, the present paper is exclusively concerned with rank over the real field.
Results for typical tensorial rank over algebraically closed fields can be found in [1].

As was mentioned above, the rank of a three-way array is equivalent to the small-
est number of components that allows a perfect fit in CANDECOMP/PARAFAC
(CP). For instance, the fact that a 7 × 3 × 3 array has typical rank 7 [10] implies
that the seven slices X1, . . . , X7, of order 3 × 3, can almost surely be decomposed
by CP as Xi = ACiB′, for a 3 × 7 matrix A, a 3 × 7 matrix B, and seven diagonal
7 × 7 matrices Ci , i = 1, . . . , 7, and that such a decomposition fails almost surely
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with less than seven components. Hence, results on typical rank imply the smallest
number of components that will usually be enough for a full CP decomposition. Con-
versely, obtaining perfect fit with CP for a given value of R can be used to generate
hypotheses about the typical rank.

When typical rank results for symmetric arrays (viz. three-way arrays with all
slices symmetric) are considered, the connection to CP is less interesting, because
such arrays are usually decomposed subject to the constraint that A = B, to satisfy
the so-called INDSCAL model [2]. Therefore, the (typical) INDSCAL dimensional-
ity would be of greater interest than the (typical) rank itself. Accordingly, the present
paper is not confined to the rank of symmetric arrays, but also deals with the smallest
number of dimensions that suffices for a perfect fit in INDSCAL. That number will
be referred to as “dim”. When, for instance, it is said that a symmetric 2 × 3 × 3
array has “dim 4”, there exists a 3 × 4 matrix A and diagonal 4 × 4 “salience matri-
ces” C1 and C2 such that the two 3 × 3 slices S1 and S2 can be written as S1 =
AC1A′, S2 = AC2A′, and such a decomposition fails in less than four dimensions.

Furthermore, the very relationship between the rank and the dim of a symmetric
three-way array is of interest. Although it may be conjectured that they are the same,
there is no formal proof for this, nor does a counterexample seem to exist. It is
obvious that the rank can never exceed dim, because dim pertains to constrained CP
fitting. But the reverse is in no way guaranteed. Therefore, the search for cases were
dim might exceed rank has been one of the objectives of the present research. A
variety of results is offered, showing that rank = dim in all cases considered. Nev-
ertheless, this does not settle the issue. It has not been proven that rank and dim
coincide for every symmetric array.

The organization of this paper is as follows. First, we start with two general
results. Then, we deal with the typical rank of symmetric arrays, consisting of I

symmetric J × J matrices S1, . . . , SI , where J = 2 or 3. Next, to relate the rank
values that arise with positive probability to dim values for the same arrays, the exis-
tence of CP solutions with A and B equal will be examined. In all cases considered,
the existence of such a solution will be established, implying that dim equals rank
for these cases. Next, we compare typical dim values for symmetric arrays to typical
rank values of asymmetric arrays of the same size. Also, we determine when CP
solutions will inevitably have A and B equal. Finally, the rank-reducing impact of
double standardizing the slices will be discussed.

Result 1. Symmetric 2 × J × J arrays have typical rank {J, J + 1}.

Proof. For any 2 × J × J array consisting of two J × J matrices S1 and S2 (sym-
metric or non-symmetric), a CP solution of rank less than J has probability zero. A
rank J solution exists if and only if the eigenvalues of S−1

1 S2 are real. This happens
with probability p, 0 < p < 1 (e.g., [9]). Suppose that the eigenvalues are not real.

Construct the matrix X of order (J + 1) × 2J as X = [X1|X2] =
[

S1 S2
x′ y′

]
, for
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random vectors x and y. We shall now construct a rank J + 1 decomposition Xi =
ACiB′, i = 1, 2, as prescribed in (1).

To find a decomposition for X, we need to solve A−1Xi = CiB′, i = 1, 2. Define
a′
j as row j of A−1. These rows must satisfy the proportionality equation λj a′

j X1 =
a′
j X2 for J + 1 different values of λj . Because there obviously is a vector orthogonal

to the columns of the (J + 1) × J matrix λj X1 − X2, for every λj , and a set of J + 1
such vectors will be linearly independent almost surely [10], a non-singular A−1 can
be found almost surely. This proves that a rank J + 1 solution is possible for X1 and
X2, almost surely. Because adding a slice to an array cannot reduce the rank, the
original array with slices S1 and S2 had rank J + 1 at most, almost surely. �

Result 2. When I is large compared to J, in the sense that I � 0.5J (J + 1), then
symmetric I × J × J arrays almost surely have R = dim = 0.5J (J + 1), which is
also the maximum rank.

Proof. From Rocci and Ten Berge [8], we may adopt the explicit basis of 0.5J (J +
1) rank one matrices which spans the space of symmetric J × J matrices. This shows
that R = 0.5J (J + 1) is high enough. To prove that a lower rank is not enough
almost surely, consider the I slices, strung out column-wise in a J 2 × I matrix X =
[Vec(S1) . . . Vec(SI )], which has 0.5J (J + 1) unrepeated rows.Then a CP decompo-
sition implies that X = HC′, where H = A • B = [a1 ⊗ b1, . . . , aR ⊗ bR], • is the
Khatri–Rao (column-wise Kronecker) product of the I × R matrix A = [a1 . . . aR]
and the J × R matrix B = [b1 . . . bR], ⊗ is the Kronecker product, and C is the
I × R matrix with rows containing the diagonal elements of C1, . . . , CI . Note that,
because of the repeated rows, the typical rank of X is min[I, J (J + 1)/2] = J (J +
1)/2. When R < 0.5J (J + 1), rank(HC′) will be less than rank(X), and a solution
for X = HC′ does not exist. �

Results 1 and 2 solve the typical rank issue for all symmetric I × 2× 2 arrays.
When I = 2 we use Result 1, and Result 2 takes care of all cases where I > 2.
For I × 3×3 arrays, the situation is more complicated. Result 1 implies that the
2 × 3 × 3 arrays have typical rank {3, 4}. Result 2 implies that all I × 3×3 arrays
with I � 6 have typical rank 6. The cases in between require separate treatment.
These treatments are given in the next sections.

1. The typical rank of symmetric 3 × 3 × 3 arrays

Result 3. The symmetric 3 × 3 × 3 array has typical rank 4.

Proof. It is obvious that a rank less than 3 has probability zero and requires no
further treatment. When a rank 3 solution exists, Si = ACiB′ implies S1S−1

2 = AC1

C−1
2 A−1 and S1S−1

3 = AC1C−1
3 A−1, which means that the matrices S1S−1

2 and S1S−1
3
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commute. This is also an event of probability zero [15]. Hence, the typical rank
is above 3. To show that the typical rank is 4, we shall construct a rank 4 CP
decomposition

Si = ACiB′, (2)

i = 1, 2, 3, where A and B are 3 × 4 matrices, Ci is diagonal.
To simplify this problem, we may mix (take linear combinations of) the slices

to have each of them of rank 2. This is easy because a 3 × 3 real matrix always
has at least one real eigenvalue. So if µ is a real eigenvalue of S−1

1 S2, then S2 −
µS1 will be of rank 2 almost surely. Let S4, S5 and S6 be symmetric rank-two
matrices, obtained by taking linear combinations of S1, S2, and S3. Define W as
the 3 × 3 matrix containing the right null of S4, S5, and S6, and replace Si by
W′Si W, i = 4, 5, 6. This method of simplification has been proposed by Rocci
[7] in a different context. Note that symmetry is preserved by premultiplication
by W′ and postmultiplication by W, and also by slab-mixing. The net result is
that, without loss of generality, we may start from previously simplified symmetric
matrices

S1 =

0 0 0

0 1 a

0 a b


 , S2 =


1 0 c

0 0 0
c 0 d


 , S3 =


1 e 0

e f 0
0 0 0


 . (3)

Upon dividing rows 3 and columns 3 by a/e, S1 and S3 have the same nonzero
off-diagonal element. It follows that we may take a = e. We shall now create a
basis of four symmetric rank-one matrices, which generates S1, S2, and S3 as linear
combinations. Specifically, let

K =

0 0 0

0 a2/b a

0 a b


 , L =


0 0 0

0 1 0
0 0 0


 ,

(4)

M =

1 a 0

a a2 0
0 0 0


 , and N =


1 λ µ

λ λ2 λµ

µ λµ µ2


 .

Clearly, S1 is a linear combination of K and L, and S3 is a linear combination of L
and M. It remains to verify that S2 is a linear combination of all four matrices. Let
N be determined by

λ = a(c2 − d)

c(b + c)
and µ = bc + d

b + c
. (5)

Then it can be verified that S2 = αK + βL + γ M + δN, with α = (d − cµ)/b, δ =
c/µ, γ = 1 − δ, and β = −αa2/b − γ a2 − δλ2. �
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2. The typical rank of symmetric 4 × 3 × 3 arrays

Result 4. The symmetric 4 × 3 × 3 array has typical rank {4, 5}.

Proof. We try to construct a rank four solution and verify when that is (im)possible.
Let the 9 × 4 matrix X contain the vecs of S1, . . . , S4, let X4 contain rows 1, 2, 3,
and 5 of X, and let G = XX−1

4 . A rank 4 solution exists if and only if there exists
a rank 4 Khatri–Rao basis A • B which generates X. Therefore, we need to solve
X = (A • B)C′ by finding A, B, and C. Equivalently, we may solve GW = A • B,
with W = X4(C′)−1. Then the problem is to find four linearly independent solutions
for a vector w, such that Gw is the Kronecker product of two vectors, which may be
rescaled to be [1 b c]′ and [1 d e]′ respectively, for scalars b, c, d , and e. It can be
verified that

G =




1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 0 1
f1 f2 f3 f4
0 0 1 0
f1 f2 f3 f4
g1 g2 g3 g4




, and Gw =




1
d

e

b

bd

be

c

cd

ce




(6)

for fixed vectors f = [f1 f2 f3 f4]′ and g = [g1 g2 g3 g4]′. From rows 2 and 4 of
(6) we have w2 = b = d ; and rows 3 and 7 imply that w3 = c = e. We also have
w1 = 1 and w4 = d2 whence w = [1 d e d2]′. The remaining problem is to solve the
equations implicit in rows 8 and 9 of (6). This means that we want f1 + df2 + e(f3 −
d) + d2f4 = 0 and g1 + dg2 + e(g3 − e) + d2g4 = 0. Writing e = (f1 + df2 +
d2f4)/(d − f3) and substituting this for e into the latter equation yields the fourth
degree polynomial equation

d4(g4 − f 2
4 ) + d3(−2f2f4 + f4g3 − 2f3g4 + g2)

+ d2(−f 2
2 − 2f1f4 + f2g3 − f3f4g3 + g1 − 2f3g2 + f 2

3 g4)

+ d(−2f1f2 + f1g3 − f2f3g3 − 2f3g1 + f 2
3 g2)

+ g1f
2
3 − f 2

1 − f1f3g3 = 0. (7)

It can easily be verified that there are cases where (7) has four real distinct roots. For
instance, when f = [2, 1, 1, −2]′ and g = [1, 1, 1, 1]′, the roots of [−3, 1, 10,

−4, −5] are real and distinct. Because the coefficients of (7) depend continuously
on the data in X, the existence of four distinct real roots, none of which are zero, has
positive probability. In that case, W can be proven to be non-singular. Specifically,
column i of W has the form [1 di ei d2

i ]′ i = 1, 2, 3, 4. Suppose we have f1 = 1
and f3 = 0. Then ei = (1 + dif2 + d2

i f4)/di . Multiplying W by D = diag(d1, d2,
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d3, d4) yields a matrix with columns of the form [di d2
i (1 + dif2 + d2

i f4)d
3
i ]′ Sub-

tracting f2 times row 1 plus f4 times row 2 from WD yields another matrix with
elements di, d

2
i , 1 and d3

i in each column. This is a Vandermonde matrix, known to
be of rank four when d1, d2, d3 and d4 are distinct. Because W is non-singular for
at least one case (when f1 = 1 and f3 = 0, that is), it is non-singular almost surely.
Hence, the symmetric 4 × 3 × 3 array has rank 4 with positive probability.

When some of the roots are imaginary, the rank exceeds 4. A solution of rank 5
can always be constructed. Specifically, let X be the 9 × 5 matrix containing the vecs
of the four symmetric slices, the fifth column being the vector [0 0 0 0 0 1 0 1 x]′
with x “large enough” (details of what that means will soon follow). Define X5 as
the 5 × 5 matrix containing rows 1, 2, 3, 5, and 6 of X. Note that X5 is independent

of x. Define X4 as the upper left 4 × 4 submatrix of X5. So X5 =
[

X4 0
b′ 1

]
, for

some vector b, with inverse X−1
5 =

[
X−1

4 0
c′ 1

]
, where row 5 is obtained as the vector

orthogonal to the first four columns of X5, rescaled to have its fifth element 1. Define
G = XX−1

5 . We shall again construct a Khatri–Rao basis for the column space of G.
That is, we look for a basis of Kronecker products of vectors [1 bi ci]′ and [1 di ei]′,
i = 1, . . . , 5. Ignoring the subscripts, we want a vector w such that Gw has Kronecker
product form. It can be verified that bi = di and ci = ei whence we have

G =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 1
g1 g2 g3 g4 x




, Gw =




1
d

e

d

d2

de

e

de

e2




, and w =




1
d

e

d2

de


 . (8)

Clearly, the only problem that remains is solving the quadratic equation

g1 + dg2 + eg3 + d2g4 + xde − e2 = 0

for d and e, with x to be fixed in advance. Let g = [g1 g2 g3 g4]′ Note that g =
f + xc, where f′ is row 9 of X without its fifth element x, postmultiplied by X−1

4 .
This shows that g1 . . . , g4 do depend on x. To take that into account, we need to
solve the quadratic equation

−e2 + e(f3 + xc3 + xd)

+ (f1 + xc1 + df2 + dxc2 + d2f3 + d2xc3) = 0. (9)

Because we need a five dimensional Kronecker basis, we need to fix x in such a way
that we can find five values for d where (9) has a real solution for e. This requires
that the discriminant
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(f3 + xc3 + xd)2 + 4(f1 + xc1 + df2 + dxc2 + d2f3 + d2xc3) (10)

be positive. Clearly, this discriminant will be positive when x is large enough. The
solution can be obtained as follows:

1. Pick an arbitrary value for x.
2. Pick 5 different values of d , for instance {0.2, 0.4, 0.6, 0.8, 1.0}.
3. For each d , solve the quadratic (9). If any of the roots is imaginary, return to step

2 with a larger value of x.
4. From each pair {d, e}, construct [1 d e]′ defining the five columns of a matrix

A. Also construct w by (8). This yields the columns of W = X4(C′)−1, such that
GW = (A • A).

It can be concluded that 4 × 3 × 3 arrays have typical rank {4, 5}. �

3. The typical rank of symmetric 5 × 3 × 3 arrays

To find the typical rank of symmetric 5 × 3 × 3 arrays, we start by assuming that a
rank 5 solution is possible, and then construct that solution explicitly. In the process,
it will become clear that the rank 5 solution does not always exist, and it will be
shown that a rank 6 solution is always possible.

Result 5. The symmetric 5 × 3 × 3 array has typical rank {5, 6}.

Proof. Let X be of order 9 × 5, with columns containing the vecs of the symmet-
ric slices S1, . . . , S5. Let X5 contain the rows 1, 2, 3, 5, and 6 of X and define
G = XX−1

5 . Note that X5 is non-singular almost surely. Proceeding as in the proof of
Result 4, we now need five solutions for the equation Gw = g ⊗ h, with g = [1 b c]′,
h = [1 d e]′. Note that

G =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 1
f1 f2 f3 f4 f5




and Gw =




1
d

e

b

bd

be

c

cd

ce




. (11)

Clearly, rows 1, . . . , 8 imply b = d , c = e, and w = [1 d e d2 de]′. What remains is
to solve the equation f′w = e2, where f′ is row 9 of G. Therefore, we need a solution
for the quadratic equation −e2 + e(f3 + df5) + (f1 + df2 + d2f4) = 0. Clearly, we
can find e (two solutions) if and only if d has been chosen to render the discriminant
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Table 1
Typical rank values for symmetric arrays

2 × 2 Slices 3 × 3 Slices J × J Slices

I = 2 {2, 3} {3, 4} . . . {J, J + 1}
I = 3 3 4
I = 4 3 {4, 5}
I = 5 3 {5, 6}
I � 0.5J (J + 1) 3 6 . . . .5J (J + 1)

(f3 + df5)
2 + 4(f1 + df2 + d2f4) positive. Whenever this is possible, we solve for

e given d (taking either of two roots) and find the vector w = [1 d e d2 de]′. We
repeat this procedure five times, to create five different linearly independent solutions
for w from five different choices of d .

There are cases where this method fails. For instance, when f = [−1, 2, 1,

−2, −1]′ or close to this vector, the discriminant will be (close to) (1 − d)2 − 4(1 −
d)2 − 4d2 < 0, and there is no solution. This means that, for a set of arrays with
positive volume, we shall need at least a rank 6 solution. Result 2 guarantees that
such a solution exists. �

Numerical experience indicates that the probability of rank 5, under random sam-
pling from the uniform [−0.5, 0.5] distribution, is very close to 1. Still, when f is
[− 1, 2, 1, − 2, − 1]′ or close to that vector, we do indeed find arrays of rank 6. This
illustrates that the typical rank is indeed {5, 6}, as has been proven above.

Result 5 completes our treatment of typical rank for symmetric I × 3 × 3 arrays.
Table 1 summarizes the typical ranks for I × 2 × 2 and I × 3 × 3 arrays of symmet-
ric slices.

It is interesting to compare the values of Table 1 to their counterparts for asymmet-
ric arrays of the same size [10]. There is no difference when I = 2, or I = 3 and J =
2. However, when I > 3, symmetric I × 2 × 2 arrays have typical rank 3, whereas
their asymmetric counterparts have typical rank 4. When I = 6, 7, 8, or 9, I × 3 × 3
arrays have typical ranks 6 in case of symmetry, but the typical rank is I otherwise
[10]. It seems that, whatever evidence is available, points to the conclusion that sym-
metry entails the same or lower typical rank. We shall now address the question of
how many dimensions are typically needed for a full INDSCAL decomposition.

4. From typical rank to INDSCAL dimensionality

By themselves, the typical rank values of Table 1 do not imply anything about dim
(the INDSCAL dimensionality), other than that they are lower bounds to the typical
values of dim. INDSCAL solutions require that A = BD, for a diagonal matrix D,
and that constraint might increase the number of components required. The second
part of this paper is concerned with the question to what extent the typical rank values
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of Table 1 are also typical dim values. Specifically, the question is whether or not CP
solutions, using the typical rank as number of dimensions, display A = BD at once,
or, in case of multiple solutions, whether or not at least one solution exists that has
A = BD, as is required for INDSCAL. We start with a generalization of a result by
Ten Berge and Kiers [11, Result 2], based on uniqueness.

Definition. A CP solution for an array X is said to be unique when every pair of
solutions X = (A • B)C′ and X = (A • B)C

′
, all matrices having R columns, are

related by A = APTa , B = BPTb, and C = CPTc, for a permutation matrix P and
diagonal matrices Ta , Tb and Tc, with TaTbTc = I.

Result 6. When a CP solution for a symmetric array is unique, it is an INDSCAL
solution.

Proof. When a given CP solution Xi = ACiB′ = X′
i = BCiA′, i = 1, . . . , I , is

unique, we have B = APTa, A = BPTb, and C = CPTc, for a permutation matrix
P and diagonal matrices Ta, Tb, and Tc. Because C cannot have two proportional
columns (that would contradict uniqueness at once), it follows from C = CPTc that
P is the identity matrix. This implies that A and B are column-wise proportional. �

Below, we shall invoke Result 6 to prove that dim = rank in all cases where an
array consisting of two symmetric J × J slices has a rank as low as J . When a
symmetric 2 × 2 × 2 array has rank 3, or a symmetric 2 × 3 × 3 array has rank 4,
we can use:

Result 7. For symmetric 2 × 2 × 2 arrays of rank 3, and 2 × 3 × 3 arrays of rank
4, a CP solution with columns of A proportional to those of B can be constructed
with dim = rank.

Proof. When one of the slices is positive or negative definite, the two slices can
be diagonalized simultaneously. This situation can always be achieved by using one
additional CP component. For the 2 × 2 × 2 case, when S1k = λk, λ < 0, add µkk′
to S1, for some µ > −λ, and diagonalize the resulting positive definite matrix simul-
taneously with S2. For the 2 × 3 × 3 case, do the same when S1 has only one neg-
ative eigenvalue. Otherwise, when S1k = λk, λ being the only positive eigenvalue,
subtract µkk′ from S1, µ > λ, to get a negative definite matrix, and diagonalize
that matrix simultaneously with S2. This means that an explicit INDSCAL solu-
tion using one extra component can always be found when the two slices cannot be
diagonalized simultaneously. �

We have now dealt with all cases pertaining to I = 2. The rest follows at once.
First, the I × 2×2 cases with I > 2 are covered by Result 2, which gave typical rank
and typical dim at once. The same goes for the I × 3 × 3 arrays with I > 5. For the
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3 × 3 × 3 case, our proof has offered a rank 4 CP solution which is also an IND-
SCAL solution. For the 4 × 3 × 3 case of rank 4, the solution is again necessarily an
INDSCAL solution (note that we found b = d and c = e). When such arrays have
rank 5, the solution we constructed again was an INDSCAL solution. Finally, for
5 × 3 × 3 arrays, the rank 5 case is necessarily one with A = B, and the rank 6 case
is covered by Result 2, again implying A = B. It can be concluded that typical rank
= typical dim in all cases examined.

5. Non-uniqueness of INDSCAL solutions

Above, the typical rank values of Table 1 have been proven to be typical dim
values. It can thus be concluded that the INDSCAL constraint A = BD, with D a
diagonal matrix, does not require additional components when J = 2 or 3. On the
other hand, we also have seen that symmetry of the slices does seem to entail a lower
rank = dim by itself. It can be concluded that, for all cases treated in Table 1, a full
INDSCAL decomposition takes as many, or fewer components than does a full CP
decomposition of asymmetric arrays of the same size.

We have examined typical rank by constructing closed-form CP solutions. In the
process, having A = BD sometimes appeared as a bonus, even though it was not
imposed. Result 6 implies that this must happen in cases where CP has a unique
solution. Sufficient conditions for uniqueness were first formulated by Harshman
[4]. Kruskal [5] has proven that it is sufficient for uniqueness, when R > 1, that
ka + kb + kc � 2R + 2, where ka is the so-called k-rank of A, etc. [5,6]. Ten Berge
and Sidiropoulos [14] have shown that, when R is 2 or 3, this condition is also
necessary, and that rank and k-rank coincide in these cases when the condition is
met. The condition implies that we usually have CP uniqueness when a 2 × 2 × 2
array has rank 2, a 2 × 3 × 3 has rank 3, and a 4 × 3 × 3 array has rank 4, but in
none of the remaining cases in Table 1.

Interestingly, in certain non-unique cases, we have also found that the CP solution
is necessarily an INDSCAL solution. For instance, the 5 × 3 × 3 case of rank 5 can
only produce INDSCAL solutions. Apparently, there are cases where CP, applied to
symmetric arrays, has non-unique solutions, all of which are INDSCAL solutions.
The following results give an explanation for this remarkable phenomenon:

Result 8. When I � R + 2 − J, A, B have full row rank, and every set of (R +
2 − J ) columns of C, containing the diagonal elements of Ci in its rows, is linearly
independent, a CP solution is an INDSCAL solution.

Proof. Let there be a CP solution Si = ACiB′, i = 1, . . . , I , in R dimensions.
Premultiply A and B, both of order J × R, with A−1

J , the inverse of the leftmost
J × J submatrix of A, to obtain A∼ = [IJ |A+] and B∼ = A−1

J B. Reparameterize
A−1

J Si (A
−1
J )′ to Si , which is still symmetric, and reparameterize A∼ and B∼ to A
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and B, respectively. Let U(J 2 × R) and V(J 2 × R) contain the Khatri–Rao products
B • A and A • B, respectively. Note that C′ is an R × I matrix. Let X(J 2 × I ) con-
tain vec(S1), . . . , Vec(SI ). Then Si = ACiB′ = BCiA′, i = 1, . . . , I , is equivalent
to X = UC′ = VC′, hence (U − V)C′ = O. By construction, J rows of U − V van-
ish, and the non-zero rows come in proportional pairs. Every non-zero row of U − V
contains at least J − 2 zeros, due to the fact that the first J columns of A form the
identity matrix. When the J − 2 zeros are removed from any of the non-zero rows,
the remaining vector is orthogonal to the columns of a particular (R − J + 2) × I

submatrix of C′. It follows that these remaining vectors vanish also if the correspond-
ing submatrices of C′ are of rank R − J + 2. Then all rows of U − V vanish, whence
U = V, which implies that A = BD for some diagonal matrix D. �

It may be noted that the condition that every set of R − J + 2 rows of C′ corre-
spond to a matrix of rank R − J + 2 cannot be satisfied unless I � R − J + 2. The
requirement that the submatrices have rank R − J + 2 means that the k-rank [5,6]
of C must be at least R − J + 2.

An example may be instructive: Let A be 3 × 4, B be 3 × 4 and C be 3 × 4. After
the preliminary transformation we have

A =

1 0 0 a14

0 1 0 a24
0 0 1 a34


 , and B =


b11 b12 b13 b14

b21 b22 b23 b24
b31 b32 b33 b34


 (12)

hence

U − V=




b11 0 0 b14a14
0 b12 0 b14a24
0 0 b13 b14a34

b21 0 0 b24a14
0 b22 0 b24a24
0 0 b23 b24a34

b31 0 0 b34a14
0 b32 0 b34a24
0 0 b33 b34a34




−




b11 0 0 a14b14
b21 0 0 a14b24
b31 0 0 a14b34
0 b12 0 a24b14
0 b22 0 a24b24
0 b32 0 a24b34
0 0 b13 a34b14
0 0 b23 a34b24
0 0 b33 a34b34




=




0 0 0 0
−b21 b12 0 a24b14 − a14b24
−b31 0 b13 a34b14 − a14b34
b21 −b12 0 a14b24 − a24b14
0 0 0 0
0 −b32 b23 a34b24 − a24b34

b31 0 −b13 a14b34 − a34b14
0 b32 −b23 a24b34 − a34b24
0 0 0 0




. (13)
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When each 3 × 3 submatrix of C′ has rank 3, it is clear that all rows of U − V vanish,
because each row contains at least one zero. Then every column of A is proportional
to the corresponding column in B. Result 8 can be further qualified when C is square
matrix.

Result 9. When I = R, a CP solution is almost surely an INDSCAL solution.

Proof. It is readily verified that A and B are of full row rank almost surely, because
they must satisfy Si = ACiB′. Likewise, C will be of full row rank almost surely,
because it must satisfy UC′ = X with X of rank I almost surely. When C is square
and non-singular, all subsets of its columns are linearly independent. It follows from
Result 8 that a CP solution is inevitably an INDSCAL solution. �

From Results 8 and 9, we can draw the following inferences as to CP solutions
being INDSCAL solutions almost surely. First, consider the J = 2 cases. When I =
2, and R = 2, Result 6 guarantees that there is a (unique) solution with A = B. When
I = 2 and R = 3, however, CP tends to give non-INDSCAL solutions. Still, Result 7
explains how to arrive at an INDSCAL solution. When I = 3, we have R = 3 almost
surely, and Result 9 applies. When I > 3, CP solutions also must be INDSCAL
solutions, because three slices are already enough to enforce that, and adding slices
beyond the first three means adding more constraints on the solution.

For the J = 3 cases with I = 2 and R = 3, CP must give a (unique) INDSCAL
solution (Result 6). When I = 2 and R = 4, CP tends to give non-INDSCAL solu-
tions, but Result 7 tells us how to arrive at an INDSCAL solution. When I = 3, R

will be 4, and the solution of Result 3 is an INDSCAL solution. Other solutions,
however, do exist, and some of these may be non-INDSCAL solutions, with linear
dependence in at least one submatrix of C, as indicated in Result 8. When I = 4,
and R = 4, it follows from the proof of Result 4 that CP will yield a unique solution,
which by virtue of Result 6 will be an INDSCAL solution. When I = 4 and R = 5,
Result 8 applies. We often observe CP yielding INDSCAL solutions, but occasion-
ally, non-INDSCAL solutions also arise. When they do, the right null of C does
indeed reflect that not every 4 × 4 submatrix of C is non-singular.

When J = 3, I = 5 and R = 5, we are back at Result 9 (non-unique INDSCAL
solutions); but when R = 6, we may have non-INDSCAL solutions, again with linear
dependence in at least one square submatrix of C, see Result 8. Finally, when I = 6,
we have R = 6 almost surely, and Result 9 applies. It can be concluded that, even
when CP solutions are non-unique, they will necessarily be INDSCAL solutions in
a surprisingly large variety of cases.

6. Discussion

Most results of this paper are limited to arrays having slices of order 2 × 2 and 3 ×
3. Throughout the cases examined, the same picture emerges: Firstly, typical rank of
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symmetric three-way arrays seems to be the same or smaller than the typical rank
of non-symmetric counterpart arrays. Secondly, the typical rank of symmetric arrays
seems to coincide with the typical “INDSCAL dimensionality”, being the smallest
number of components that allows a full INDSCAL decomposition. In general, a CP
solution for a symmetric array is an INDSCAL solutions when it is unique. However,
even when CP solutions are not unique, CP solutions are INDSCAL solutions in quite
a number of cases.

Although the proofs used in this paper rely on similar principles, they are essen-
tially ad hoc. More general proofs, that might also cover symmetric slices of higher
order than 3 × 3, are sorely needed.

It should be noted that we have considered INDSCAL without constraints other
than that A = B. Our analysis does not account for constraints imposed by various
types of preprocessing or “natural” application-specific constraints. For instance, we
have ignored sign constraints on the elements of the diagonal matrices of saliences.
Fitting INDSCAL subject to non-negativity constraints for the saliences is possible
[13] but has been ignored in the present paper. Such constraints are likely to increase
the number of dimensions of INDSCAL, whence typical rank and dim may no longer
coincide.

As far as preprocessing is concerned, it may be noted that estimated distance
matrices are often converted to double-centered scalar product matrices [2, p. 286],
before CANDECOMP is applied. This has a rank-reducing impact on the symmetric
array. Specifically, let T be a non-singular matrix with last column the vector of ones.
Upon premultiplying all slices with T, and postmultiplying by T′, all slices have
zeros in the last rows and columns. Because (appending or) deleting zero slices does
not change the rank, and double centering preserves symmetry, a double-centered
symmetric I × J × J array has the same rank as the reduced I × (J − 1) × (J − 1)

version of it. This means that double centering has a strong rank-reducing impact. For
instance, a symmetric 6 × 3 × 3 array has typical rank 6 without centering, but the
typical rank will be as small as 3 upon double centering, see Table 1. The implication
is that INDSCAL will need no more than three components in a case like this.
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