
PSYCHOMETRIKA--VOL. 68, NO. 1, 105-121 
MARCH 2003 

FOUR SIMULTANEOUS COMPONENT MODELS FOR THE ANALYSIS OF 
MULTIVARIATE TIME SERIES FROM MORE THAN ONE SUBJECT TO MODEL 

INTRAINDIVIDUAL AND INTERINDIVIDUAL DIFFERENCES 

MARIEKE E. TIMMERMAN AND HENK A.L.  KIERS 

U N I V E R S I T Y  OF G R O N I N G E N  

A class of four simultaneous component models for the exploratory analysis of multivariate t ime 
series collected from more than one subject simultaneously is discussed. In each of the models, the mul- 
tivaxiate t ime series of each subject is decomposed into a few series of component scores and a loading 
matrix. The component scores series reveal the latent data structure in the course of time. The interpreta- 
tion of the components is based on the loading matrix. The simultaneous component models model not 
only intraindividual variability, but interindividual variability as well. The four models can be ordered hi- 
erarchically from weakly to severely constrained, thus allowing for big to small  interindividual differences 
in the model. The use of the models is illustrated by an empirical example. 

Key words: three-way analysis, exploratory longitudinal analysis. 

1. Introduction 

A time series is a collection of usually quantitative observations made sequentially in time 
on the same observation unit. An example is the scores on a depression scale collected daily from 
the same subject. The observations can be made from more than one variable at each measure- 
ment occasion, in which case multivariate time series are obtained. In this paper, we deal with 
multivariate time series data from more than one subject, where the measurement occasions are 
not necessarily at equal time points for the subjects, but the scores are collected on the same 
variables for all subjects. It is assumed that, as far as scores are collected at unequal time points, 
the resulting "missing values" are missing completely at random (Little & Rubin, 1987). Fur- 
thermore, it is assumed that within a measument occasion of a particular subject the scores of all 
variables are obtained. If  the latter is not the case, one should resort to data imputation or related 
techniques, taking the (presumable) mechanisms behind the missing data into account. 

Various models have been proposed to model  multivariate time series collected from one 
observation unit, in which the relationships between the observed variables are modeled using 
latent variables. In those models, it is assumed that the multivariate t ime series are generated 
by a latent uni- or multivariate t ime series, where the latent time series are of lower order than 
the observed multivariate time series. One such model is the one underlying the "P-technique", 
proposed by Cattell (1952, 1963), where a conventional cross-sectional factor analysis is applied 
to the multivariate time series of one subject. Anderson (1963) objected to this method since 
only simultaneous relations between variables are taken into account: possible relations between 
factor series at different times are not modeled in a P-technique analysis. Anderson (1963) pro- 
posed an alternative procedure, which has been elaborated by several authors. The elaboration is 
known under the name "dynamic factor analysis" (Engle & Watson, 1981; Immink, 1986; Mole-  
naar, 1985). The various dynamic factor models differ in the way the latent t ime series are related 
to observed time series, the model  of the latent t ime series and the estimation procedure of the 
parameters of the model. 
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A different approach is the use of component  models, which are directed at fitting the data 
themselves, rather than their covariances. Bijleveld (1989) and van Buuren (1990) offered dy- 
namic component models. The linear dynamic system model (Bijleveld, 1989) is a model in 
which the autocorrelation between successive component scores is explicitly modeled, van Bu- 
uren (1990) offered a very general dynamic component model, which is denoted as the canonical 
class model. 

The models mentioned above aim at modeling multivariate time series of one subject, thus 
allowing to study intraindividual variability. Researchers are often interested in studying in- 
terindividual differences and similarities in intraindividual variability. One of the methods used 
so far is to compare the various fitted time series models obtained for all subjects separately. 
This approach is used quite often in P-technique factor analysis, as indicated in Jones'  and Nes- 
selroade's review (1990) of studies where multivariate t ime series have been analyzed using 
P-technique, but also in case of dynamic factor models (e.g., see Shifren, Hooker, Wood & Nes- 
selroade, 1997). Another approach is to model  the multivariate time series of more than one 
subject simultaneously .  However, the multisubject extensions of the models for multivariate t ime 
series of one subject proposed so far leave little or no room for interindividual differences. The 
dynamic factor model for time series collected from more than one subject (Nesselroade & Mole-  
naar, 1999) assumes that there are no interindividual differences in intraindividual variability in 
the data. The extension of the linear dynamic system model (Bijleveld & Bijleveld, 1997) offers 
only limited possibilities to model interindividual differences. The extension of the canonical 
class model  (van Buuren, 1990) appears particularly useful to model  data of a number of ob- 
servers on the same subject, rather than modeling data of a number of subjects, and hence is not 
appropriate for modeling interindividual differences. 

In this paper, we propose a class of four simultaneous component analysis (SCA) models for 
the exploratory analysis of multivariate t ime series for more than one subject, which explicit ly 
model interindividual differences. Two of the models are new. In each of the four models, the 
multivariate time series of each subject is decomposed into a few series of component scores 
and a loading matrix. The loading matrix is assumed common for all subjects. The four SCA 
models differ with respect to the constraints imposed on the cross-products (covariances) of the 
component scores. Apart  from the cross-product constraints, the component scores themselves 
are freely estimated, and the approach deviates from the usual t ime series analysis. The models 
can be ordered hierarchically from weakly to severely constrained, thereby allowing for big to 
small interindividual differences in the model. Which model is most appropriate depends on 
the degree of variability between subjects. After descriptions of the models themselves, the SCA 
models and alternating least squares algorithms to fit the models to data will be described. Finally, 
the methods will be illustrated by means of an empirical example. 

2. The Four Simultaneous Component  Analysis  (SCA) Models 

In the next sections, preprocessing steps to be taken on the raw data before performing a 
simultaneous component analysis (SCA; section 2.1), and the four SCA models will be discussed 
(sections 2.2 through 2.6). The transformational freedom in the four SCA models is treated in 
section 2.7, and issues in model selection are elaborated in section 2.8. 

In the sequel, bold capitals refer to matrices, and italic characters to scalars. The scores 
on the J variables ( j  = 1 . . . . .  J )  for subject i ( i  = 1 . . . . .  I )  are collected at Ki occasions 
(ki = 1 . . . . .  K i ) ,  and represented by data matrix Xi (Ki × J ) .  

2.1. Preprocess ing o f  R a w  Data Before Fitting the SCA Mode l s  to Data 

Before fitting one of the four SCA models, one has to decide whether the raw data should 
be analyzed or some preprocessed version thereof. In most cases in practice, the data can be 
considered to have interval level. Then, it is advised to center the raw scores across occasions 
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per variable and per subject. Using this approach, constants are eliminated from the data without 
introducing artificial variation (Bro & Smilde, 2003; Harshman & Lundy, 1984b). In addition, 
then, the components are defined on the basis of the intra-individual covariances instead of the 
interindividual covariances between variables. Besides, the average component scores (over oc- 
casions) per subject can be shown to be zero. The latter is useful because then the different 
restrictions on the component score matrices in each of the four models can directly be inter- 
preted in terms of different restrictions on the covariances between components,  as will become 
clear later. 

Scaling aims at eliminating artificial scale differences. In the case of SCA, scaling to equal- 
ize the importance of the several variables to the final solution appears to be most reasonable. 
We advise to normalize the (centered) scores "within variables" (i.e., per variable over occasions 
and subjects jointly), such that the sum of squares per variable over occasions and subjects is 
equal to the sum of the number of measurements of all subjects ( ~ / 1  Ki,  where Ki denotes the 
number of measurements of subject i, i = 1 , . . . ,  I ) .  As a consequence, differences in intraindi- 
vidual variabili ty are preserved. Furthermore, this type of scaling does not affect the form of the 
structural model  (refer to Bro & Smilde, 2003; Harshman & Lundy, 1984b). 

2.2. SCA with Invariant Pattern (SCA-P) 

The model  for SCA with invariant Pattern (SCA-P; Kiers & ten Berge, 1994) was originally 
proposed for modeling multivariate data of a number of subjects drawn from more than one 
population. SCA-P can be used for modeling multivariate time series of a number of subjects as 
follows: Let Xi (Ki × J)  denote the matrix of (usually preprocessed) scores of the i-th subject 
(i = 1 . . . . .  I )  on J variables measured at Ki occasions (ki = 1 . . . . .  Ki) .  The SCA-P model is 
given by 

Xi = Fi B I ÷ Ei ,  (1) 

where F i ( K i  × Q) denotes the Q component scores of subject i at time points 1 . . . . .  Ki,  B 
( J  x Q) denotes the loading matrix, and Ei (Ki × J)  denotes the matrix of residuals. The com- 
ponent scores matrix Fi ,  i = 1 , . . . ,  I ,  is unconstrained. Thus, it is assumed that the true variable 
scores (i.e., without error) at occasion ki are a linear combination of the component scores at 
o c c a s i o n  ki. 

The fact that the component scores matrices are unconstrained implies that the inner prod- 
ucts between the components may vary across subjects. If  the component scores matrix contains 
centered scores, the inner products of the component scores of subject i divided by K i are co- 
variances between the components of the subject concerned (as is proved in the Appendix for the 
four SCA models). If  the analyzed data matrices have been normalized "within variables" (see 
section 2.1), the differences in intraindividual variabili ty are preserved. In the sequel, it will be 
assumed that the raw scores are preprocessed as discussed in section 2.1. 

The time series of each subject are decomposed into a number of series of component scores 
and a loading matrix, which is common for all subjects, and to all occasions. Thus, the loading 
matrix is assumed to be subject and time invariant. The component score at a certain occasion 
can be interpreted as the degree of the particular property as indicated by the particular compo- 
nent. The interpretation of the components is, as usual, based on the loadings. To investigate each 
individual 's  behavior on the various components,  the series of component scores for each com- 
ponent, and for each subject, can be plotted against the time axis. Possible trends and deviating 
scores at certain occasions can be seen at once. 

Differences between subjects in variance of a certain component can be interpreted as dif- 
ferences in intraindividual variability in terms of that particular component. Differences in co- 
variances between components (within subjects) are easiest to interpret in terms of differences 
in correlations. Thus it is possible that certain components correlate highly for one subject, and 
almost zero for another. 
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2.3. Constrained Versions of SCA-P 

In the SCA-P model the component scores matrices are unconstrained, implying that the 
variances of component scores and the covariances between component scores within subjects 
may vary across subjects. If  no interindividual differences in covariation and/or variabili ty are 
present in the data, it is warranted to use a more parsimonious model  than SCA-R By impos- 
ing proper constraints on the variances and covariances of the individual component scores, 
three models are defined that are restricted variants of SCA-R The restrictions on the compo- 
nent scores of the four models are summarized in Table 1. The three restricted variants of SCA-P 
are described in sections 2.4 to 2.6. 

TABLE 1. 
The restrictions of the four SCA models on the covariances between 
and the variances of the component scores 

Covariances Variances 

SCA-P free free 
SCA-PF2 equal across subjects free 
SCA-IND equal to 0 free 
SCA-ECP equal across subjects equal across subjects 

Depending on the degree of interindividual differences, a weakly or strongly restricted SCA 
model can be chosen. The strength of the approach is that one can explicitly choose the most 
parsimonious model  possible for the particular data set without ignoring important aspects of 
the data. The choice for the most parsimonious model is not only important in terms of the 
interpretation of the model. Fitting a less parsimonious model than the one that is underlying the 
data usually leads to so-called error fitting, that is, a part of the error term is mistakenly fitted in 
the model. This usually leads to unstable parameter estimates. 

2.4. SCA with PARAFAC2 Constraints (SCA-PF2) 

The model for SCA with PARAFAC2 constraints (SCA-PF2; Kiers, ten Berge & Bro, 1999) 
is a constrained version of the SCA-P model. Kiers, ten Berge and Bro (1999) named this model  
"direct fitting PARAFAC2",  but we choose to use the name SCA-PF2 to stay in line with the other 

1 I SCA models. The SCA-PF2 model is given by (1) with FIF i  constrained to ~7iFiFi = D i ( ~ D i ,  

with Di a (Q x Q) diagonal matrix and • a (Q x Q) positive definite matrix, and without 
loss of generality, we further require • to have unit diagonal elements. Thus, in SCA-PF2,  the 
congruence coefficients (Tucker, 1951) between columns of Fi are invariant over all subjects 
i = 1 , . . . ,  I .  The coefficient of congruence between two columns x and y, q)xy, is defined as the 
normalized inner product between the columns x and y, namely as 

xly 
(2) 

If  the component scores matrices contain centered scores, the restriction on Fi ,  i = 1 , . . . ,  I ,  
implies that the components have the same mutual correlations for all subjects, and that the 
variances of the components may vary across subjects. These variances are given by the diagonal 
elements of D/2, i = 1, . . . ,  I .  Thus, the SCA-PF2 model is suitable if  the variables indicate 
concepts that are equally correlated for different subjects, and if  the degree of intra-individual 
variability of the properties indicated by the concepts varies between subjects. 
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2.5. SCA with INDSCAL Constraints (SCA-IND) 

The model for SCA with INDSCAL constraints (SCA-IND) is a constrained version of 
both SCA-P and SCA-PF2.  That is, the SCA-IND model is given by (1) with F IF i  constrained 

to ~TFiFil I = D 2, with Di a diagonal matrix. Thus, the inner products between the components 
are zero and the sums of squares of the components may differ across subjects in the SCA- 
IND model. To the best of our knowledge, the SCA-IND model is new. If  the component scores 
matrices contain centered scores, the restriction on Fi ,  i = 1 , . . . ,  I ,  implies that the components 
are constrained to be uncorrelated, but the variances of the several components may vary across 
subjects. Again, the elements of D/2 contain the variances of the components of subject i. 

The name "SCA-IND" is obtained from a counterpart model  for cross-product matrices. 
That is, taking the cross-products of the (error free parts of) the left and right hand side of (1), 

1 ~ D/2,i 1 I ,  w e g e t  and impos ing  ~7iFiFi = = , . . . .  

1 
--~iX~iXi = BD~B' (3) 

which equals the scalar products version of the INDSCAL (INdividual Differences SCALing) 
1 I model (Carroll & Chang, 1970) applied to the m a t r i c e s  ~7iXiXi, l = 1 . . . . .  I. 

The SCA-IND model should be used if  interindividual differences in intraindividual vari- 
ability for the separate components exist, but the separate components within subjects are uncor- 
related for all subjects. 

2.6. SCA with Equal Average Cross-Products Constraints (SCA-ECP) 

The model  for SCA with Equal average Cross-Products constraints (SCA-ECP) is a con- 
strained version of the SCA-R SCA-PF2,  and SCA-IND models. The name of this new method 
expresses the constraints on the component scores. That is, the SCA-ECP model is given by (1) 

1 I with F1iFi constrained such that ~TiFiFi = ~ ,  i = 1 . . . . .  I, where • is a (Q x Q) positive 
definite matrix. The restriction on the component scores implies that the average cross-products 
between the components are equal for all subjects. If the component scores matrix contains cen- 
tered scores, the restriction implies that the correlations between the components as well as the 
variances of the components are equal for all subjects. The estimates of the data matrices Xi, 
i = 1 , . . . ,  I ,  are insensitive to an orthogonal or oblique transformation of the component score 
matrices Fi ,  provided that such a transformation is compensated in the loading matrix B. There- 

1 i I (instead fore, the sum of squares explained by the model does not alter by requiring ~7FiFi = 

of ~7FiFil ~ = q~), and thus it is clear that SCA-ECP is a constrained version of SCA-IND, and 
hence of the others as well. 

In the SCA-ECP model, the variances of components and covariances between components 
within subjects are equal for all subjects. Thus, the model  is suitable if  the variables indicate con- 
cepts that are equally correlated over time for the subjects, and no differences in intra-individual 
variability can be found. 

2.7. Transformational Freedom in the SCA-P, SCA-PF2, SCA-IND and SCA-ECP Models 

As will be discussed further in section 3, the SCA models described above can all be fitted 
to a particular data set by least squares minimization of the residuals. In the sequel it is assumed 
that parameter estimates of Fi for at least one of the subjects have full rank, and the parameter 
estimates of B have full rank. The estimates of the data matrices Xi, i = 1 , . . . ,  I ,  by the pa- 
rameter matrices of the SCA-R and SCA-ECP models are insensitive to orthogonal and oblique 
transformations of the loading matrix B, provided that such a transformation is compensated in 
the component scores matrices Fi ,  i = 1, . . . ,  I .  Standard rotational procedures (e.g., Varimax; 
Kaiser, 1958) can be used to obtain solutions which are easier to interpret. 



110 PSYCHOMETRIKA 

Kiers, ten Berge and Bro (1999) have shown that, under some assumptions, SCA-PF2 so- 
lutions are "essentially unique", which means that SCA-PF2 estimates are unique up to trivial 
permutation, reflection and/or rescaling. In the proof, it is required, among other things, that 
the number of subjects relative to the number of components is rather large ( I  _> 0 ( (2  + 1) 
((2 + 2) ((2 + 3)/24,  where I denotes the number of subjects and (2 the number of components).  
However, Kiers, ten Berge and Bro (1999) report on the basis of simulations, that the uniqueness 
properties of PARAFAC2 appear to hold generally for I > 4. 

Assuming that there is at least one pair Di, Dil(i 7k il), such that DiDi71 has no equal pair 
of diagonal elements, it can be proven that estimates of SCA-IND are essentially unique. The 
proof  is largely based on the uniqueness proof  for PARAFAC, as given by Harshman (1972). 

The assumptions for essentially uniqueness of SCA-PF2 and SCA-IND estimates are not 
directly comparable.  In practice, however, the uniqueness assumptions for SCA-PF2 are stronger 
than for SCA-IND. Hence, one could encounter data for which no unique SCA-PF2 estimate 
exists, whereas there is one for SCA-IND. In practice, the reverse is unlikely to occur. 

2.8. Model Selection 

Generally, fitting a model to observed data aims at obtaining an interpretable model  with a 
small degree of overall error, which refers to the lack of fit of the current model as it is fitted to 
the current data set, to the population data (Browne & Cudeck, 1992). In an SCA, one aims at 
optimally decomposing observed data into a systematic part, described by an interpretable model 
that would fit the population data well, and a residual part. As one does not know which part of 
the data is systematic, the choice of a particular SCA-model  and number of components is a fairly 
complicated matter. Besides, the call for an interpretable model introduces a certain subjective 
aspect. However, one can combine different criteria to come to a model decision, which hopefully 
point in the same direction. 

One can perceive whether a model fits the observed data well, although one would be more 
interested in whether a model  fits the systematic part of the data. However, the degree to which 
a model fits the observed data can be used for comparison of different models. One could try to 
find the model that covers the most important or most salient aspects of the data, thereby ignoring 
aspects of little importance (e.g., because they pertain to a small number of subjects, variables, 
or occasions). Thus, it is desirable to choose the most constrained model  with a relatively small 
number of components that still fits the data well. 

Possible ways for investigating the degree of overall error of a particular model are cross- 
validation and split-half analysis. In practice, we apply these methods to each of the four SCA- 
models for a reasonable range of numbers of components to select the model with a relatively 
low degree of overall error. 

Cross-validation assesses the predictive validity of the estimated model  parameters. A well 
known approach is K-fo ld  cross-validation (Hastie, Tibshirani & Friedman, 2001, pp. 214-217),  
which can be summarized as follows: The observed data set is split into K roughly equal-sized 
parts. The idea of cross-validation now is to predict the scores in the k-th part, denoted as the test 
set, by using a model  based on the other K - 1 parts of the data, denoted as the training set. Then, 
the prediction error of the model when predicting the k-th test set is computed. The procedure is 
repeated for all K test sets. Finally, the K estimates of prediction error are combined to assess 
the predictive validity of the model at hand. 

K-fo ld  cross-validation can be used to assess the predictive power of a particular SCA 
model of multisubject multivariate time series. The two main decisions in applying this procedure 
pertain to how to split the data set, and how to predict the scores in the k-th test set by the model  
estimates based on the associated training set. In the current SCA context, various approaches 
for defining the k-th test set of the data are reasonable. For example, one could randomly select 
elements from the full data set, as we will do, or randomly select the scores on a particular 
measurement occasion (hence, rowwise selection from the data matrices). Subsequently, one has 
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to choose the method for the prediction of the k-th test set by the model estimates based on 
the training set. This may follow directly from the estimation procedure, as is the case in our 
approach, but will be less apparent in other cases. 

We propose to use a kind of K-fo ld  cross-validation, which is based on the Expectation- 
Maximizat ion cross-validation (EM-CV) method (Louwerse, Smilde, & Kiers, 1999). The Ex- 
pectation Maximizat ion cross-validation procedure for SCA (EM-SCA) can be summarized as 
follows. The full observed data set (consisting of the data of all I subjects) is split into K (about 
equal-sized) parts, by random assignment of the elements to each of those K parts. Then, each 
training set is constructed from the full data set by leaving out one such random part; the left- 
out part serves as the test set. In total, K different training sets are constructed by leaving out 
each of the different parts in turn. The left-out parts in the ensuing training sets are treated as 
missing data. The training sets are next preprocessed in the usual way, while disregarding the 
missing values (see sec. 2.1). A sensible starting value is imputed for the missing value in the 
preprocessed data array, and this data array is analyzed by the SCA-model  at hand. The SCA 
estimation procedure is iterative, as will be discussed in section 3, and after each cycle the "miss- 
ing element" is estimated on the basis of the current model parameters, and it is imputed. The 
cycles are repeated until convergence, and the estimated value of the missing element is retained. 
The procedure is repeated until all elements have been eliminated once. Finally, the predictive 
residual error sum of squares (PRESS) is calculated as the sum of squares between estimated 
values and observed values. A high PRESS value is indicative of a model  with low predictive 
value, either because the model underfits or overfits the data. Underfitting may be caused by esti- 
mating too few components and/or a too much restricted model, whereas the reverse leads to an 
overfitted model. Thus, only models with small PRESS values have a high predictive value. The 
size of the PRESS value is partly dependent on the degree of noise in the data, and therefore it is 
not possible to give a generally valid bench-mark value for PRESS. We advise to consider only 
models that have relatively low PRESS values, compared to the PRESS values of the other mod- 
els considered. A disadvantage of the EM-SCA cross-validation approach is that a large number 
of analyses is needed, depending on K,  the number of sets defined. 

Split-half  analysis assesses the stability of a model. Split-half  analysis is applied, for in- 
stance, in the PARAFAC model (Harshman & Lundy, 1984a), and is here used for the SCA 
models. The observed data are randomly split in two parts over the mode that can be viewed 
as replications, thus the subject or the occasion mode. Then, the SCA model at hand is fitted to 
each of the (preprocessed) data halves. We propose to compare the two estimated loading ma- 
trices, after rotation to simple structure in case of SCA-P and SCA-ECP (e.g., Varimax rotation; 
Kaiser, 1958). If  the solution is stable, the respective columns of the two loading matrices should 
be (approximately) equal up to permutation and/or reflection. Hence, permutation and reflection 
should be taken into account in a stability measure. As a stability measure, we propose to use the 
average of the mean absolute difference of the columns bq,1 and bq,2, q = 1, . . . ,  Q, where bq,1 
and bq,2 denote the q-th column of the loading matrices B1 and B2, and where the columns of B1 
are ordered and reflected so as to yield the lowest average mean of the absolute differences. This 
stability measure will be denoted as "split-half stability coefficient". We advocate to replicate the 
procedure a number of times (e.g., 50 times) and to use the average thus obtained split-half sta- 
bil i ty coefficients, in order to increase the reliabili ty of the stability study. Just as for the PRESS 
value, no generally valid benchmark can be given for the SHS value, and one should consider 
only models that have a relatively low stability coefficient. 

A third topic to consider is the interpretability of a model. A model should make sense, sub- 
stantively, because our main aim is to give a useful description of the data. In the SCA-models ,  
one should consider the interpretability of the loading matrix, the (lack of) interindividual differ- 
ences in covariances between components and variances of components,  and the development of 
the various component scores series in the course of time. The degree of interpretability can be 
a subject for debate, because the interpretation is partly dependent on the theoretical ideas and 
knowledge a researcher has. 
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Ideally, the three criteria point in the same direction. It is possible that a few competing 
models remain. Then, it is up to the researcher to choose the final model. It might also happen 
that all criteria indicate different models, which might be indicative of unsuitability of the S e A  
models to describe the present data. 

3. Fitting the Four SCA Models to Data 

To fit each of the four models for SCA to observed data, we propose to minimize the sum 
of squared residuals. Hence, we minimize 

I 
F(Fi ,  B) = y ~  I l x i -  FiB'll 2 , (4) 

i=1 

subject to the constraint imposed in the particular SCA. Thus, the total sum of squares that is 
explained by the model is maximized. To identify the solution partly, we require for the four 
SCA models that 

1 I 
I ~ diag (FIiFi) = I, 

~ i = 1  Ki i=1 

where Ki denotes the number of measurements of subject i, i = 1 . . . . .  I ,  and diag (X) the 
diagonal of matrix X. This identification constraint can always be invoked after a solution has 
been obtained, namely by a simple scaling transformation of B and the Fi 's .  If  the component 
scores matrices Fi, i = 1 , . . . ,  I ,  are centered, this identification constraint implies that the 
variance per component over all subjects is one. This constraint is satisfied automatically in the 

1 F1iFi = q), which is equivalent SCA-ECP model (since the component scores are restricted to x~ 
1 i I ) .  to requiring that ~ F i F i  = 

The degree to which the estimated model describes the data is expressed by the proportion 
of sum of squares explained by the model, which we call the "fit" in the sequel. The fit is defined 
as 

i / i 

1 -  y ~ l I x i - F i g ' l l  2 }-~llXill 2. (5) 
i=1 i=1 

The fit is often expressed as a percentage, upon multiplication by 100. 
The SCA-P algorithm aims at minimizing (4) over arbitrary Fi, i = 1 , . . . ,  I ,  and B. Kiers 

and ten Berge (1994) give an explicit solution to this problem. 
For SCA-PF2, SCA-IND and SCA-ECP we use alternating least squares (ALS) algorithms: 

the matrices over which the function has to be minimized are alternatingly updated until conver- 
gence. The algorithm is said to have converged if from one cycle (i.e., update of all parameters) 
to another, the residual sum of squares decreases less than a prespecified value. The fitting of the 
SCA-PF2, SCA-IND, and SCA-ECP models to data will be treated successively. 

3.1. Fitting the SCA-PF2  Mode l  

The SCA-PF2 algorithm aims at minimizing (4), subject to 

1 
~iiFIiFi = D i ~ D i ,  i = 1 . . . . .  I ,  

where Di is a (Q × Q) diagonal matrix and @ a (Q x Q) positive definite matrix with unit diagonal 
elements. Kiers, ten Berge and Bro (1999) proposed anALS algorithm for the equivalent problem 
of minimizing (4) subject to FIFi = Di@Di with Di a (Q x Q) diagonal matrix and @ an 
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arbitrary (Q x Q) positive definite matrix. Their algorithm is essentially based on the fact that 
every matrix Fi that meets the constraint FtiFi = DicIPDi can be written as Fi = PiFOi provided 

that P~iPi = IQ, F an arbitrary (Q x Q) matrix, and l)i a diagonal (Q x Q) matrix, i = 
1 . . . . .  I .  The SCA-PF2 algorithm as proposed by Kiers, ten Berge and Bro (1999) boils down 
to minimizing 

I 

f l ( P i ,  F ,  D i ,  B) = ~ Xi  - P i F O i  B I  2 

i=1 

(6) 

subject to PIPi = IQ, a n d  I) i a diagonal matrix, i = 1 . . . . .  I .  The function in (6) is minimized 

by updating B, Pi, F, and I)i alternatingly. We propose to use this algorithm to find solutions for 
1 I B, Fi, @, a n d  I) i. Solutions for Di and ¢I) such that ~FiF i  = DicIPDi can then be obtained by 

taking 

1 ~ ~ 1 1 ~ 1 
= d i a g ( ~ ) - ~ d i a g ( ~ ) - ~ ,  and Di = ~ D i d i a g ( ~ ) ~ .  

3.2. Fitting the SCA-IND Model 

1 ! D~, i 1, I ,  The SCA-IND algorithm aims at minimizing (4) subject t o  ~iFiFi . . . . . .  
with Di a (Q x Q) diagonal matrix. The ALS algorithm to find estimates of the parameters 
of the SCA-PF2 model (Kiers, ten Berge and Bro, 1999) can be used to find estimates of Fi, 
i = 1 . . . . .  I subject to F~iFi = I}/2 by keeping ~) = I. In the SCA-PF2 algorithm this is obtained 

by keeping ~' fixed as ~' = I, and only updating B, Pi, and I}i. With this algorithm we find 
1 z D/2 can be obtained by taking solutions for B, Fi and I}i. Solutions for Di such that -u[FiFi = 

Di  : ~K/K/I~)i. 

3.3. Fitting the SCA-ECP Model 

1 ! The SCA-ECP algorithm aims at minimizing (4) subject to ~FiF i  = ~ ,  i = 1 . . . . .  I, 
1 I which is equivalent to (i.e., without affecting the model fit) imposing that ~[FiFi = IQ. Updating 

B, and Fi, i = 1 , . . . ,  I ,  alternatingly can solve this problem. The problem to find an update for B 
is analogous to finding an update of B in the SCA-PF2 algorithm (Kiers, ten Berge & Bro, 1999). 

1 I The next problem is to find, for every value of i, an update for Fi, subject to ~FiF i  = IQ. An 
update for Fi can be obtained by minimizing 

f 2 ( V i )  = I Ix / -  v/g'll 2 (7) 

1 z 1 subject to ~[FiFi = IQ. Upon substitution o f  F i  = ~ F i ,  this is equivalent to maximizing 

t r  ( F I i X i B ) ,  subject to F1iFi = I. Consider the singular value decomposition XiB = U i A i Q I i  , 

with 

U I i U i  = Q I i Q  i = Q i Q I i  = I Q ,  

and Ai a diagonal matrix with nonnegative diagonal elements in weakly descending order. Then 
the maximum of tr (~'IXi B) is given by Fi = Ui QI i (Clift, 1966), hence an update of Fi is given 
by F i  = x / / - ~ , U i Q I  i . 

3.4. Starting Values of the Parameters 

Each of the iterative algorithms (i.e., for SCA-PF2, SCA-IND and SCA-ECP) has to be 
initialized with certain starting values. The starting matrices can be drawn randomly from, for 
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example, a normal distribution. As a so-called rational start, the (explicit) SCA-P solution for the 
matrix B can be used in all algorithms. In case of SCA-IND and SCA-PF2,  the starting matrices 
for the diagonal matrices Di, i = 1 . . . . .  I ,  are set at identity matrices (Q x Q). In case of SCA- 
PF2, the identity matrix (Q x Q) is also used as a starting matrix for ~ .  These starting values 
suffice to start the iterative process (by updating Pi or Fi) .  In practice, it is recommended to use 
several differently started runs in order to decrease the chance of missing the global minimum of 
the function. 

4. An Empirical Example of Simultaneous Component  Analyses:  
Mood in Individuals with Parkinson's Disease 

In a study by Shifren, Hooker, Wood and Nesselroade (1997), mood structure was exam- 
ined among 12 individuals diagnosed with Parkinson's disease. Positive and negative affect was 
measured with the Positive and Negative Affect Schedule (PANAS; Watson, Clark & Tellegen, 
1988). This measure contains 10 positive and 10 negative affect items. Subjects were asked to 
rate the 20 adjectives on a 5 point scale (ranging from 1 (not at all) to 5 (all the time)) to indi- 
cate to what degree the subject experienced the particular affect on that day. Subjects scored the 
PANAS daily on successive days, ranging from 53 to 71 days. Over all 12 subjects, the scores on 
the 20 variables were obtained on 817 days. One was interested in the intraindividual structure 
of mood, as well as the interindividual differences. Watson (1988) showed that interindividual 
differences in mood (of healthy subjects) can be well described by two relatively independent 
dimensions, namely positive and negative affect. It is questioned whether this structure can also 
be used in describing intraindividual differences in mood of subjects suffering from Parkinson's 
disease, and whether the degree of intraindividual variability differed across subjects. 

The scores on the items at successive days were analyzed by Shifren et al. (1997) using 
a dynamic factor analysis. A dynamic factor model was estimated for each subject separately, 
where, based on issues regarding content, the maximal number of factors was two, and the max- 
imal "lag" was one. Items showing responses that were too stable over t ime (over 90% of the 
responses in the same category) were eliminated from the analyses. Also,  any linear trend over 
time per variable per subject was removed from the data. Further information concerning the 
research, method of analyses and results can be found in Shifren et al. (1997). 

Before performing the simultaneous component analyses, the data of each subject per vari- 
able were centered over the time points, and normalized within variables (i.e., over occasions and 
subjects jointly), such that the sum of squares per variable over occasions a n d  subjects was equal 

( i to the sum of the number of occasions of all subjects ~ i = 1  K i ,  i = 1 . . . . .  I )  (see section 2.1). 
In contrast to Shifren et al. (1997), we did not remove trends from the data, nor did we exclude 
variables from the analyses to keep as much of the information in the data as possible. 

First we assessed the stability and the fit of the four models (see section 2.8) with one 
through five components,  thus of 20 models in total. For each of the 20 models, the PRESS value 
was computed following the procedure for EM-SCA cross-validation, as discussed in section 2.8. 
We split the data set into 150 about equal-sized parts, each consisting of a random selection (with- 
out replacement) of the 16340 elements of the datamatrix ( =  817 (total number of measurement 
occasions over all subjects) x (number of variables)). Out of the 150 sets, 149 sets consisted of 
109 elements, and one set of the remaining 99 elements. As starting value, a zero was imputed 
for each removed observation, which is the average score per subject per variable (as a result of 
the preprocessing procedure). PRESS values were thus obtained for each of the 20 models. 

The split-half procedure was applied following the guidelines as discussed in section 2.8. 
We repeated the split-half procedure 50 times, resulting in an average split-half stability coeffi- 
cient over 50 replications. The SCA-algori thms used for computing the PRESS values and the 
SHS were started by the rational start (see section 3.4). 
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TABLE 2. 
PRESS values, split-halve stability coefficients (SHS) and fit (%) of the four SCA-models with one through five 
components 
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Model SCA-ECP SCA-IND SCA-PF2 SCA-P 

Measure PRESS SHS Fit PRESS SHS Fit PRESS SHS Fit PRESS SHS Fit 
(×104 ) (×104 ) (×104 ) (×104 ) 

Q = 1 '  1.39 0.06 24.0 1.24 0.07 30.8 1.24 0.07 30.8 1.24 0.07 30.8 

Q = 2 1.49 0.08 31.8 1.16 0.09 42.8 1.16 0.58 42.8 1.14 0.09 43.5 

Q = 3 1.76 0.09 37.1 1.18 0.13 49.5 1.18 1.03 49.8 1.12 0.20 51.2 

Q = 4 2.02 0.12 41.0 1.27 0.14 55.3 1.20 2.12 56.3 1.13 0.10 58.4 

Q = 5 2.72 0.13 44.0 1.51 0.14 60.1 2.05 2.00 61.1 1.25 0.12 63.2 

*Note that for Q = 1, the models SCA-IND, SCA-PF2 and SCA-P axe equivalent. 

The average split-half stability coefficients (SHS), the PRESS values and the fit percent- 
ages (see (5)) of the SCA-R SCA-PF2, SCA-IND, and SCA-ECP models with one through five 
components are reported in Table 2. 

Using the SCA-IND model instead of the more constrained SCA-ECP model increases the 
fit considerably, for all models with one through five components, as can be seen in Table 2. 
Almost no fit is gained in using the even less constrained SCA-PF2 or SCA-P model instead of 
the SCA-IND model. Thus, on the basis of the fit percentages the use of SCA-IND is indicated, 
but the preferred number of components is not clearly indicated. 

Relatively low PRESS values and relatively low split-half stability coefficients (SHS) are 
indicative of stable models. On the basis of a comparison of the present PRESS and SHS values, 
we deem models sufficiently stable if they have maximal values of 0.10 for SHS and 1.20 x 104 
for PRESS. Thus, SCA-IND and SCA-P with 2 components, and SCA-P with 4 components will 
be considered. We start the discussion of the models by the most restricted model of the three, 
SCA-IND with 2 components. Note that using either SHS or PRESS to investigate the stability 
would lead to a selection of different models. 

The loading matrix B of the SCA-IND solution is presented in the left hand side of Table 3. 
The components can be interpreted as "Introversion", and "Emotional Instability". 

The size of the component scores can be compared between subjects: extremely high (and 
low) component scores indicate a large degree of variability in scores over time compared to the 
other subjects. The degree of variability across persons can easily be compared on the basis of the 
variances of the component scores, that equal the diagonal elements of D/2 here (see section 2.5), 
and these values are presented in the left hand panel of Table 4. As can be seen in Table 4, 
for example, Subject 5 shows most, and Subject 10 shows least variability on the Introversion 
component. 

A comparison of the size of the component scores within subjects reveals the degree of 
"Introversion" and "Emotional Instability" of that person compared to the degree at the other 
days. To give some insight into variation of the component scores over time, the Introversion 
scores of subjects 5 and 10, and the Emotional Instability scores of Subjects 2 and 4 are plotted 
in Figure 1. 

Figure 1 illustrates the differences between subjects in intraindividual variability, and it also 
offers the possibility to look for trends in component scores. For example, Subject 5 shows a 
remarkable shift towards extraversion at day 15 (and, as has been verified, such a change was 
not found in the Emotional Instability component scores of Subject 5). Unfortunately, additional 
information about the subjects is lacking to explain these changes in component scores. 

The SCA-P model with 2 components explains 43.5% of the variance, which is only 0.7% 
more than the SCA-IND model with 2 components. To be able to compare the loading matrices 
of SCA-IND and SCA-R we orthonormally rotated the loading matrix of SCA-P to the loading 
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TABLE 3. 
Loading matrix of the SCA-IND model with two components (columns 2 and 3), and Varimax rotated loading matrix of 
the SCA-P model with 4 components (columns 4 through 7) of the mood data. Loadings > 0.40 or < -0.40 are printed 
bold 

SCA-IND SCA-P 

Introversion 
Emotional Emotional Component 
Instability Arousal Nervousness Instability IV 

jittery 0.59 0.43 0.45 0.50 0.37 --0.15 
distressed - 0 . 0 2  0.65 0.02 0.17 0.66 0.27 
upset -0 .01 0.74 0.09 O. 11 0.75 O. 15 
afraid 0.61 0.02 O. 19 0.75 -0 .00  O. 11 
scared 0.63 - 0.04 O. 18 0.78 -0 .06  0.08 
hostile 0.44 0.52 0.41 0.35 0.46 - 0 . 1 3  
irritable -0 .07  0.76 0.09 -0 .01 0.78 0.09 
guilty -0 .10  0.66 0.12 -0 .18  0.75 - 0 . 2 2  
ashmned 0.45 0.22 0.26 0.40 0.29 - 0 . 4 0  
nervous 0.55 0.40 0.37 0.53 0.37 - 0 . 1 2  
inspired -0 .71  0.03 -0 .59  -0 .41  0.21 - 0 . 1 2  
excited 0.01 - 0 . 2 4  - 0 . 1 4  0.02 -0 .07  - 0 . 6 9  
determined -0 .25  - 0 . 4 5  - 0 . 5 8  0.25 -0 .29  -0 .01 
interested - 0 . 7 5  -0 .24  - 0 . 7 8  -0 .27  -0 .04  0.05 
enthusiastic - 0 . 6 8  -0 .29  - 0 . 7 2  -0 .28  -0 .06  -0 .08  
attentive -0 .69  -0 .25  - 0 . 7 7  -0 .19  -0 .04  -0 .07  
proud 0.06 -0 .23  0.04 -0 .14  -0 .12  - 0 . 6 8  
strong - 0 . 0 4  -0 .59  - 0 . 4 5  0.30 -0 .37  -0 .33  
active - 0 . 5 8  -0 .46  -0 .73  -0 .10  -0 .29  0.08 
alert - 0 . 6 9  -0 .32  - 0 . 7 5  -0 .25  -0 .11 -0 .03  

TABLE 4. 
Variances (D 2) of the component scores per subject of the mood data. In denotes Introversion, EI denotes Emotional 
Instability 

Subject 

SCA-IND 
compared to 

SCA-IND SCA-P SCA-P 

variances (D/2) variance covaxiance correlation correlation 

In E1 In E1 In~E1 In~E1 In~In El~E1 

1 0.73 1.07 0.61 0.87 0.39 0.54 0.95 0.96 
2 0.18 5.30 0.21 5.71 -0 .43  -0 .39  0.92 1.00 
3 0.38 0.53 0.38 0.55 -0 .06  -0 .13  0.99 1.00 
4 2.04 1.20 2.69 1.64 -1 .01 -0 .48  0.99 0.93 
5 6.42 0.97 5.99 0.89 0.42 0.18 1.00 0.99 
6 0.31 1.27 0.31 0.97 0.31 0.56 0.90 0.99 
7 0.63 0.30 0.53 0.23 0.11 0.31 0.99 0.96 
8 0.16 0.38 0.16 0.33 0.04 0.19 0.99 1.00 
9 0.65 1.50 0.61 1.45 0.12 0.13 0.99 1.00 

10 0.08 0.17 0.10 0.19 -0 .05  -0 .35  0.98 0.99 
11 0.20 0.06 0.19 0.05 0.02 0.24 0.99 0.97 
12 0.17 0.28 0.17 0.26 0.01 0.06 1.00 1.00 
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FIGURE 1. 
Introversion component scores of Subjects 5 and 10, and Emotional  Instability component scores of Subjects 2 and 4. 
SCA-IND estimates axe denoted by "*", SCA-P estimates by ,,.,,. 

matrix of SCA-IND, and this rotation is compensated in the component score matrices of all 
subjects. The thus obtained loading matrix resembles the loading matrix of the SCA-IND so- 
lution heavily, as is indicated by a maximal absolute difference of the loadings of 0.08, and an 
average absolute difference of 0.02. (Incidentally, even the normalized Varimax rotated loading 
matrix of SCA-P resembles the SCA-IND loading matrix considerably, with maximal and mean 
absolute difference of loadings 0.11, and 0.05, respectively). Therefore, the components for the 
transformed SCA-P solution are similarly interpreted as for the SCA-IND solution, namely as 
"Introversion", and "Emotional Instability". 

The component scores of the transformed SCA-P solution can be compared to the ones of 
the SCA-IND solution in different ways. We computed per subject the average absolute differ- 
ence between the component scores (both Introversion and Emotional Instability) of the SCA-P 
solution and the SCA-IND solution. On average, the SCA-P component scores deviate more than 
0.10 from the ones of the SCA-IND solution only for Subjects 1, 2, 4, 6, and 7. Not surprisingly, 
those are the subjects with relatively high covariances between the two components in the trans- 
formed SCA-P solution, as reflected in correlations larger than 0.30 (see Table 4). The SCA-IND 
and SCA-P component scores can also be compared by investigating whether the score profiles 
(over time) of the two solutions are about equal. The correlation coefficients between the com- 
ponent scores of SCA-P and SCA-IND per component per subject are reported in Table 4. An 
impression of the differences in component scores between the two methods can be obtained 
from the plots in Figure 1. In Table 4, it can be seen that the correlation coefficients are rather 
high, thus the score profiles of Introversion and Emotional Instability as estimated by SCA-IND 
and SCA-P are about equal for all subjects. Even the estimated Emotional Instability scores of 
Subject 4, which show the lowest correlation among all subjects (0.93), do not differ so much 
that the interpretation of the development over t ime would be different. Thus, in comparing the 
SCA-P to the SCA-IND solution, the most striking is the presence of, to a certain extent, nonzero 
correlations between the components for a number of subjects. 
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The SCA-P model with 4 components explains 58.4% of the variance, which is as much as 
14.9% more than the SCA-P model with 2 components.  The Varimax rotated loading matrix is 
presented in the right hand side of Table 3. In comparison to the loading matrices of SCA-IND 
and SCA-P with 2 components,  the Varimax rotated SCA-P loading matrix roughly shows a split 
of the introversion component: the positive items load high (<  - 0 . 4 0 )  on a different component 
than the negative items do. These 2 components can be labeled as "Arousal" and "Nervousness". 
Furthermore, the items "excited" and "proud", that were not assigned to a component in the 
SCA-IND solution, form together with "ashamed" one component (component IV in Table 3). 
It is interesting to note that one subject shows a large positive correlation between "Arousal" 
and "Nervousness". This is strange from an interpretational point of view, but it fully reflects 
the trend that is also perceptible in the raw data of this subject. The covariances between the 
components for the different subjects vary from large to small, but they are difficult to interpret. 

The interpretation of the three models just discussed has much in common, but the models 
differ in the details. The less restricted the model is, the more details (whether of the variables 
or the subjects) of the data are captured in the model. The preference for a particular model  
depends on the degree of interest in those details. The SCA-IND model with 2 components 
is fairly simple to interpret, and it covers the main features of the data, as is indicated by a 
relatively high fit, at least compared to SCA-P with 2 components.  In both SCA-P models (2 
and 4 components) the components covary in a complicated manner for the different subjects. 
Besides, the magnitudes of the correlation between the sets of component scores in the two 
SCA-P models are not convincingly large to justify a lower dimensional interpretation, even for 
some subjects. The SCA-P model  with 4 components offers a detailed insight into the variable 
structure, and the model fits the data much better than SCA-IND with two components.  This 
model is preferred if a detailed description is desired. 

On the basis of the estimated SCA-P models and SCA-IND model, one can conclude that 
the positive/negative dimensions, which are found using the PANAS scale in healthy subjects, is 
not found in subjects suffering from Parkinson's disease. Instead, the intraindividual differences 
in mood in Parkinson patients follow the "Emotional Instability" and "Introversion" dimensions 
mainly. Furthermore, the three models show that the degree of intraindividual variability dif- 
fered much across subjects, indicating that the stability of state of mind varies across Parkinson 
patients. 

5. Discussion 

Four variants of models for Simultaneous Component  Analysis,  and their properties have 
been discussed in the preceding sections. The models for SCA are particularly useful for the 
exploratory analysis of multivariate time series collected from a number of subjects. The four 
models can be ordered hierarchically. The most restricted model, the SCA-ECP model, allows 
for least variation between subjects (in terms of average cross-products of component scores, 
or covariances, if  the component scores are centered), whereas the least restricted model, the 
SCA-P model, allows for most variation between subjects. A prerequisite is that a chosen model  
has a small degree of overall error, which can be assessed via cross-validation and split-half 
analyses. The methods evaluate different aspects of stability, and therefore we advise to use both 
methods simultaneously. The final decision should be based on the interpretability of the model. 
The empirical example illustrated the use of the SCA models in practice. The example offered a 
nicely interpretable solution, in which the intraindividual as well as the interindividual structure 
is covered. 

The four models are not only suitable for modeling multivariate t ime series of two or more 
subjects simultaneously. SCA-P has been used to analyze scores of two or more groups of indi- 
viduals on the same variables (e.g., Kiers & ten Berge, 1994; Niesing, 1997). An application of 
SCA-PF2 to chemical data is given in Bro, Andersson and Kiers (1999). Those types of data can 
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be modeled by the other three methods as well. Depending on the extent of differences between 
groups, samples, or individuals SCA-R SCA-PF2, or the new SCA-IND and SCA-ECP models 
can be chosen. 

In the SCA models, the components are defined on the basis of degree of linear indepen- 
dence between the variable scores over time, at least over all subjects simultaneously. Linear 
independence of the component scores over t ime certainly does not imply that the distinct se- 
ries of component scores are unrelated. One could possibly extend the present models to mod- 
els incorporating nonlinear relationships between component scores. In exploratory modeling, a 
simple approach to reveal possible nonlinear relationships between component scores is to visu- 
ally inspect the various component scores series over t ime simultaneously per subject. 

In the four SCA models, only the covariance structure of the component scores is con- 
strained. No structure is imposed on the component scores themselves. This has the advantage 
that the model is flexible, and that possible trends over time can be revealed from the compo- 
nent scores. However, it might be attractive in certain cases to constrain the component scores 
themselves, for example by imposing the component scores to follow an auto-regressive mov- 
ing average (ARMA) process. In imposing an A R M A  process, the models are in fact three-way 
generalizations of a special case of the linear dynamic system model (Bijleveld, 1989). Alterna- 
tively, smoothness constraints or even a certain functional form could be imposed on the compo- 
nent scores. Approaches to the latter that can easily be generalized to the SCA models, could be 
found in Timmerman and Kiers (2002) and Timmerman (2001), respectively. 

One of the factor models for modeling multivariate t ime series of one subject is dynamic 
factor analysis (Molenaar, 1985). In this model, multivariate t ime series are decomposed into 
latent factor score series, and the observed scores are related to the factor scores at the same time 
point as well as to the factor scores at U previous time points via U + 1 loading matrices, and thus 
so-called lagged factor influences are modeled. We have implemented the idea to model  not only 
simultaneous effects, but also lagged effects in the four SCA models as they are discussed above. 
Alternating least squares algorithms to fit those "lagged" SCA models to data, and rotational 
procedures for those models that are not essentially unique have been constructed. However, our 
first attempts to model empirical data reveal that the estimated models are extremely difficult to 
interpret (Timmerman, 2001). 

A. Appendix 

Let Xi (Ki x J) denote the matrix of scores of the i-th subject (i = 1 . . . . .  I )  on J vari- 
ables measured on Ki occasions (ki = 1, . . . ,  Ki).  To fit the SCA models to observed data, the 
following function is minimized 

I 

F ( F i ,  B )  =  llx - FiB'H 2 , ( a l )  
i=1 

where Fi (Ki × Q) contains the Q component scores of subject i at t ime points 1 . . . . .  Ki, B ( J  × 
Q) denotes the loading matrix, and Ei (Ki × J) denotes the matrix of residuals, and where Fi is 
subject to the constraint in the SCA at issue. 

Assumption 1. rank(Xsup) _> Q, where Xsup contains the matrices Xl  . . . . .  X I stacked be- 
low each other, Xi (Ki x J) is the matrix with scores of the i-th subject (i = 1 . . . . .  I ) ,  and Q is 
the number of components as estimated in the SCA-P model. 

Theorem 1. If  Xi(Ki x J), the matrix with scores of the i-th subject (i = 1 . . . . .  I ) ,  is 
centered column-wise, i e ,  1}~ Xi = 0~,, i = 1 . . . . .  I ,  then, under Assumption 1, the component 
scores matrix Fi ,  i = 1 , . . . ,  I ,  in the SCA-P model  is centered column-wise as well, that is, 

l ~ i F i  ~ " =OQ, t = 1 , . . . , I .  
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Proof To fit the SCA-P model to observed data, the sum of squared residuals is minimized. 
The algorithm to find SCA-P estimates is essentially based on a singular value decomposition of 
the supermatrix Xsup = UrArQIr, where Xsup contains the observed score matrices Xl, . . . ,  XI 

I positioned below each other, and U r U  r = Q~rQr = QrQ~r = I r ,  Ar a diagonal matrix with 
positive diagonal elements in weakly descending order, and r the rank of Xsup. The data matrix 
Xi of subject i, i = 1 . . . . .  I ,  can be written as Xi = UirArQIr, where Uir is obtained by 
selecting the rows of Ur that correspond to the rows with the observed scores for subject i of 
X s u p .  From Xi : UirArQ~ it follows that U i r  : X i Q r A r  1, which, given that l l X i  : 0 I, implies 
that 11Uir = 0 I, i = 1 , . . . ,  I, as well. The matrices F i ,  i = 1, . . . ,  I ,  are obtained as the first Q 
columns of U / r ,  where Q _< r, as follows from Assumption 1, and hence 11K~ Fi = 0O . I  [] 

Theorem2. If  X i ( K i  × J ) ,  the matrix with scores of the i-th subject (i = 1 . . . . .  I) ,  is 
centered column-wise, i.e., 1}~ Xi = 0~,, i = 1 . . . . .  I ,  then, under a mild assumption specified 
in the proof, the component score matrix Fi, i = 1 , . . . ,  I ,  in the SCA-PF2, SCA-IND, and 

i i = l , . . .  I. SCA-ECP models is centered column-wise as well, that is, I ~ F i  = 0Q, 

Proof To fit the SCA-PF2, SCA-IND, or SCA-ECP models to observed data, the sum of 
squared residuals is minimized via an alternating least squares algorithm. The algorithm to fit 

1 I the SCA-PF2 model, requiring that ~TiFiFi = D i ( ~ D i ,  w i t h  D i a diagonal Q x Q matrix and 
a positive definite Q x Q matrix with unit diagonal elements, uses an A LS algorithm for 

the equivalent problem of minimizing (4), subject to the constraint F1iFi = D i ( ~ D  i with ~ an 

arbitrary positive definite Q x Q matrix a n d  I) i a diagonal Q x Q matrix. The algorithm is 
essentially based on the fact that every matrix Fi that meets the constraint F1iFi = I)i~I)i can be 

written as Fi = PiFOi provided that P1iPi = IQ, i = 1 . . . . .  I, and ~) = ~i~. The matrices Pi, 
F, I)i, and B are alternatingly updated in the SCA-PF2 algorithm. The algorithm to fit the SCA- 
IND model uses the SCA-PF2 algorithm as follows: to find estimates of Fi, i = 1 , . . . ,  I ,  in the 
SCA-IND algorithm, the SCA-PF2 algorithm is used, keeping F fixed at identity. An update of 
Pi in the SCA-PF2 algorithm, subject to P1iPi = IQ, can be found by first computing the singular 
value decomposition of 

I I XiBOi ~I = UiQAiQQIiQ, UiQUiQ = QiQQiQ = QiQQIiQ = IQ, 

and AiQ a diagonal matrix with nonnegative diagonal elements in weakly descending order, 
and then taking P i  = UiQQIQ, where Q is the number of components. Now assuming that 
rank(XiBDi~ 'I) = Q, which can be expected to be satisfied in practice, the equality X i B I ) i  ~I  = 
U i Q ~ i Q Q I i Q  implies that U i Q  = XiBDiFIQiQA~J, which, given that llXi = 0 I, implies that 

IIUiQ = 0 I, i = 1 . . . . .  I, as well. After convergence, for SCA-PF2, Fi = PiFOi, whereas for 

S C A - I N D  F i  = PiFOi with F fixed at identity. Given that F i  = PiFOi and that every update 
t of Pi is taken as Pi = UiQQIiQ, it follows that if llXi = 0 I, then 1 = Fi = IIUiQQiQFDi = 

0IQiQFOi = 0 I. 
1 I An update o fF /  in the SCA-ECP algorithm, subject to ~[FiFi = IQ, can be found by first 

computing the singular value decomposition of 

I I X i B = U i Q A i Q Q I Q , U i Q U i Q = Q i Q Q i Q = Q i Q Q I Q = I Q ,  

a n d  ~iQ a diagonal matrix with nonnegative diagonal elements in weakly descending or- 
der, and then taking F i  = q/KT~UiQQIiQ, where Q is the number of components. Assum- 
ing that rank(X/B) = Q, which can be expected to be satisfied in practice, the equality 
XiB = UiQAiQQIiQ implies that UiQ = XiBQiQA~J, which, given that lIXi = 0 I, im- 

plies t h a t  I IUiQ = 0 I, i = 1 . . . . .  I, as well. Given that F i  is taken as  F i  = ~/--KT~UiQQIQ, it 
follows that if IIXi = 0 I, then IIFi = IIUiQQIiQq/~ = 0 I Q I Q q / ~  = 0 I. [] 
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