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Properties of estimated parameters of models of chemical systems are important. This paper focuses
on two properties of such estimated parameters: triviality and uniqueness. If a chemical system is
analyzed using a Tucker3 model, then the resulting core can often be rotated to a simple structure
containing zeros. This means that it is possible that a prespecified pattern of zero and non-zero
elements of the core, as used in e.g. constrained Tucker3 models, is not an active constraint; that is,
the zeros can be obtained trivially for free. Once a non-trivial pattern of zeros in the core is specified,
the question arises whether this pattern is sufficient for obtaining unique loadings. Both issues are
discussed in this paper and it is shown that the model used by Gurden et al. (J. Chemometrics 2001;
15: 101-121) does essentially involve a non-trivial core and implies rotationally unique parameter
estimates. Copyright © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the leading themes in chemometrics is uniqueness of
solutions obtained by resolving chemical mixtures or by
modeling chemical systems in general. In the class of
problems known as curve resolution, where chemical
mixtures are resolved into pure component spectra and
profiles, uniqueness plays a dominant role [1,2]. The reason
for the importance of uniqueness of solutions is clear:
obtaining unique solutions allows for an unambiguous
interpretation of the estimated parameters (spectra, chroma-
tograms, etc.) in terms of the chemical system. In short,
uniqueness generates fundamental insight into the chemis-
try of the studied system.

The popularity of the Candecomp/Parafac (CP) model in
chemistry is due to its uniqueness properties [3,4]. This
makes the CP model suitable for performing second-order
calibration [5,6], for resolving mixtures using fluorescence
spectroscopy [7] and for studying chemical processes [8].

In contrast with CP, rotational indeterminacy is one of the
distinguishing features of Tucker3 PCA [9] of three-way
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arrays. After fitting the model by Tuckals3 [10], there is
freedom of (obliquely) rotating the core in three directions
under the proviso that the inverse rotations are applied to all
three component matrices involved. However, when certain
elements of the core are constrained to be zero (thereby
obtaining a constrained or restricted Tucker3 model), the
rotational indeterminacy is confined, sometimes to the point
that the solution becomes unique up to permutations and
scaling; that is, the identification of the model reaches the
same level as that of Candecomp/Parafac [3,4]. An example
to that effect has been given involving a 3 x 3 x 3 core with
18 elements zero [11]. In chemistry a restricted Tucker3
model has been used to calibrate a second-order sensor [12].
Later it was shown that the specific pattern of zero-
constrained core elements gave partial uniqueness, allowing
for the unique determination of analyte concentrations [13].

Apart from the identification issue, there is the issue of
triviality. The very rotational freedom of a Tuckals3 solution
is well known to imply a variety of patterns of zero elements
that can be attained trivially; for a review, see Reference [14].
Questions of triviality (is the ‘model” truly a model or is it an
artifact?) and uniqueness (is the model identified?) arise
whenever cores are constrained to have a vast majority of
zero elements.

A particular case of interest, to be examined in this paper,
is a core appearing in Reference [15]. Gurden et al. [15] used a
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constrained core, rewritten in terms of horizontal slices, of
the form

G, = [G1]G2|G3|G4|Gs) =
g1 0 0 0 0|0 gi»
0 0 0 0 0j0 O
0 0 0 0 0j0 O

This model, christened ‘grey model’, can be examined in
terms of non-triviality and uniqueness. In the next sections it
will be shown that models based on a core like (1) are non-
trivial and partly unique. It will also be explained that
additional constraints employed by Gurden et al. remove
precisely the partial indeterminacy implied by the core
constraints, whence their model is fully identified. This
opens the door for unambiguously interpreting the esti-
mated loadings in terms of the chemical process under study
and gives fundamental insight into the nature of the
variation found in this chemical process.

2. NON-TRIVIALITY OF THE MODEL

The question of triviality of (1) can be dealt with by
considering the three-way rank of G. It is obvious that the
slices of G, contain at least five linearly independent rows.
Therefore a full decomposition by CP will need at least five
components. Because the number of components required to
get a perfect CP fit coincides with the three-way rank of any
array [16], it can be inferred that the array has at least rank 5.
On the other hand, the array also has at most rank 5. This is
immediate from the consideration that only five elements are
non-zero, each of which can be accounted for by a three-way
array of rank 1. It can be concluded that the core array G
above has rank 5.

To show that rank 5 is usually not possible, we shall resort
to the concept of typical rank. The typical rank of an array is
the rank the array has with positive probability when the
elements of the array are sampled randomly from a
continuous distribution. For a matrix the typical rank (the
rank we observe almost surely) is also the maximal rank. For
instance, a p x g matrix, p > g, will have rank g when it is
sampled randomly from a continuous distribution. For
three-way arrays, however, maximal rank does not coincide
with typical rank. For example, a 2 x 2 x 2 array can have
rank 0, 1, 2 or 3. If the eight elements of the 2 x 2 x 2 array are
filled randomly with numbers drawn from a normal
distribution, then in 79% of the cases the array has rank 2
and in 21% of the cases the array has rank 3. This means that
rank 0 and rank 1 arrays occur with probability zero [17]. The
typical rank of a 2 x 2 x 2 array is then 2 or 3 (i.e. the set
{2,3}). Another example is the case of 7 x 3 x 3 arrays. Their
maximal rank is 8 and the typical rank is 7 [18]. This means
that rank 8 will never be observed after random sampling
from a continuous distribution.

To arrive at non-triviality of (1), we need to establish that
5x5x3 arrays of rank 5 arise with probability zero.

Copyright © 2002 John Wiley & Sons, Ltd.

Unfortunately, the few general rules available to determine
the typical rank of three-way arrays [18] do not cover

0 0j/0 0O 0O 0/0 00O O
0 0j]0 0 O Q244 00 0 0 O 0 (1)
0 0|0 0 O 0 00 0 0 O 8355

5 x 5 x 3 arrays. However, we can establish the following
lower bound to the typical rank of such arrays.

Result
The typical rank of p x p x 3 arrays is at least p + 1.

Proof
Suppose a p x p x 3 array X has rank less than p, and let a
matricized form of X be the p x 3p matrix X. Then XX" has
determinant zero. Since this determinant is an analytic
function of the elements of X and is not zero everywhere (for
every array X), it follows that the determinant is almost
surely non-zero; see Reference [19], Theorem 5.A.2. It
remains to investigate the possibility of having X of rank p.
When X has rank p, and X; is non-singular, the three p x p
slices X3, X, and X3 can be decomposed by CP as

X; = AC,BT (2)

with A and B non-singular and Cy a diagonal matrix, k=1, 2,
3. It follows that XpX| = AGCCy TA™1 and XsX7 T—
AGCy 1A=, Hence Xo X7 1 and XaX; 1 commute, which
means that

XX XX = XX XX [ = 0 ()

The set of arrays X such that X; is singular is closed.
Therefore the complement set is open. The sum of squares (3)
is an analytic function of the elements of X defined on that
complement set. Because the function is not the zero
function, it is non-zero almost surely [19] on the same
complement set. The fact that (3) will take the value zero
when the rank of X is p, combined with the fact that X; is non-
singular almost surely, shows that X has rank p with
probability zero. It has thus been proven that a p xp x 3
array has rank higher than p almost surely.

Specifically, the result implies that a 5 x 5 x 3 array has
rank 6 or above almost surely. Hence ranks lower than 6
arise with probability zero when the array is randomly
sampled from a continuous distribution. It may be objected
that this assumption is not met when a core array arises at
convergence of the unconstrained Tuckals3 procedure.
Indeed, this procedure might have a tendency to produce
unusual non-random results. However, practical experience
with Tuckals3 has revealed no such tendency at all. Tuckals3
cores seem to behave as if randomly sampled from a
continuous distribution. This justifies the inference that the
typical rank of 5 x 5 x 3 Tuckals3 core arrays is at least 6.
Because rotation of an array in any direction does not change
the array rank, it follows that the pattern of (1) cannot be
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obtained trivially by rotating any obtained core afterwards in
three directions. The Gurden et al. core array thus represents
a model rather than an artifact.

3. PARTIAL UNIQUENESS OF THE MODEL

In the model of Gurden et al. the three modes consist of
different batches (with I x 3 loading matrix A), different
wavelengths (with | x 5 loading matrix B) and different
points in time (with K x 5 loading matrix C). The uniqueness
of the model pertains to the question of whether or not non-
singular matrices S (3 x 3), T (5 x5) and U (5 x 5) can be
found, other than rescaled permutation matrices, such that
the core SG,(U'®T") has zeros in the same places as G, of
(1). Such transformations are allowed provided that the
loading matrices A, B and C are transformed to AS™!, BT !
and CU ! respectively. In fact, this is partly the case. As will
be shown below, the matrix S is unique (up to permutations
and scaling) and so are the last two rows and last two
columns of T and U. There is, however, non-uniqueness in
the remaining parts of T and U; that is, T can have an
arbitrary 3 x 3 submatrix in its upper left-hand corner,
compensated for by having its inverse as corresponding
submatrix in S.

Proof

To investigate the uniqueness properties of the array (1), it is
convenient to rearrange it into an array containing the
horizontal slices. Thus, instead of considering the unique-
ness of G,, we shall consider the equivalent uniqueness
properties of

Gp = [H1|Hy[Hs] =

which has a transformed version TGy,(S'®@U"). Without loss
of generality, let the non-zero elements of Gy, be scaled to
unity.

We start with the matrix ST, producing linear combina-
tions of the horizontal slices H;, H, and Hs. If the new slices
are to have zeros in the same places as the old ones, it is
obvious that they must have ranks 3, 1 and 1 respectively.
Because the ranks of the new slices are independent of the
non-singular matrices T and U, it is clear that S must
preserve the rank pattern of Hy, H, and Hj. Trivial mixes (by
taking S"'=1;, up to permutations and rescaling of its
columns) will indeed preserve the ranks 3, 1 and 1. Non-
trivial mixes, on the other hand, will produce ranks 2, 4 or 5,
none of which are desired. It follows that ST has to be L, up
to permutations and scaling. Without loss of generality, we
shall set S =15.

Having established the essential uniqueness of S, it can be
seen that ﬁk = TH,UT must have zeros in the same places as
H,, k=1, 2, 3. Partition T and U into

T— {Tn

T2
To ’

Up
U=
Tz {

Up
Un

Ux

Copyright © 2002 John Wiley & Sons, Ltd.

[N NN o)

[N e NN o)

Constrained Tucker3 analysis 611

with T; and Uqq of order 3 x 3, T, and Uy, of order 3 x 2,
T, and Uy of order 2 x 3 and T, and Uy, of order 2 x 2. We
start with the rank 1 matrix Hs. Writing H; =
TH;U" = TeselU”, with es the fifth column of Is, we have
H; = tsul, with t; and us the fifth columns of T and U
respectively. Because ﬁg has zeros in the same places as Hj,
both t; and us have to be proportional to es. A similar
argument applied to H, shows that the fourth columns of T
and U must be proportional to e,. It should be noted that this
implies that T1, and Uj, have all elements zero.

Finally, consider H;. To prevent T and U from being
singular, both T;; and U;; must be non-singular. Because
submatrices Hy, and Hy; of H;, defined analogously to
submatrices of T, have all elements zero, it follows that T»;
and Uy, are zero. It remains to consider Ty, and Us;. Clearly,
taking any non-singular 3 x 3 matrix for Ty, is allowed
provided that U], is its inverse. This pinpoints where the
model is non-unique: there is freedom of rotation for the first
three columns of the matrices B and C of the Tucker3
solution, albeit that the latter rotation must be the inverse of
the former. All other parameters of S, T and U are unique up
to joint permutations and scaling.

4. ADDITIONAL CONSTRAINTS USED BY
GURDEN ET AL.

One may wonder what implications the above results have
on the analysis of Gurden et al. [15] in particular. The ‘grey
model’ they employed appears to have rotational indeter-
minacy for the ‘white part’ of the core array, which
corresponds to the first three columns of B and C. Loosely

000 0O 0/00O0O0 O
000 0O 0/00O0O0 0
000 0O 0/00O0O0 0 (4)
0 0 0 gu 00000 0
000 0 0/0 00 0 g

stated, they still have the curve resolution problem of
rotational ambiguity in resolving the pure component
spectra and kinetic profiles. The variation in the first mode
(the batch mode) is insufficient to remove this rotational
freedom. However, they fixed the loadings of B (spectra) to a
priori known spectra and this solved the problem of
rotational freedom trivially, because this fixes Tq; up to
scaling, and hence Uy;. Thus the Gurden et al. model is fully
identified. Note that the uniqueness of A (S = I;) justifies the
interpretation made by Gurden et al. of the first loading
vector in A as reflecting the differences in initial concentra-
tion of the reactant between batches.

Another way of identifying the model is by imposing a
first-order kinetic model on the profiles in the time mode
(mode C). This is also sufficient for removing the rotational
ambiguity in the ‘white part’ of the model [20]. By imposing
the kinetic model on the C mode, kinetic constants can be
calculated and pure spectra can be obtained [21].

5. DISCUSSION
Preferably, non-triviality and uniqueness of core-con-
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strained Tucker3 models should be determined on the basis
of general rules. Research in this area is quite complicated
and progress has been slow. General principles about
uniqueness are totally absent, which means that, for the
time being, we have to resort to ad hoc arguments. For the
determination of non-triviality, however, the prospects are
better. Non-triviality can be based on arguments of typical
rank or maximal simplicity (the largest number of zeros that
arrays of any particular order usually can have). Typical
rank results of some generality are available [18], although
the particular case examined in this paper did require an ad
hoc extension. A few maximal simplicity rules can be found
in Reference [14].

6. CONCLUSIONS

Uniqueness of solutions of parameter estimates of models
for chemical systems is important, since it allows for an
unambiguous interpretation of the found estimates. It has
been shown that the model used by Gurden et al. [15] gives
unique solutions.
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