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Abstract

Tucker3 Analysis and CANDECOMP=PARAFAC (CP) are closely related methods for three-
way component analysis. Imposing constraints on the Tucker3 or CP solutions can be useful
to improve estimation of the model parameters. In the present paper, a method is proposed
for applying smoothness constraints on Tucker3 or CP solutions, which is particularly useful
in analysing functional three-way data. The usefulness of smoothness constraints on Tucker3
and CP solutions is examined by means of a simulation experiment. Generally, the results of the
experiments indicate better estimations of the model parameters. An empirical example illustrates
the use of smoothness constraints. The constrained model is more stable and easier to interpret
than the unconstrained model. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper deals with methods for analysing three-way functional data. A univariate
data series is functional if the (true) scores can be described as a function of a certain
predictor, for example time or distance (Ramsay and Silverman, 1997). An example is
a series of scores on a variable indicating reading ability, that is repeatedly collected
from a pupil receiving reading education. In practice, one often collects multivariate
functional data, for example repeatedly obtained reading ability scores from a number
of pupils. A commonly used approach to revealing the structure in two-way functional
data is principal component analysis (PCA) (Tucker, 1958, 1966; Rao, 1958). Func-
tional PCA, as it is called by Ramsay and Silverman (1997), aims at describing the
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dominant modes of variation of a functional data set and at obtaining a comprehensi-
ble representation of the structure of variability. An example of functional three-way
data is repeatedly measured scores of a number of pupils on a number of variables,
that are indicators of reading ability. As Tucker3 analysis (Tucker, 1966; Kroonenberg
and De Leeuw, 1980) and CANDECOMP=PARAFAC (CP; Carroll and Chang, 1970;
Harshman, 1970) are three-way generalisations of principal component analysis, they
are natural analysis approaches for three-way functional data.
Although Tucker3 and CP analyses are often used in an exploratory way, previous

knowledge of data generating processes can be used to constrain the model (e.g., see
Bro, 1998). Possible advantages of constraining a model are more stable parameter esti-
mates, and reduction of numerical problems and computation time. In the present paper,
the use of smoothness constraints, which is particularly useful in the case of functional
data analysis, in Tucker3 and CP models is elaborated. Smoothness constraints could
be combined with monotonicity constraints, which is possibly useful in the case of
growth data. It will be shown that the use of a particular smoothness constraint on the
components leads to equivalent parameter estimates as smoothing the observed mea-
surements before analysis. This is important because it obviates the diCcult question
whether one should analyse the original data by a method where the results are con-
strained to be smooth, or smooth the data, and then analyse the smoothed data. The
usefulness of smoothing in the Tucker3 model and CP model will be examined under
diDerent conditions in a simulation experiment. An empirical example illustrates the
use of smoothness constraints in the Tucker3 model.

2. Tucker3 analysis and CANDECOMP=PARAFAC

Tucker3 analysis (Tucker, 1966; Kroonenberg and De Leeuw, 1980; Kroonenberg,
1983) is a generalisation of two-way PCA. In a two-way PCA, the data are decomposed
into two matrices. In a Tucker3 analysis, the three-way data are decomposed into three
component matrices and a so-called core array, which denotes the importances of the
relationships between the diDerent components. In this paper, we start from functional
three-way data that are collected in an I × J ×K three-way array X, where i=1; : : : ; I
refers to subject i; j = 1; : : : ; J to variable j and k = 1; : : : ; K to measurement k. Such
a data set could result, for example, from a research into reading ability development
of I pupils during the Grst year of reading education. During this Grst year we could
weekly gather (for K weeks) scores on J variables that are indicative of aspects of
reading ability.
The Tucker3 model is deGned as

Xc = CGc(B′ ⊗ A′) + Ec; (1)

where Xc (K × IJ ); Gc (R×PQ), and Ec (K × IJ ) denote the ‘matricised’ versions of
the three-way data array X (I × J × K), the core array G (P × Q × R), and residual
array E (I × J × K), respectively (e.g., see Kiers, 2000), A (I × P);B (J × Q), and
C (K ×R) denote the subject, variable and occasion component matrices, respectively,
and ⊗ denotes the Kronecker product.
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The Tucker3 model is usually Gtted to data in the least squares sense, hence by min-
imising the sum of squared residuals, with A; B, and C usually restricted to orthonor-
mality without loss of Gt. Kroonenberg and De Leeuw (1980) oDered an alternating
least squares (ALS) algorithm to Gt the Tucker3 model to data. Various variants and
improvements of that algorithm have been proposed. The algorithms are essentially
based on alternately updating the matrices A; B; C, and Gc, keeping the other ma-
trices Gxed. Each iteration decreases the sum of squared residuals, implying that the
function value decreases monotonically. Because of the boundedness of the function it
converges to a stable function value, although it does not necessarily converge to the
global minimum. By using several diDerently (e.g., randomly) started runs, one can
reduce the chance to miss the global minimum. The Tucker3 model is not uniquely
deGned. All matrices A;B, and C can be rotated orthogonally or obliquely, provided
that such rotations are compensated in the core.
The CANDECOMP=PARAFAC (CP) model (Carroll and Chang, 1970; Harshman,

1970) is a constrained version of the Tucker3 model. The CP model is deGned as

Xc = CH(B′ ⊗ A′) + Ec; (2)

where the matrix H is the (R× R2) two-way version of the ‘superidentity’ three-way
array H, that is, an array with hpqr=1 if p=q= r, and hpqr=0 otherwise. The model
is uniquely deGned under certain (weak) conditions, which are usually met in practice.
That is, the estimations of A; B, and C are unique up to an arbitrary scaling of the
columns in two of the component matrices and an arbitrary simultaneous permutation
of the columns in the component matrices (Harshman, 1972).
The CP model is Gtted to data in the least squares sense, and the parameters of CP

are estimated using an ALS algorithm (Harshman, 1970; Carroll and Chang, 1970).
Just as in Gtting the Tucker3 model, the CP algorithm can end up in a local minimum.
The use of several diDerently started runs can increase the chance to attain the global
minimum.
A Tucker3 or CP analysis can be applied to a raw data array X, but usually the

data are centred and=or scaled before analysis (Harshman and Lundy, 1984; Bro and
Smilde, 2001).

3. Smoothing in the Tucker3 model and CP model

3.1. The use of smoothness constraints in the Tucker3 model and CP model

Generally, Gtting a model to observed data aims at obtaining an interpretable model
with a small degree of overall error, which refers to the lack of Gt of the current
model Gtted to the current data set to the population data (Browne and Cudeck, 1992).
The use of prior knowledge to imposing constraints on the Tucker3 and CP may
lead to a better interpretable model, that has a smaller degree of overall error than
its unconstrained counterpart. Additionally, a constrained solution may be less likely
to end up in a local minimum and=or it can converge in fewer iterations, because
the solution space is limited. We expect this kind of positive eDects in CP analyses
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rather than the Tucker3 analyses, because CP analyses, particularly of large data sets
and=or data with mild to severe multicollinearity, are known for its computational
problems.
The type of constraint we will discuss here is useful to apply in the Tucker3 or CP

analysis of functional three-way data, hence if the three-way data consist of various
samples from what can be expected to be continuous curves with measurement error.
Suppose we are interested in reading ability development of pupils during the Grst year
of reading education. During this year we could weekly gather scores on a number of
variables that are indicative of aspects of reading ability. The various univariate series,
that consists of scores of a pupil on a variable gathered on the successive weeks,
can be viewed as evaluations of the underlying reading ability curve at the particular
measurement times. If the scores on a certain variable could be expressed as any known
function of time with known parameters, then any deviations in observed scores are
measurement error. In social sciences, speciGc functions generating the data are usually
unknown, and even an appropriate functional form for describing the data is diCcult
to choose. Hence, a technique that does not impose rigid parametric assumptions about
the dependence of scores and time is warranted. An approach is the use of a so-called
smoother. Smoothing in the Tucker3 or CP model can be performed by smoothing the
raw data, hence the various univariate series per subject and variable, before analysis by
the unconstrained Tucker3 or CP model. By doing this, one aims at (partly) eliminating
measurement error from the data. Alternatively, one could constrain the component
scores in the Tucker3 or CP model to be smooth and thus Gt a constrained model
to the raw data. One hopes that the thus Gtted model covers less measurement error
than its unconstrained counterpart. Eventually, in both approaches, one aims at Gtting
models that has a smaller degree of overall error than the unconstrained counterparts.
In the case of growth data, it might be useful to combine smoothness constraints with
monotonicity constraints. Fortunately, the question which of the two approaches to
take is trivialised in an important class of cases. As will be shown in the following,
Gtting the smooth descriptions of the observed data by the unconstrained Tucker3 or
CP model is equivalent to Gtting the Tucker3 or CP model with smoothness constraints
in a particular class of cases.
To facilitate the explanation, it is assumed that the variable scores are gathered at the

same time points for all subjects. The latter is not strictly necessary in a smoothness
constrained Tucker3 or CP, as will be explained in the Discussion section.

3.2. The choice of a smoother

A smoother is used to describe a response measurement as a smooth function of one
or more predictor measurements (Hastie and Tibshirani, 1990), usually by so-called
local averaging. In our applications, the predictor is the time at which a measurement
is taken. Local averaging aims at averaging the observed measurements associated
with predictor values close to each other (i.e., in each others neighbourhood). The
diDerent types of smoothers mainly diDer in their method of averaging. The size of
the neighbourhood inMuences the smoothness, and the accuracy: a large neighbourhood
leads to an estimate with low variance (i.e., high smoothness) but high potential bias
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(i.e., low accuracy), whereas the opposite holds for small neighbourhoods (Hastie and
Tibshirani, 1990).
Hastie and Tibshirani (1990) and Ramsay and Silverman (1997) oDer overviews of

diDerent smoothers and their properties. Polynomial regression splines form a class of
smoothers that is computationally convenient, and they will be used here. Polynomial
regression splines are constructed from diDerent polynomial pieces, which are joined at
certain predictor values, the knots. A popular type of polynomial splines are B-splines
(De Boor, 1978), which can be used easily for smoothing the data before analysis
(see Alsberg and Kvalheim (1993) for an example involving three-way data). Mono-
tone smoothness constraints, which can be useful in longitudinal applications, can be
imposed by using I-splines (Ramsay, 1988).
B-splines (basis splines) are non-negative basis functions. The degree (d) of a

B-spline is the degree of the polynomial pieces on which it is based. Each B-spline
is determined by its degree and by its knot sequence. The knots are positioned in the
domain between the minimal value of the predictor (tmin) and the maximal value of
the predictor (tmax). If they are of equal degree and they are positioned equidistantly,
the basis functions are equal in size and shape. The polynomial pieces join at d inner
knots, and at these joining points, the derivative up to order d− 1 is continuous. The
number of non-zero B-splines (N ) on the domain tmin to tmax is equal to the total
number of knots plus the degree of the polynomial minus 1. A B-spline is positive on
a domain spanned by d + 2 knots, and everywhere else it is zero. Any degree of the
polynomial can be chosen. Given the degree and the location of the knots, B-splines
can be deGned by a recursive formula (De Boor, 1978).
Usually, a set of response measurements collected in y (K×1) is to be approximated

by linear combinations of the B-splines, that are evaluated in the values of the predictor
t. Let Bs denote a (K×N ) B-spline matrix, in which the nth column contains the values
of the nth B-spline that is evaluated in all values of the predictor t (K×1); let w (N×1)
denote the vector with weights for the N B-splines, and ŷ the vector with estimated
response measurements, which is called the smooth in the sequel, then

ŷ = BSw: (3)

I-splines (integrated splines; Ramsay, 1988) are monotonically increasing basis func-
tions. They are based on integrated M-splines, which are proportional to B-splines.
Because M-splines are non-negative everywhere, the integrated M-splines are a natural
basis for monotone splines. Since bases for I-splines are monotonically increasing, a
non-negativity constraint on the set of coeCcients of the I-splines leads to monotoni-
cally non-decreasing estimated response variables.
The use of B-splines and I-splines requires the choice of the ‘smoothing parameters’,

that is the degree of the splines and the number and the position of the knots. Com-
monly, the degree of the splines is Gxed. For B-splines, a popular choice is a third
degree B-spline (Hastie and Tibshirani, 1990; p. 22); smoothers based on higher degree
splines tend to oscillate wildly (Van Rijckevorsel, 1988). Ramsay (1988) claims that
the use of low (e.g., second) degree I-splines generally suCces. While Gxing the de-
gree of the splines, the number and location of knots are used to inMuence the smooth.
More knots in a region lead to a greater Mexibility of estimation in that region. The
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smoothing parameters can be selected by subjective comparison of the observed and
several estimated response variables. Automatic selection methods for the smoothing
parameters are also available (see Hastie and Tibshirani, 1990, pp. 42–52). Although
the usefulness of these methods is debatable, these methods can be helpful in deciding
about the number of knots. A commonly used procedure is cross-validation by means
of the leave-one-out approach. Hastie and Tibshirani (1990, pp. 46–48) showed that
the cross-validation sum of squares for linear smoothers can be computed by

CV(�) =
1
K

K∑
k=1

(
yk − ŷ k
1− S(�)kk

)2
; (4)

where � denotes the smoothing parameters (i.e., the degree, and the number and the
positions of the knots), and S(�)kk are the diagonal elements of the projection-matrix
S(�), which relates ŷ to y. To select one’s smoothing parameters, one may search
those that minimise CV(�).
As to choosing the position of the knots, a simple approach is to position them

uniformly over the predictor domain. Alternatively, one could place them at appropri-
ate quantiles of the predictor variable. Knot optimisation techniques exist (De Boor,
1978), but they are only useful if the function to be estimated has distinct and known
discontinuities (Van Rijckevorsel, 1988).

3.3. How to smooth in the Tucker3 and CP?

Smoothing in a Tucker3 or CP analysis can be performed by smoothing the raw
data before an unconstrained Tucker3 or CP analysis, or by constraining the component
scores to be smooth in the (constrained) Tucker3 or CP model. Ramsay and Silverman
(1997, Chap. 7) used the latter approach in a functional PCA by applying a roughness
penalty to the estimated principal components. We choose a diDerent approach, which
has the advantage that smoothing the raw data and smoothing the components lead to
the same estimated model parameters. We propose to impose a smoothness constraint
on the occasion component matrix C by constraining C (K × R) such that it can be
written as BsU, for a B-spline matrix Bs (K × N ) and a particular weight matrix
U (N ×R), and where N¿R. As a result the Tucker3 and CP model with smoothness
constraints on the occasion component matrix can be written as

Xc = BSUGc(B′ ⊗ A′) + Ec; (5)

where Xc denote the K × IJ matricised data array X; Bs (K × N ) a B-spline ma-
trix, U (N × R) (N¿R) a weight matrix, A (I × P) and B (J × Q) component ma-
trices, Gc (R × PQ) the supermatrix containing the lateral slices of the core array
G (P × Q × R), and Ec (K × IJ ) the matricised error array E; in the case of the
CP model with smoothness constraints the core array G is Gxed at superidentity. The
B-spline bases are computed using ‘time’ as a predictor. Note that the same basis is
used for all components. In fact, formula (3) is used repeatedly for r = 1; : : : ; R as
cr = BSur . If monotonicity restrictions are required on the component matrix C, it is
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proposed to replace the B-splines basis matrix by an I-splines basis matrix, and to
impose non-negativity constraints on the weights.
The Tucker3 and CP models with smoothness constraints are Gtted to data by min-

imising the sum of squared residuals, just as their unconstrained counterpart. Now, it
will be shown that restricting the component matrix C to be in the column space of
the B-spline matrix Bs in the Tucker3 or CP is equivalent to analysing the projection
of the data matrix Xc on Bs by the unrestricted Tucker3 or CP, which in turn comes
down to Tucker3 or CP applied to the B-spline smoothed data. To show this, we re-
place Bs by the QR-factorisation Bs =QR (see Golub and Van Loan, 1989, p. 211),
with Q (K × N ) columnwise orthonormal, and R (N × N ) a square upper triangular
matrix. Note that since Bs is of full rank, R is non-singular. Then, the function to be
minimised is

f1(U;A;B;Gc) = ‖Xc −QRUGc(B′ ⊗ A′)‖2; (6)

with Xc (K × IJ ) the matricised data array X, and Gc (R×PQ) the matricised core in
Tucker3, or the matricised superidentity array in the case of CP. As already noted by
Carroll et al. (1980, p. 7), minimisation of (6) is equivalent to minimising

f2(Ũ;A;B;Gc) = ‖Q′Xc − ŨGc(B′ ⊗ A′)‖2; (7)

with Ũ (N × R) written for RU.
It will now be shown that minimising (7) is equivalent to analysing the smoothed

version of X (using the B-spline matrix Bs) by unrestricted Tucker3 or CP. Smoothing
the data matrix Xc by means of B-splines before Tucker3 or CP analysis is achieved
by minimising

f3(W) = ‖Xc − BsW‖2: (8)

The optimal weights W are given by (BS′BS)−1BS′Xc, hence the smooth of Xc is
X̂c = BS(BS′BS)−1BS′Xc, the projection of Xc on Bs. Analysing this projection by
Tucker3 or CP comes down to minimising

f4(A;B;C;Gc) = |X̂c − CGc(B′ ⊗ A′)‖2

= ‖Bs(Bs′Bs)−1Bs′Xc − CGc(B′ ⊗ A′)‖2: (9)

Let Bs be replaced by the QR-factorisation as Bs=QR. Note that R is non-singular.
Minimisation of (9) comes down to minimising

f4(A;B;C;Gc) = ‖QQ′Xc − CGc(B′ ⊗ A′)‖2: (10)

The optimal C will be in the column space of Q, hence C can be written as QC̃, and
minimising (10) is equivalent to minimising

f5(A;B; C̃;G) = ‖QQ′Xc −QC̃Gc(B′ ⊗ A′)‖2

= ‖Q(Q′Xc − C̃Gc(B′ ⊗ A′))‖2

= ‖Q′Xc − C̃Gc(B′ ⊗ A′)‖2; (11)
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(Kiers and Harshman, 1997). Clearly, minimising (11) is equivalent to minimising (7);
the solutions for A;B, and Gc of (7), and of (11) are equivalent; the solution for Ũ in
(7) is equivalent to that for C̃ in (11). Because Ũ leads to C by C=BsU=QRU=QŨ,
and C̃ leads to C by C = QC̃, we see that both methods give the same solution for
C as well. It has thus been shown that analysing the original data by means of a
smooth constrained Tucker3 or CP is equivalent to analysing smoothed data by the
unconstrained Tucker3 or CP, as long as smoothness is deGned in terms of unrestricted
linear combinations of B-splines.
The matrix Q′Xc in (11) is a compressed version of the smooth matrix

BS(BS′BS)−1BS′Xc (see Kiers and Harshman, 1997). Since the matrix Q′Xc (N × IJ )
is (much) smaller than the matrix X̂c, minimisation of (11) over A; B; C̃, and Gc can
be considerably faster than minimisation of (9) over A; B; C, and Gc. Moreover, the
use of (unrestricted) splines on the data rather than on the components may be easier
to handle, since standard software can be used to obtain the smooths and to analyse
the smooths subsequently by Tucker3 or CP. Incidentally, if I ¿ JN or J ¿ IN , min-
imisation of (11) can be speeded up further by applying a procedure discussed in Kiers
and Harshman (1997, p. 37).
Constraining the B-spline or I-spline weights imposes constraints on the smooth. If

I-spline weights are restricted to non-negativity, the smooth is non-negative and positive
monotone increasing. The smooth can be restricted to be non-negative by requiring the
B-splines weights to be non-negative. (Optimal) non-negative weights for the splines
can be found by treating the problem as a non-negative least squares problem, which
is solved by Lawson and Hanson (1974, pp. 158–164). Note that if spline weights are
constrained, imposing a spline basis on a component matrix will have a diDerent eDect
from imposing a spline basis on the data matrix. If a spline basis is imposed on a
component matrix with constrained weights, we have to minimise (6) over U;A;B,
and Gc, subject to appropriate constraints. If a spline basis is imposed on the data
matrix with constrained weightsW, the constrained smooths will generally not be given
by BS(BS′BS)1BS′Xc, and the equivalence of minimising (11) and f6(A;B;C;Gc)=
‖X̂c − CGc(B′ ⊗ A′)‖2 no longer holds.
In the case of modelling functional three-way data, it is expected that a smoothness

constrained Tucker3 or CP model is better interpretable and has a smaller degree of
overall error than its unconstrained counterparts, and that the smoothness constrained
Tucker3 and CP models take less computing time per iteration. Furthermore, it is
expected that the algorithm to Gt a smoothness constrained CP will land in a local
minimum less frequently, especially in the case of high multicollinearity of the compo-
nent matrices. The usefulness of smoothness constraints are examined in a simulation
experiment and an empirical example.

4. Comparisons of the restricted with unrestricted Tucker3 and CP

To test the usefulness of smoothing in Tucker3 and CP, we performed a simulation
study on the basis of 960 data sets for the Tucker3 model, and 480 for the CP model.
It is examined to what extent an underlying structure is recovered by unconstrained
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and smoothness constrained CP or Tucker3 analyses from data with smooth structure.
Additionally, the computational properties of the constrained and unconstrained models
are examined. The algorithms were programmed in MATLAB (2001), and the analyses
were carried out on a Pentium 333 Mhz 256 Mb RAM personal computer in a Windows
98 environment.

4.1. Construction of the data for the simulation study

4.1.1. CP data for the simulation study
For the CP simulation study, 480 data sets were constructed with known CP structure

with smooth components in one mode, and various data sizes, numbers of components,
degrees of multicollinearity in A;B, and C, and error levels. The data matrices Xc (K×
IJ ) were constructed according to

Xc = CoH(Bo′ ⊗ Ao
′) + �Nc; (12)

where Ao (I ×Q); Bo (J ×Q), and Co (K ×Q) are ‘true’ component matrices for the
respective three-modes, H (Q×Q2) is the matrix version of the superdiagonal three-way
array H; � is a multiplication coeCcient, and Nc (K×IJ ) denotes the matrix expression
of the three-way error array N (I × J × K).
The data sizes I; J; K were 10,10,20; 10,10,50; 10,50,20 and 10,50,50. The numbers

of components were two and four. The elements of the matrices Ao and Bo were
drawn randomly from the uniform [0,1] distribution (mild multicollinearity condition),
and from the uniform [0.5,1.5] distribution (severe multicollinearity condition). Every
component of Co followed a smooth function evaluated at K equidistant points (to be
denoted by t1; : : : ; tK). Half of the components of Co followed the Grst order derivative
to the growth parameter of an exponential function plus a constant, and half of the
components followed a logistic function plus a constant. The constant was added to
manipulate the condition number of Co. The parameters were varied so that in the mild
multicollinearity condition of Co the condition numbers for two and four components
of Co were 2 and 6, respectively, whereas in the severe multicollinearity condition
the condition numbers were 6 and 42. The values of Nc were drawn randomly from
the standard normal distribution and multiplied by a scalar �, which inMuences the
variance of the distribution of the error part. The scalar � was chosen so that the
expected percentages of error sums of squares in X were 2%, 26%, or 50%. The
number of replications was Gve. The design was fully crossed, leading to a total of
four (data sizes) × two (numbers of components) × two (degrees of multicollinearity
of Ao and Bo)× two (degrees of multicollinearity of Co)× three (error levels) × Gve
(replications) = 480 matrices.

4.1.2. Tucker3 data for the simulation study
For the Tucker3 simulation study, 960 data sets were constructed with known

Tucker3 model structure with smooth components in one mode, and various data sizes,
numbers of components, degrees of multicollinearity in the core, and error levels. The
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data matrices were constructed as

Xc = CoGo(Bo′ ⊗ Ao
′) + �Nc; (13)

where Ao (I × P); Bo (J × Q), and Co (K × R) are ‘true’ component matrices for
the respective three modes, Go(R × PQ) is the matricised version of the three-way
core array Go (the subscript ‘c’ is omitted for notational simplicity), � is a multiplica-
tion coeCcient, and Nc (K × IJ ) denotes the matrix expression of the three-way error
array N.
The data sizes of the data array X I; J; K were 10,10,20; 10,20,20; 10,10,50; 10,50,20;

10,20,50; 30,20,20; 10,50,50 and 30,20,50. The numbers of components P;Q; R for
the three modes were 2,2,2; 2,4,2; 2,2,4 and 4,4,4. The component matrices Ao;Bo,
and Co were chosen column-wise orthonormal. The components of the smooth Co

followed the same functions as in the CP simulation study, except for the fact that
orthonormal bases of the matrices concerned were used. The matrices Ao and Bo were
obtained by taking the orthonormal bases of a matrix with equal size as Ao and Bo
with elements drawn randomly from the uniform [0,1] distribution. These choices do
not place severe limitations on the simulation study, since the component matrices in
the Tucker3 solution, and hence any set of ‘true’ component matrices of a Tucker3
model in a simulation study, can be transformed to orthonormality, provided that this
transformation is compensated in the core. However, transformation of a multicollinear
true component matrix to orthonormality and compensation for this in the core array
would lead to a multicollinear core. For example, suppose we have a matrix C and
G, where cond(C)= 100, and G is row-wise orthonormal so that cond(G) is 1, where
cond() means the condition number. Orthonormalization of C into C̃, and compensation
for the orthonormalization in G by transforming G into G̃ results in cond(C̃)=1. This
can be achieved by taking the QR-decomposition of C=QR, deGning C̃=Q=CR−1,
and G̃ = RG, and, as a result, cond(G̃) = cond(RG) = 100. Therefore, to represent a
reasonable range of possible data matrices, the degree of multicollinearity of the core
is varied in this study. The elements of Go were drawn randomly from the uniform
[0,1] distribution in the low multicollinearity condition, and from the uniform [0.5,1.5]
distribution in the high multicollinearity condition. The error level was varied in the
same way as in the CP simulation study, that is the expected percentages of error sum
of squares of X were 2%, 26%, and 50%. The number of replications in each condition
was Gve. The design was fully crossed, leading to a total of eight (data sizes) × four
(numbers of components) × two (degrees of multicollinearity of Go)× three (error
levels) × Gve (replications) = 960 matrices.

4.2. Analyses of simulation data

The simulated data sets Xc were all analysed by one unconstrained CP or Tucker3
analysis, and by two CP or Tucker3 analyses with smoothness constraints. SpeciGcally,
in the analyses with smoothness constraints, the estimated component matrix C was
restricted to be in the column space of a set of B-splines Bs of degree three. The knots
were equidistantly placed on the time interval t1; : : : ; tK , with a knot at t1 and one at
tK . The CP or Tucker3 analyses with smoothness constraints were performed on the
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compressed data array (see (11)) instead of the full data array to reduce computation
time. In one of the analyses with smoothness constraints, the number of knots was
chosen so that the sum of the cross-validation sum of squares, CV(�), see (4), over
columns of Xc was minimised. That is, for a Gxed number of knots, the CV(�) was
computed for each column of Xc, and then the sum of the CV(�)’s obtained in this
way was computed. The sum of the CV(�)’s was computed successively for solutions
based on 2; 3; : : : ; tK knots, and the number of knots that goes with the minimal sum
of CV(�)’s was chosen. The CP and Tucker3 analyses with these restrictions are
referred to as CP-Bs(CV) and Tucker3-Bs(CV), respectively. In the other analysis with
smoothness constraints, the number B-spline knots was Gxed at three. This number
is somewhat arbitrary, although we chose deliberately a small number of knots to
prevent overGtting. The CP and Tucker3 analysis with this restriction are referred to
as CP-Bs(3) and Tucker3-Bs(3), respectively. The CP algorithm of Harshman (1970),
and Carroll and Chang (1970) was used to Gt each CP model to data. Each Tucker3
analysis was performed using the eCcient algorithm by Andersson and Bro (1998). The
CP and Tucker3 algorithms were run from Gve diDerent starts, one started rationally
and four randomly, to reduce the chance of missing the global minimum for each
analysis. The rationally started runs were started with the parameters resulting from
Tucker’s Method I (Tucker, 1966). The convergence criterion was set at 10−6.

4.3. Criteria of interest

The main interest in this study was how well the original component matrices (and
core array in the case of the Tucker3 model) were recovered by each of the methods.
DiDerent comparison criteria are used for the CP and the Tucker3 analyses, due to the
disparity of transformational freedom.

4.3.1. CP analyses: criteria of interest
In the CP analyses, comparing the estimated component matrices and the original

component matrices has to take into account possible permutations, rescalings, and sign
reversions of the estimated component matrices. Following Kiers (1998), and Mitchell
and Burdick (1994), we compared the CP solutions by computing the cosines between
the tensor products aor ⊗ bor ⊗ cor ; r=1; : : : ; R, for the original component matrices and,
âr ⊗ b̂r ⊗ ĉr ; r = 1; : : : ; R, for the estimated component matrices, where the subscript r
denotes the rth column of the matrix at hand. Given a data array X that is represented
by a set of R tensor products of components, which are collected in component matrices
A;B and C, other sets of component matrices that yield the same representation of X
are constituted of the same such tensor products, although possibly in a diDerent order.
Therefore, a useful comparison measure of the original and the estimated component
matrices is the mean of the R cosines between the tensor products of the original
components and the tensor products of the estimated components, with the latter tensor
products ordered such that they lead to the highest mean of cosines. The cosines are
computed as Tucker’s coeCcient of congruence (Tucker, 1951), and the highest mean
of cosines is denoted by ’.
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One rationally started and four randomly started runs of the CP analysis were carried
out. The runs which led to a sub-optimal solution (deGned here as a solution with a
function value higher than 1.001 times the Gt of the optimal solution, out of the Gve
runs) were counted to get an impression of the sensitivity to local minima of the
constrained and unconstrained analyses. The number of iterations and the computing
time per analysis were recorded to get an idea of the computational complexity.

4.3.2. Tucker3 analyses: criteria of interest
To investigate how well the original matrices of the Tucker3 model are recovered,

the recovery of both the column spaces of the component matrices, and the interaction
weights of the components are of importance. The column spaces of the component
matrices are compared as follows: a comparison of the estimated to the underlying
component matrices has to take into account the fact that the component matrices can
be transformed without loss of Gt, provided that such transformations are compensated
in the core. Therefore, the estimated component matrices Â; B̂; and Ĉ are transformed
towards the original component matrices Ao; Bo, and Co by postmultiplying Â; B̂, and
Ĉ by the matrices S; T, and V, espectively. The transformation matrices S; T, and
V are found by minimising the Euclidean distance between the original component
matrices Ao;Bo, and Co and the transformed component matrices ÂS; B̂T, and ĈV,
respectively. The transformations are compensated in the estimated core matrix Ĝ by
computing the transformed core array G̃ = V−1Ĝ((T′)−1 ⊗ (S′)−1). The component
matrices ÂS; B̂T, and ĈV are compared to the original component matrices Ao;Bo,
and Co by computing the proportion of agreement (PAA; PAB, and PAC, respectively)
as

PAA = 1− ‖Ao − ÂS‖2
‖Ao‖2 ; PAB = 1− ‖Bo − B̂T‖2

‖Bo‖2 ;

PAC = 1− ‖Co − ĈV‖2
‖Co‖2 : (14)

The average of PAA;PAB, and PAC, denoted as PAABC, is used as the measure of
agreement between the original and the estimated component matrices.
The recovery of the interaction weigths of the components is examined by comparing

the transformed core matrix G̃ to the original core matrix Go via the proportion of
agreement (PAG):

PAG = 1− ‖Go − G̃c‖2
‖Go‖2 : (15)

Note that the transformed component matrices are optimally transformed toward the
original component matrices, whereas the associated core matrix is not optimally trans-
formed towards the original core matrix. Hence, it can be expected that the PAG is
smaller than the PAABC in the case of a Tucker3 solution deviating from the original
matrices. The number of iterations and the computing time per analysis were recorded
as a measure of computational complexity.
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Fig. 1. Median ’-values of CP, CP-Bs(CV) and CP-Bs(3) per condition. ‘Multic.’ denotes ‘multicollinearity’.

4.4. Results of the simulation experiments

4.4.1. Results of the CP simulation experiment
The original component matrices and the estimated component matrices, as obtained

by unconstrained CP analysis (CP) and CP with smoothness constraints (CP-Bs(CV)
and CP-Bs(3)), are compared by inspecting the ’-values. Recall that the ’-value is
the highest mean of cosines between the tensor products of the original components
and the tensor products of the estimated components. The ’-values have a nega-
tively skewed distribution over the replications within each condition. The median
’-values of the three analysis methods are plotted overall as well as per main condition
in Fig. 1.
The following observations can be made in Fig. 1. The median ’-value of the

constrained CP solutions is larger than the median ’-value of the unconstrained CP
solutions, whereas virtually no diDerence was found between the median ’-value of
CP-Bs(CV) and CP-Bs(3). Furthermore, the diDerence between the unconstrained and
the constrained CP solutions gets clearly larger with increasing condition numbers of
Co, and with increasing error level, and varies in a more complicated manner with data
size (see Fig. 1).
A repeated measurement ANOVA was performed to test whether the observed ef-

fects of type of analysis and of the interactions of analysis method with the various
manipulated factors could be distinguished from random Muctuations. To correct for the
deviation from normality for the repeated measurement ANOVA, the ’-values were
transformed into ’̃= log(’=(1−’)) before analysis, where the two observed negative
’-values were excluded from the analysis. The transformation of negatively skewed
’-values on the interval [0,1] results in approximately normally distributed ’̃-values
on the interval [−∞;∞]. The eDects which were described in the previous paragraph,
were all found to be signiGcant at �= 0:001 in the repeated measurement ANOVA of
the ’̃-values.
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Table 1
Frequencies of good (’¿ 0:75) and bad (’¡ 0:75) solution per analysis method (CP with CP-Bs(CV) and
CP with CP-Bs(3))

CP-Bs(CV) CP-Bs(3)

Good Bad Good Bad

CP Good 348 3 348 3
Bad 43 86 40 89

In addition to the ’-values of the three analysis methods in the diDerent conditions,
the number of cases in which the unconstrained CP leads to a ‘good’ solution, and
the constrained CP to a ‘bad’ solution is of interest. On the basis of inspection of a
number of plots of original and estimated components and the accompanying ’-value,
solutions with a ’-value smaller than 0.75 were considered to be bad. The resulting
frequencies according to this criterion are presented in Table 1.
In a large number of cases, both the constrained and the unconstrained CP model

lead to a good solution. The most important Gnding is that if the unconstrained CP
leads to a bad solution, the constrained CP model leads to a good solution in about
33% of the cases. Furthermore, it is rarely found that the unconstrained CP model leads
to a good solution and the constrained CP model to a bad solution. The proportion of
bad solutions, as well as the diDerences between the constrained and unconstrained CP
model increases with error level, and condition number of Co. Thus, on the basis of
these results we can conclude that, if there is a smooth underlying structure, B-spline
constrained CP is helpful in a fair number of cases, and that there is very little risk in
replacing unconstrained CP by CP with smoothness constraints. Moreover, the choice
for the number of knots does not seem crucial.
DiDerences between the constrained and unconstrained CP analyses in sensitivity

to local minima were also studied. The constrained CP analyses led to a sub-optimal
solution a little less frequently (both 0.10 out of Gve starts on average) than the
unconstrained analyses (0.16 on average). No diDerence in average numbers of local
minima has been found between the rationally and the randomly started runs. The
number of local minima increased with increasing error level, whereas no substantial
interaction between any other of the manipulated factors and type of analysis was
found.
The number of iterations and computing time of the optimal solution of the con-

strained and unconstrained CP analyses were inspected to get an idea of the com-
putational complexity. The average computing time per analyses of the unconstrained
CP analysis (2:11 s) was much longer than of the constrained CP analyses (0:65 s
for CP-Bs(CV) and 0:48 s CP-Bs(3)). The most relevant independent variable related
to computing time is the data size, where larger data sizes lead to longer computing
time. The observed interaction between type of analysis and data size suggests that,
not surprisingly, smoothness constrained CP analyses are particularly useful to reduce
computing time in the case of a large number of elements in the occasion mode. For
example, the mean computing time for data size 10,50,50 is 5:45 s. for CP analysis
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Fig. 2. Mean PAABC of Tucker3, Tucker3-Bs(CV) and Tucker3-Bs(3) per condition. ‘Multic.’
denotes ‘multicollinearity’.

and 0.87 for CP-Bs(CV) and 0:78 s CP-Bs(3). The average number of iterations of
the CP analyses (130) was much lower than of the CP-Bs(CV) (200) and CP-Bs(3)
(219). The diDerences in mean number of iterations between the unconstrained CP
analysis and the smoothness constrained CP analysis gets larger with increasing condi-
tion number (both of C0 and of A0=B0), and increasing number of components, but is
not inMuenced by error level or data size. All eDects reported in this section appeared
to be signiGcant (p¡ 0:01) in the repeated measurement ANOVA of the number of
iterations and of the computing time.

4.5. Results of the Tucker3 simulation experiment

The original component matrices and the original core matrix were compared to the
estimated component matrices and the estimated core matrix by means of the proportion
of agreement of the component matrices and the core matrix, the PAABC, which is based
on the average of the expressions in (14), and the PAG, (15), respectively. The average
PAABC values per analysis method give a good impression of the condition eDects, and
they are plotted per condition in Fig. 2.
As can be seen in Fig. 2, the PAABC of Tucker3-Bs(CV) is generally higher than

that of Tucker3 and Tucker3-Bs(3), whereas almost no diDerence was found between
the PAABC of Tucker3 and Tucker3-Bs(3), over all conditions. The diDerence in PAABC
between the three methods of analysis increases with increasing core size, error per-
centage, and degree of multicollinearity of the core, and varies with data size. The
gain of the smooth Tucker3 over the unconstrained Tucker3 is largest in the case of a
relatively large size of the smooth mode, and relatively small sizes of the non-smooth
modes, for example, data size 10,10,50. If the size of the smooth mode is smaller than
the size of one of the non-smooth modes, the performance of Tucker3 is better than
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Table 2
Frequencies of good (PAABC¿ 0:9 and PAG¿ 0:9) and bad solution per analysis method (Tucker3 with
Tucker3-BS(CV) and Tucker3 with Tucker3-BS(3))

Tucker3-Bs(CV) Tucker3-Bs(3)

Good Bad Good Bad

Tucker3 Good 811 7 808 10
Bad 63 79 62 80

that of the smooth Tucker3 (e.g., data sizes 30,20,20 and 10,50,20). Tucker3 clearly
outperforms Tucker3-Bs(3) in the case of low error level (2%) and low multicollinear-
ity of the core, whereas Tucker3-Bs(CV) performs best of the three. In high error level
and high multicollinearity conditions, Tucker3-Bs(3) performs better than Tucker3, but
Tucker3-Bs(CV) gives best recovery of the component matrices. This Gnding suggests
that the smoothness restricted Tucker3 is sensitive to the choice of number of knots,
and that in ‘easy conditions’ an unconstrained Tucker3 model performs even better
than a smoothness constrained Tucker3 model with a non-optimal number of knots.
A repeated measurement ANOVA was performed to test whether the observed ef-

fects of type of analysis and of the interactions of analysis method with the various
manipulated factors could be distinguished from random Muctuations. For the repeated
measurement ANOVA, the PAABC-values were transformed to correct for the observed
heterogeneity of variances for the groups by computing P̃ÃABC = arcsin(PAABC)1=2

(Stevens, 1992). The eDects that were explicitly described in the previous paragraph,
were found to be signiGcant at �=0:001 in the repeated measurement ANOVA of the
P̃ÃABC-values.
The estimated component matrices Â; B̂, and Ĉ are optimally transformed to the

original component matrices Ao;Bo, and Co, whereas the transformation of the esti-
mated core matrix Ĝ is so that the transformations of the original component matrices
are compensated. Therefore, a non-optimal recovery will be expressed in a low PAG
value, and possibly in a low PAABC value. The PAG values appear highly negatively
skewed, with some extremely low values, hence the median PAG values give a better
insight into the condition eDects than the mean PAG values. The median PAG values
per condition appeared to be high (¿ 0:985), and they hardly diDer from each other,
neither between type of analysis nor between conditions. The extremely low values
all occurred in the ‘more diCcult’ conditions, namely large core size, small data size,
high condition number of the core Go, and high error level. The Tucker3 analysis
showed more extremely low PAG values than the Tucker3-Bs(CV) and Tucker3-Bs(3)
analyses, as is indicated by, for example, the percentages of the cases with PAG values
lower than 0.5 of 4.7%, 1.1% and 1.3%, respectively.
A second way of comparing the achievement of the three methods of analysis is to in-

spect the number of cases that are recovered well by the diDerent methods. On the basis
of inspection of a number of original and estimated components, cores and associated
PAABC and PAG solutions with a PAABC or a PAG smaller than 0.9 were considered to
be bad. The resulting frequencies of good and bad solutions are presented in Table 2. It
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can be seen in this table that if Tucker3 leads to a bad solution, Tucker3-Bs(CV) leads
to a good solution in 44% of the cases. In only 1% of the cases, the Tucker3-Bs(CV)
is bad, while the Tucker3 solution is good. According to the frequencies in Table 2,
Tucker3-Bs(3) performs almost as well as Tucker3-Bs(CV).
Although the number of solutions that were reasonably recovered by Tucker3-Bs(3)

does not deviate much from the number of reasonable recoveries using Tucker3-
Bs(CV), the smoothing technique is sensitive to the choice for the number of knots,
as indicated by the better recovery of the underlying component structure by Tucker3-
Bs(CV) than of Tucker3-Bs(3). Thus, we can conclude on the basis of these results,
that if there is a smooth underlying structure, a smoothness constrained Tucker3 model
is helpful in a reasonable number of cases, and that, conversely, there is very little risk
in using smoothness constrained instead of unconstrained Tucker3. Tucker3-Bs(CV),
the method with optimal knot selection, performed best, and is therefore preferable to
Tucker3-Bs(3).
The computational complexity of the three Tucker3 analysis types was evaluated

via the number of iterations and computing time of the optimal solution. The average
computing time per analyses of the unconstrained Tucker3 analysis (0:05 s) was longer
than of the Tucker3-Bs(CV) and Tucker3-Bs(3) analyses (both 0:01 s). The average
number of iterations of the unconstrained Tucker3 analysis (8) is somewhat higher
than of the smoothness constrained Tucker3 analyses (both 5). Both the average com-
puting time and the number of iterations increases with increasing error level, core
size, condition number of the core and the core size. The eDects of the independent
variables on the average computing time and the number of iterations are larger for
the unconstrained Tucker3 analyses than for the constrained ones, and hence an inter-
action is observed between type of analysis and each of the independent variables. All
eDects reported in this section appeared to be signiGcant (p¡ 0:01) in the repeated
measurement ANOVA of the number of iterations and of the computing time.

5. Example: learning to read study

In this section, an empirical example is presented to illustrate the use of a smoothness
constrained Tucker3 model, and monotonicity constrainted data in an unconstrained
Tucker3 model. The degree of overall error of the models is investigated and compared
by using cross-validation.
The learning to read study (Bus and Kroonenberg, 1982) investigates the learning

process of reading. Seven pupils were tested weekly (except for holidays) on 37 occa-
sions by means of Gve diDerent tests, which intended to measure diDerent aspects of
reading ability. The primary research questions were focused on whether the develop-
ment of the pupils per test and over tests was equal over time.
Before analysis, the raw scores were rescaled so that the scores of the Gve tests

ranged from zero to one. As a result, the scores are comparable between tests, while
all the diDerences in variation were maintained in the data. The rescaled scores were
collected in the data array Y (7× 5× 37) and analysed by the unconstrained Tucker3
model.
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Table 3
Subject component scores of the unconstrained Tucker3 solution

A (subjects) First component Second component

1 1.06 −0:42
2 0.96 −0:30
3 0.99 −0:38
4 1.28 1.00
5 1.16 0.19
6 1.09 −0:01
7 0.89 −0:42

The scores are viewed as evaluations of growth curves, which are assumed to follow
some smooth curves in the course of time. Therefore, in the second analysis, the scores
on the components of the occasion mode (C) are constrained to follow smooth curves.
A smoothness constrained Tucker3 model (T3-Bs) is Gtted to Yc by minimising (11),
which is equivalent to minimising (6). The degree of the B-spline was Gxed at three.
The knots were placed equidistantly, and their number was chosen such that the sum of
cross-validation sum of squares (CV(�), see (4)) of the columns of Yc was minimised,
by computing the sum of CV(�)’s related to B-splines with 2; 3; : : : ; 10 knots, and
choosing the number of knots that goes with the minimal sum of CV(�)’s.
Because the data pertain to learning data, it might be reasonable to assume that

the true scores per variable per subject are non-decreasing on subsequent occasions,
assuming that the reading ability of the child never decreases in the course of time.
To model non-decreasing true scores, a smoothed data matrix Ỹc = BiW is obtained
by minimising ‖Yc − BiW‖2, where Bi is an I-spline matrix and W the weights for
the I-splines that are restricted to non-negativity, and as a result Ỹc is restricted in
the sense that ỹ ijk6 ỹ ij(k+1), for all i = 1; : : : ; 7; j = 1; : : : ; 5, and k = 1; : : : ; 36. An
unconstrained Tucker3 analysis is applied to these smoothed data. This analysis will be
referred to as T3-Bi. The degree of the I-spline matrix was Gxed at two. The number
of knots was selected by subjective comparison of the observed and several estimated
response variables.
For all three analyses, the numbers of components were chosen to be 2,1, and 2 for

the subject, variable and occasion modes, respectively. As will be explained, the latter
model is stable, parsimonious, Gts the data well, and the solution is well interpretable.
The Gt of the unconstrained Tucker3 model is 96.26%. The estimated core matrix Ga

of the model positioned in principal axes orientation was diagonal. The core matrix was
transformed to identity, and this rescaling was compensated in the subject component
matrix. The columns of the component matrices were rescaled such that the solution
was easy to interpret (for example, the maximum component value of the variables
was rescaled to 1). The component matrices for the subjects (A) and the variables (B)
of the unconstrained Tucker3 of Y are presented in Tables 3 and 4. The occasions
component scores are plotted in Fig. 3.
To interpret the component scores, we start with the component scores for the occa-

sion mode. In Fig. 3, it can be seen that the component scores of the Grst component
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Table 4
Variable component scores of the unconstrained Tucker3 solution

B (variables)

Letter knowledge 0.91
Regular orthographic short words 1.00
Regular orthographic long words 0.87
Regular orthographic long and short words within context 0.99
Irregular orthographic long and short words 0.58
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Fig. 3. Component scores for occasions resulting from the unconstrained Tucker3 model (denoted by
‘Tucker3’) and the T3-Bs model; c(1) denotes the scores on the Grst component, c(2) the scores on the

second component.

(indicated by diamonds) increase gradually from week 3 to 20, and then levels oD to
an asymptote of one. The scores on the second component (indicated by circles) show
a steady increase to week 10, a steady decrease from week 10 to 20, and then levels
oD to slightly below zero. We would interpret the Grst component as indicating gen-
eral performance level, and the second component as approximately reMecting learning
rate. The latter component is not entirely interpretable as learning rate, because of the
negative component scores, which are due to the estimated model parameters, and does
not indicate that the performance decreases in the end.
The core matrix is identity, implying that the Grst component of the subject com-

ponent matrix (A) is only related to the Grst component of the occasion component
matrix (C), and the same holds for the second component of A and C; moreover the
combinations of the Grst and second components are equally weighted.
Now, the subject component matrices can be interpreted. Recall that the general

performance level of a subject (hence apart from speciGc variable eDects) is a weighted
sum of the two occasion components, which reMect general performance level and
learning rate. A relatively high score on the Grst component means that the subject
concerned performs above the general performance level. A relatively high score on
the second component implies that the subject shows a relatively fast learning rate.
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Thus, for example, Subject 4 performs by far best, as (s)he has a high performance
level and a high learning rate. Subject 4 is followed at some distance by Subject
5, as (s)he has a second position for performance level, and learning rate. Subjects
1 and 6 show approximately the same weighting for general performance level, but
Subject 1 has a lower weight for the second component. Hence, their asymptote scores
are more or less equal, but Subject 1 develops much more slowly than Subject 6. The
performance order between Subjects 1 and 3 is somewhat diCcult to see at once, as the
performance level of a subject is a weighted sum of the two occasion components, and
the weights are close to each other. One could plot the weighted occasion component
scores for the three subjects, and this would reveal that Subject 1 performs best of the
three, and Subject 2 worst.
As there is only one variable component, the relative sizes of the variable component

scores denote the diCculties of the items. The variable ‘Irregular Orthographic Long
and Short words’ is by far the most diCcult variable, as indicated by the lowest
variable component score. Hence, the scores on ‘Irregular Orthographic Long and Short
Words’ develop slowly in the course of time, compared to the other variables. The
variable component scores of the ‘Regular Orthographic Short Words’ and the ‘Regular
Orthographic Long and Short Words within Context’ are the highest variable component
scores, showing that these scores develop fastest in the course of time. The variable
component score of the ‘Letter Knowledge’ is slightly larger, and thus develops slightly
faster, than the ‘Regular Orthographic Long Words’.
The stability of the model just discussed was investigated via a split-half analysis,

following the guidelines by Kiers and Van Mechelen (2001). That is, the data were split
into two halves over the subject mode, resulting in one data set of three subjects, and
one of four subjects, to be denoted as Y1 and Y2. A Tucker3 analysis was performed
for each of the two data sets. The solutions for B and C for each of the data sets were
optimally transformed (in the least squares sense) to the solutions for B and C of the
full data set (as presented in Table 4 and Fig. 3, respectively). The two transformed
occasion component matrices obtained in this way were compared by computing the
coeCcients of congruence (Tucker, 1951; see also Section 4.3) between the columns of
the matrices. The two variable component matrices were compared analogously. The
subject component matrices were compared as follows: the two solutions for A for
each of the splits were collected in one matrix A12, in which the rows pertain to the
same subjects as in A of the full data set (as presented in Table 3). The matrix A12

was regressed on A, and the resulting transformed component matrix was compared
to A by computing the coeCcients of congruence between the two columns of the
matrices. For each of the splits, the transformations of A;B and C were compensated
in the core array. The separate split-half core arrays and the full data set core array
were compared by computing the mean absolute diDerence between the split-half core
array and the full data set core array.
The split-half procedure was repeated for every possible combination of the seven

subjects split into two groups of three and four subjects, resulting in 35 split-half anal-
yses. The mean coeCcients of congruence for the subject component matrices over
the 35 analyses was 1.000 and 0.997. The mean coeCcient of congruence for the
variable components was 0.998. The mean coeCcient of congruence for the occasion
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components was 0.996 and 0.713 for the Grst and second occasion component, re-
spectively. This implies that the stability of the subject components, the variable com-
ponent and the Grst occasion component is high, whereas the stability of the second
occasion component is moderate. The mean absolute diDerence between the split-half
core array and the full data set core array averaged over the 35 analyses was 0.000.
On the basis of these results, we conclude that the current Tucker3 model is suC-
ciently stable, given the small sample size at hand. We now turn to the results of
the smoothness constrained analyses (T3-Bs and the T3-Bi), which will be discussed
successively.
In the smooth Tucker3 analysis with B-splines, the T3-Bs, an unconstrained Tucker3

analysis was performed on the smoothed data array. The number of knots as indicated
by the (minimal) cross-validation sum of squares was Gve. (The CV values for two
through seven knots were 0.0096, 0.0089, 0.0089, 0.0087, 0.0089, 0.0097, respectively.)
The Gt of this constrained model to the data array Y was 96.18%, which is only 0.08%
less than the Gt of the unconstrained Tucker3 model. The estimated core matrix of the
solution in principal axes orientation was diagonal, and was rescaled to identity. The
component score matrices of the T3-Bs model were rescaled in the same way as was
done with the unconstrained Tucker3 model. The estimated component matrices A and
B of T3-Bs are compared to the solutions of the unconstrained Tucker3 model by
computing the coeCcient of congruence between the pairs of components concerned.
This coeCcient was large (¿ 0:999) for all pairs, and therefore the solutions of A
and B for T3-Bs can be interpreted in the same way as the corresponding solutions
for the unconstrained Tucker3. The component scores for the occasions for T3-Bs are
plotted in Fig. 3 by lines. Not surprisingly, the component scores of the T3-Bs solution
follow more or less the same curve as the ones of the unconstrained Tucker3 solution.
However, the wiggles have disappeared, and the overall trend in the component scores
of the occasions is more clear.
It is interesting to investigate whether the stability of the occasion component matri-

ces of the T3-Bs has been improved on the unconstrained Tucker3 model. Additionally,
it is important to check whether the subject and variable component matrices, and the
core array of the T3-Bs model have a high stability, just as their counterparts in the
Tucker3 model. The stability of the T3-Bs model was investigated using the split-half
procedure, as discussed before for the unconstrained Tucker3 model. The mean co-
eCcients of congruence of the occasion component matrices were 0.998 and 0.792,
which is higher than the coeCcients of congruence found in the unconstrained anal-
yses of 0.996 and 0.713, respectively. The mean coeCcients of congruence for the
subject component matrices and the variable component matrices were equal to the
ones found for the unconstrained Tucker3 model (1.000 and 0.997 for the subject
component matrices, and 0.998 for the variable component matrices). Also, the mean
absolute diDerence between the split-half core array and the full data set core array
averaged over the 35 analyses was 0.000. On the basis of this results, one can conclude
that the stability of the second occasion component of the T3-Bs model has indeed
been improved somewhat compared to the unconstrained counterpart. The subject and
variable component matrices, the Grst occasion component and the core array of the
T3-Bs model are highly stable, just as their unconstrained counterparts.
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In the T3-Bi analysis, the subsequent scores per variable and per subject were re-
stricted to be non-decreasing in the course of time before analysis. The number of knots
for the second degree I-spline matrix was chosen to be seven, on the basis of sub-
jective comparison of the observed variables and several estimated response variables.
The I-splines were deGned on the interval from week 0 to 50. The Gt of the resulting
estimates of the Tucker3 model to the unconstrained data array Y was 96.17%. The
core matrix of the solution in principal axis direction was diagonal. The estimated
core and component matrices were rescaled in the same way as in the Tucker3 and
Tucker3-Bs models. The estimated solutions for T3-Bi of A and B were compared to
the associated solutions for the unconstrained T3 by the coeCcient of congruence. The
coeCcients were high (¿ 0:999) for all pairs concerned, and A and B are interpreted
in the same way as A and B of the unconstrained Tucker3. The occasion component
scores for T3-Bi resemble the occasion component scores for T3-Bs closely, as indi-
cated by the coeCcients of congruence (1.000 and 0.999, respectively). Therefore, our
interpretation of this model is identical to the interpretation of the T3-Bs model.

6. Discussion and conclusion

The results from the Tucker3 and CP simulation experiments demonstrate that, if
smooth underlying components are present, applying smoothness constraints in Tucker3
model and CP is generally useful to estimate the (underlying) components of the
Tucker3 and CP model (and the core of the Tucker3 model) better. The gain in estima-
tion accuracy of constrained estimation is more salient in the case of larger numbers of
components, high condition numbers of the component matrices and high error levels.
In the simulation experiment, the smoothness constraints were imposed by requiring

that the smooth component matrix lies in the column space of a B-spline matrix. The
performance of the constrained Tucker3 model is considerably better if the number
of knots of the B-splines was optimised according to the cross-validation criterion
compared to the Gxed knots choice (of 3 knots). Contrarily, the performance of CP
does not appear to be inMuenced by the method for choosing the number of knots. This
Gnding suggests that the performance of the smoothness constrained Tucker3 model is
more sensitive to the choice of the number of knots than the smoothness constrained
CP model. This might be due to the more constrained character of the CP model.
The smoothness constrained Tucker3 and CP models are estimated faster than their

unconstrained counterparts. This is not surprising as the data array to be analysed is
much smaller in the case of a smoothness constrained model.
The empirical example demonstrates an application of a smoothness constrained

Tucker3 model, and such a model combined with monotonicity constraints. The subject
and variable component matrices and the core of the constrained Tucker3 models are
equally interpreted as the unconstrained Tucker3 model. The T3-Bi model, in which
the analysed data are constrained to be non-decreasing in the course of time, appears
to be reasonable for the data at hand. However, the monotonicity constraint additional
to the smoothness constraint did not alter the interpretation of the solution at all, and
therefore the simpler T3-Bs model can be preferred here. The interpretation of the
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time component scores of the smooth constrained T3-Bs solution is more clear than
the unconstrained Tucker3 solution, as it is hard to judge whether certain wiggles in
the plot of the time component scores of the unconstrained Tucker3 model should be
considered important. Additionally, the stability of the T3-Bs solution is higher than
of the unconstrained Tucker3 solution. Therefore, in the case of (presumed) smooth
components, it appears to be useful to use smoothness constraints on the Tucker3 and
CP model.
The commonly used procedures to estimate the Tucker3 model or CP require all

elements of the three-way data box to be observed. In the case of data with a smooth
mode, the use of the proposed procedures for smoothing the data can be helpful in
estimating missing data elements. In longitudinal data, this procedure can be particularly
useful if all measurements take place in the same time span, but at diDerent sets of time
points for diDerent variables and=or occasions, where the missing data can be assumed
to be missing completely at random (Little and Rubin, 1987). Note that the B-spline
matrix Bs (K × N ) is a matrix with N B-splines which are evaluated in all values K
of the predictor. In Section 3.3, the K measurements of the predictor, which simply
represents the measurement times in the case of longitudinal data, were assumed to be
equal for all i (i = 1; : : : ; I), and j (j = 1; : : : ; J ), thus the B-spline matrix Bs is equal
for all i and all j, and (6) can be used. However, if there are diDerent measurement
occasions for diDerent subjects and variables, hence for diDerent (i; j) combinations, a
B-spline matrix Bsij must be deGned for every combination of i and j. Now, provided
that Bsij is of full column rank, xij (Kij×1), the datavector containing the measurements
of subject i on variable j at Kij occasions, can be projected on Bsij by minimising

f6(wij)‖xij − Bsijwij‖2: (16)

The weights wij can be used to estimate x̂ij on the same time points for all i and j,
namely by deGning x̂ij = Bswij. If the vectors x̂ij are collected in X̂ (K × IJ ); X̂ can
be analysed by unrestricted Tucker3 or CP procedures. Hence, the use of smoothness
constraints in the Tucker3 model and CP is not only useful in enlarging the estimation
accuracy, but also in dealing with data measured at unequal sets of time points.
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