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Abstract

Missing values are a common occurrence in chemometrics data, and different approaches have been proposed to deal with them. In this

work, two different concepts based on two algorithms are compared in their efficiency in dealing with incomplete data when fitting the

PARAFAC model: single imputation (SI) combined with a standard PARAFAC-alternating least squares (ALS) algorithm, and fitting the

model only to the existing elements using a computationally more expensive method (Levenberg–Marquadt) appropriately modified and

optimised.

The performance of these two algorithms and the effect of the incompleteness of the data on the final model have been evaluated on the

basis of a Monte Carlo study and real data sets with different amounts and patterns of missing values (randomly missing values, randomly

missing spectra/vectors, and systematically missing spectra/vectors).

The evaluation is based on the quality of the solution as well as on computational aspects (time requirement and number of iterations).

The results show that a PARAFAC model can be correctly determined even when a large fraction of the data is missing (up to 70%), and that

the pattern matters more than the fraction of missing values. Computationally, the Levenberg–Marquadt-based approach appeared superior

for the pattern of missing values typical of fluorescence measurements when the fraction of missing elements exceeded 30%.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In chemometrics, incomplete observations and missing

values can be found in a large number of applications

ranging from calibration problems to statistical process

control. Recent studies have pursued the algorithmic

problem in connection with missing values for two-way

models [1–4], with specific focus on PCA and PLS and,

to a certain extent, three-way models [1,5,6]. The aim of

this paper is to study the effect of non-observed values

on fitting a PARAFAC model and to compare the

performances of two algorithms fitting such model in

presence of missing values: PARAFAC-alternating least

squares (ALS) with single imputation (ALS-SI) and the

least squares approach called INcomplete DAta paraFAC
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(INDAFAC) based on a suitably modified Levenberg–

Marquadt algorithm.

This study is based on a Monte Carlo simulation where

2400 data sets were generated varying a specific set of

conditions (rank of the array, percentage of missing

elements and their pattern in the array, collinearity between

factors, and level of noise) and on three real data sets

comprising fluorescence measurements and having known

rank.

1.1. PARAFAC model

If one considers a three-way array X of dimensions

I�J�K, the PARAFAC model can be expressed as

xijk ¼
XF
f¼1

aif bjf ckf þ rijk i ¼ 1 N I ; j ¼ 1 N J ; k ¼ 1 N K

ð1Þ
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where xijk is the measured value, aif, bjf, and ckf represent

the parameters to estimate, rijk are the residuals, and F is the

number of sought factors.

By defining the three loading matrices:

A ¼ aif ji ¼ 1 N I ; f ¼ 1 N F
� �

B ¼ bjf j j ¼ 1 N J ; f ¼ 1 N F
� �

C ¼ ckf jk ¼ 1 N K; f ¼ 1 N F
� �

ð2Þ

and employing the column-wise Khatri–Rao product (O)

[7], Eq. (1) can be written as

XðI�JKÞ ¼ AðCOBÞT þ R I�JKð Þ; ð3Þ

where X(I�JK) is the matricised form of the data array [the

superscript (I�JK) identifying the way the array is

matricised; [7], and the superscript T indicates the transpose

operation.

Fitting the PARAFAC model to X in the least squares

sense can be expressed as the minimisation problem:

arg min
A;B;C

OX I�JKð Þ � AðCOBÞTO
2

F ð4Þ

where OYOF is the Frobenius norm (i.e., the squared root

of the sum of the squared elements of the matrix Y).

Solving problem (4) corresponds to fitting the PARAFAC

model in the maximum likelihood sense provided that the

residuals r=vecR(I�JK) (where the vec operator is defined as

in Ref. [8]) are normally distributed with mean 0 and

variance r2I [9], viz. that the noise is uncorrelated and

homoscedastic. Albeit for real life problems this is hardly

ever the case, it has been shown in several applications that

such fitting is adequate also when slight deviations occur

[7].

Numerous algorithms have been proposed for solving

problem (4) [10,11], two of them, namely, PARAFAC-ALS

with single imputation and PARAFAC-LM (where LM

stands for Levenberg–Marquadt) can be effectively

employed in presence of missing values and are described

in Section 2.

1.2. Missing values patterns

Missing values may occur in data sets for a number

of reasons: glitches and malfunctions of one or more

sensors, irregular measurement intervals between sam-

ples, or different sampling frequencies for the various

sensors. In some cases (e.g., fluorescence Emission/

Excitation Matrices—EEM), the missing values are not
necessarily present originally in the data as obtained

from the instrument, but are inserted as a postprocessing

to yield data more suitable for being described by a

multilinear model [6,7]. Depending on the cause for the

missing values, their pattern within the array may change

considerably, having different effects on the model fitting

process.

In the simplest case to treat, but also the one that is

most seldom found in practice, the missing elements are

randomly scattered over the array without any specific

pattern (Fig. 1a). One such situation may occur when

several, distinct sensors are used to monitor one process

in time and there are momentary malfunctions in the

single sensor. Analogously, a survey of several variables

both in time and space may not follow a particularly

regular pattern, and certain sites (e.g., the least accessible

ones) may be visited with lower frequency. Such a

pattern is referred to as randomly missing values (RMV).

A second pattern, here denoted as randomly missing

spectra (RMS), encompasses the case of entirely missing

btubesQ (Fig. 1b), once again completely at random. This

situation may occur when a process is monitored in time

by means of a multivariate instrument (e.g., a spectrom-

eter). If the measurement is not taken, either due to

malfunctioning or caused by an irregular sampling

scheme, a whole spectrum (i.e., a tube) will be missing.

An analogous situation would present itself if a certain

sensor or channel stops working and is not replaced until

the process is terminated; only in this case the btubeQ
would be missing in the time mode of the array rather

than in the spectral one.

Finally, the missing values pattern may be completely

systematic, as, for example, would happen if the sensors

used for the monitoring of a process have a different

sampling frequency. Indeed, many cases of systematically

missing values (SMV) can be identified. One that is

particularly interesting, because it is common for the kind

of data to which PARAFAC is often applied, is

represented by EEM fluorescence measurements. In

fluorescence, the signal registered at emission wavelengths

lower than the excitation wavelength is physically zero

(Fig. 1c). The presence of these zeros, however, may

interfere with the multilinearity of the data [6], provoking

artefacts in the final solution. At the same time, Raman

and Rayleigh scatter (Fig. 1c), cannot be adequately

modelled by PARAFAC components as they are not

low-rank trilinear [5,6,12]. Because both these parts of the

recordings are not connected to chemical information, the

values in this range are normally set to missing, although

this is also often suboptimal and associated with other

kinds of modelling problems [5,12]. The pattern of the

missing values within the array in the latter case is

systematic and constant over the samples: entire tubes are

missing across the sample mode (Fig. 1d). In the

remaining part of this work, this pattern will be referred

to as systematically missing spectra (SMS).
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2. Algorithms

2.1. Alternating least squares with single imputation

(ALS-SI)

2.1.1. PARAFAC-ALS

The most common algorithm used to fit a PARAFAC

model is based on the alternating least squares idea [13]: the

nonlinear problem (4) is split into smaller, linear subpro-

blems that are solved iteratively until convergence is

established. Because all the steps are optimised in the least

square sense, the loss function L A;B;Cð Þ ¼ XO
I�JKð Þ �

AðCO BÞTO
2

F is bound not to increase at each step and

tends to a (possibly local) minimum.

Given initial estimates for B and C, Eq. (4) becomes

linear with respect to the matrix A, and an interim optimal

least squares estimate of the latter can be computed as

A sð Þ ¼ X I�JKð Þ
�
C s�1ð ÞOB s�1ð Þ

�T
 !þ

; ð5aÞ

where s�1=0 indicates the initial estimates for B and C,

respectively, and + indicates the Moore–Penrose generalised

inverse. The computation of A(s) on the basis of B(s�1) and

C(s�1), where s indicates the iteration number, is followed

by analogous substeps determining B(s) and C(s):

B sð Þ ¼ X J�IKð Þ
�
C s�1ð ÞOA sð Þ

�T
 !þ

ð5bÞ

C sð Þ ¼ X K�IJð Þ
�
B sð ÞOA sð Þ

�T
 !þ

ð5cÞ

After Eq. (5c) the convergence is checked: if the value of

L(A,B,C) has decreased in relative terms less than a chosen

small positive number (the convergence criterion), the

algorithm is stopped; otherwise, it continues estimating

A(s+1) for fixed B(s) and C(s) (i.e., the next iteration step).

The Khatri–Rao product has a property that allows

significant savings in the calculations. Specifically:

ðBOAÞT BOAð Þ ¼ BTB4ATA ð6Þ

where * is the Hadamard (element-wise) product. Following

the fact that M+=(MTM)+ MT [8], Eq. (5a) is solved as

A ¼ X I�JKð Þ COBð ÞðBTB4CTCÞþ; ð7Þ

where the indices relative to the iterations are skipped for

clarity. The ALS algorithm has only linear convergence and

slows down even further when it encounters so-called

swamps, i.e., regions where two or more factors grow

increasingly collinear and arbitrarily large maintaining

opposite sign while the loss function decreases very slowly

[14,15]. In order to accelerate the convergence, several

strategies have been devised [7]. One that proved efficient in

many cases uses a so-called line-search procedure [7,13],
which is based on the observation that the ALS algorithm,

particularly when stuck in a swamp, often proceeds with

increasingly shorter steps in very collinear directions for

several consecutive iterations. The line-search acceleration

tests, every given number of iterations, if a longer step along

the latest computed update for the loading matrices leads to

a larger decrease of the loss function [7].

2.1.2. Handling missing data

The ALS algorithm, as described in the previous section,

cannot handle missing values and requires some modifica-

tions to operate in the presence of incomplete observations.

One method, which has been successfully employed with

other multilinear models [1,3,4,7], is represented by single

imputation.

In such procedure, Eqs. (5a)–(5c) are applied, instead of

the original array X, to an array X̃ defined as

X̃
P

ðsÞ ¼ X
P
4M

P
þ YðsÞ

P
4 1

P
�M

P

� 	
ð8Þ

whereY(s) is the interim model computed at the s-th iteration,

and 1 is an array of ones having the same dimensions ofX.M

is an array whose elements are defined as

mijk ¼
0 if xijk is missing

1 if xijk is not missing



ð9Þ

X̃ contains no missing values and thus allows the use of the

standard PARAFAC-ALS algorithm to estimate the model

parameters. X̃(s) is updated at every iteration on the base of

Eq. (3). The zero-iteration approximation Y(0) is reckoned

depending on the pattern of the missing values. In general, it

is taken as the average of the observed values in the

corresponding columns/tubes or of the whole array.

The single imputation algorithm, under the conditions of

normality (with zero mean and identical variance) and

independence of the residuals, falls into the category of the

Expectation Maximisation (EM) approach for incomplete

data sets. The EM method was devised in the maximum-

likelihood framework [16] and is divided in two steps: the

E-step and the M-step. In the E-step, the conditional

expectation of the likelihood function is computed given

the observed data and the current estimated parameters. In

least squares terms, this corresponds to calculating the loss

function with respect to Eq. (8), i.e.,

LðA sð Þ;B sð Þ;C sð ÞÞ ¼OX̃X sð Þ�Y sð ÞO2
F

¼OX̃X sð Þ�A sð ÞðC sð ÞOB sð ÞÞTO2
F ð10Þ

where the superscript relative to the unfolding has been

skipped for clarity. The loss function (Eq. (10)) represents

the expected value of the log-likelihood function (with

changed sign) given the above assumptions on the residuals.

The M-step determines new estimates for the parameters

maximising the likelihood function. This step is simply

represented by Eqs. (5a)–(5c) and the computation of the

corresponding Y.
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It has been demonstrated that Eq. (10) is bound not to

increase and that the convergence of the procedure is linear

with a convergence rate that is related to the amount of

missing information [17,18].

This suggests that the already relatively slow conver-

gence rate of ALS may be further reduced by an increased

amount of missing values. Furthermore, whereas upon final

convergence the estimates for the missing values have no

influence on the estimated parameters, a large amount of

missing elements may increase the risk of convergence to a

local minimum as the interim model would describe for the

largest part the (erroneous) imputed values. These two

aspects pose the premises for the use of the modified

Levenberg–Marquadt algorithm described in the following

section.

2.2. Incomplete data PARAFAC (INDAFAC)

2.2.1. PARAFAC-LM

The Levenberg–Marquadt method is a modification of

the Gauss–Newton (iterative) algorithm for solving non-

linear least squares problems [19,20] and has been proposed

for solving problem (4) in several instances [11,21,22]. In

order to describe this method, it is necessary to introduce a

vectorised notation for the PARAFAC model:

x ¼ vecX I�JKð Þ ¼ vec A COBð ÞT
i
þ vecR I�JKð Þ

h
ð11Þ

If one defines a vector p=vec[AT|BT|CT] holding the model

parameters, problem (4) can be expressed as

arg min
p

Or pð ÞO2
2 ¼ arg min

p

ðx� y pð ÞÞT x� y pð Þð Þ ð12Þ

where r=vecR(I�JK) and y=vec[A(COB)T].

In the Gauss–Newton algorithm (and the Levenberg–

Marquadt modification), an update Dp for all the parameters

is computed at each iteration, and the new estimates for the

model parameters are defined as p(s)=p(s�1)+Dp. This

method is based on a Taylor expansion of the residuals

with respect to the interim parameters p(s):

r p sð Þ þ Dp
� 	

¼ r p sð Þ
� 	

þ JDpþ O ODpO2
2


�
ð13Þ

where J is the Jacobian matrix of r(p), i.e., an IJK�
(I+J+K)F matrix whose elements are defined as

jmn ¼
Brm

Bpn
¼ � Bym

Bpn
ð14Þ

If one ignores the error term O(ODpO2
2) in Eq. (13), the

update Dp for all the parameters can be computed as the

solution to the linear least squares problem [19]:

arg min
Dp

Or p sð Þ
	
þ J p sð Þ

	
DpO2

2

��
ð15Þ
There are several methods for solving Eq. (15). The one

employed here is based on the system of normal equations:

JTJDp ¼ JTr ð16Þ

which is solved by means of a Cholesky decomposition and

back-substitution. The choice is justified by the sparsity of

the Jacobian and by its dimensions [11]. Because of its

computational complexity (each update requires approxi-

mately O(N3) operations, where N is the number of

parameters), this solution is suited for small- and medium-

size problems. Iterative methods, such as Preconditioned

Conjugate Gradients, may be more efficient for large-scale

problems [22].

The Gauss–Newton algorithm described thus far is

particularly appealing, because it guarantees quadratic

convergence provided that the initial estimates for the

parameters are close enough to the solution and that the

residuals at the solution are not too large [19,20]. On the

other hand, if these conditions are not fulfilled, the

algorithm may not converge at all. Furthermore, the method

requires modifications if the Jacobian is rank-deficient [19],

as it is the case when fitting a PARAFAC model: due to the

scaling indeterminacy intrinsic to this model, 2F (for a

three-way array) of the Jacobian singular values are zeros to

machine precision [21,22].

The Levenberg–Marquadt modification (LM) of the

Gauss–Newton algorithm copes with all these problems,

thus yielding a globally convergent algorithm [19,20]. In the

LM algorithm, the system of normal Eq. (16) is modified to

JTJþ kI IþJþKð ÞF


Dp ¼ JTr

�
ð17Þ

The algorithm belongs to the category of the trust region

methods. In essence, a btrust regionQ, which radius is a

function of k, is a sphere centred in the current estimate p(s)

where the linear approximation for the residuals is assumed

to hold. The update Dp is computed so that it minimises the

residuals inside this region. If Dp leads to an insufficient

decrease of the loss function, the update is rejected, the trust

region is shrunk (i.e., k is increased), and a new update is

calculated. Various strategies exist to define whether the

update should be accepted or rejected and how to update k.
The one used here is described in detail in Ref. [20] and is

based on the ratio between the linearly predicted decrease of

the loss function L(p)�Or(p)+J(p)DpO2
2 and the actual

decrease after the update L(p)�L(p+Dp).

The scaling indeterminacy poses another problem related

to the numerical stability of the algorithm. If the standard

scaling convention for the loading matrices is used (i.e.,

ObfO2=OcfO2=1), the bpracticalQ condition number of the

Jacobian (i.e., computed disregarding the scaling indetermi-

nacy—see Section 3.2) may become exceedingly large

(typically because aifbjffaifckfJbjfckf). This can be

avoided by setting the norm of the three loading vectors

of the same component to be the same and equal to

qf=(OafO2ObfO2OcfO2)
1/3 [11].
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2.2.2. Handling missing values (INDAFAC)

This PARAFAC-LM algorithm is significantly more

memory demanding than ALS and more expensive per

iteration, both in number of operations and computational

time [11,21]. Apart from the greater stability with respect to

the collinearity and overfactoring, the LM algorithm can be

readily modified to treat the case of incomplete data without

any imputation. If the loss function is transformed into

L pð Þ ¼ Or4 vecM I�JKð ÞO2
2; ð18Þ

where M is defined as in Eq. (9), the rows in the Jacobian

corresponding to the missing observations can be eliminated

as the residuals (and thus the loss function) do not change

with respect to these elements. This has several advantages:

the number of non-zero elements in the Jacobian drops from

3FIJK to 3pFIJK, where 0bpV1 is the fraction of non-

missing values in the array, thus reducing the memory

consumption; furthermore, as J is extremely sparse, the

computation of the products JTJ and JTr becomes less and

less expensive with the increase of the fraction of missing

values.

Under the assumptions of normality with mean zero and

identical variance of the residuals, this method of handling

the missing values is an analogue to the modified Newton

method using the empirical information matrix for max-

imum likelihood estimation [18].
1 The cosine of the angle between two vectors a and b (also referred to

as congruence) is defined as: u a; bð Þ ¼ cos ˆða;bÞ ¼ aTb=OaOObOð Þ.
3. Experimental

Numerous aspects can affect the quality of the estimated

PARAFAC model [7]. The aim of this work is to study the

behaviour of the two proposed algorithms in the presence of

large amounts of missing values with different patterns.

Only a few additional properties of the data have been

considered in the simulations in order to simplify the setup

of the experiments.

The experimental part was conducted in two different

stages. The first comprised a Monte Carlo study on

synthetic data sets. In the second, the presence of missing

values was simulated in three fluorescence data sets of

different compositions and degrees of collinearity.

The correct rank of the model was assumed known in all

cases, the study of the effect of overfactoring in combination

with the presence of missing values is left for future

research.

Both algorithms were initialised using the same best

fitting of 10 runs of ALS-SI limited to 10 iterations and

started with loading matrices of random values. Both

algorithms were stopped when the relative decrease in the

value of the loss function (L(s)�L(s�1))/L(s�1) was less than

10�6 or a predetermined number of iterations was reached

(10000 for ALS-SI and 1000 for INDAFAC). For INDA-

FAC, a second convergence criterion was set at 10�8 for the

infinite norm of the gradient vector [20].
All the tests were run on a Pentium IVR 2.6-GHz

computer with 512 MB memory, working under Win-

dows XP. All the computations were run in MATLAB

6.5 (The Mathworks, Natick, MA, USA). Data sets I and

II, the functions for generating the simulated sets and for

the PARAFAC-LM algorithms, are available for down-

load at the authors’ group webpage (http:www.models.

kvl.dk, June. 2004). The functions for PARAFAC-ALS

with single imputation are part of the N-way toolbox

(downloadable at http:www.models.kvl.dk, June. 2004).

3.1. Simulated data sets

The Monte Carlo study has been carried out on the basis

of 2400 arrays generated considering the following aspects:

rank of the array, degree of collinearity of the underlying

components, amount of noise, percentage and pattern of

missing values. The different conditions are summarised in

Table 1. For each setup, 20 replicates were computed to

account for minor statistical fluctuations. The dimension of

the data sets was 30�30�30.

The data sets were generated on the basis of Eq. (3). In

order to control the collinearity between the underlying

components, the loading matrices were generated using the

following equation ([11]; here reported with respect to the

first mode):

A ¼ VL ð19Þ

where V is a column-wise orthonormal I�F matrix, and L is

the Cholesky factor of a square F�F matrix U holding ones

on the diagonal and the required cosine of the angle between

the loading vectors1 in the off-diagonal elements [23].

Consequently, ATA=LTVTVL=LTL=U. All the factors were

given the same magnitude.

The independent and homoscedastic noise was normally

distributed with mean 0. Two desired levels of noise were

attained using the following formula [11]:

R I�JKð Þ ¼ Noise%

100�Noise%
OX I�JKð ÞOFR̃R

I�JKð Þ ð20Þ

where R̃(I�JK) is a matrix of normally distributed (mean 0)

random values having a Frobenius norm of 1. Noise%

indicates the percentage of noise over the total variation in

the array X+R.

The pattern for the missing values in the array in the RMV

case was determined using the first pIJK elements of a

random permutation of the integers on the interval [1,IJK]. In

the RMS case, the tubes (i.e., spectra) were removed in the

third mode (Fig. 1b), and the position of the missing tubes

was determined using the first pIJ elements of a random

permutation of the integers on the interval [1,IJ]. In both

cases, it was checked that no slab contained only missing

http:www.models.kvl.dk
http:www.models.kvl.dk


Table 1

Design factors and levels in the Monte Carlo study

Factors Levels

Percentage of missing values 30, 40, 50, 60, 70

Pattern of missing values RMVa, RMSb, SMSc

Congruenced 0.5, 0.9

Noisee 0.5, 2

Model rank 3, 4

a Randomly missing values.
b Randomly missing spectra.
c Systematically missing spectra.
d Cosine of the angle between the components in the IJK�1 space.
e Expressed as a percentage of the total variation (i.e., of

OvecX(I�JK)O2).
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values. In the SMS case, the missing values for each sample

were set in two identical triangles at two opposite vertices of

each horizontal slab (as in Fig. 1d), their size was defined so

that the required fraction of missing was best approximated.

3.2. Real data sets

The two algorithms were tested on three different data

sets of fluorescence measurements:

(1) Twenty-two solutions of four substances (DOPA,

hydroquinone, tryptophan, and phenylalanine) were
Fig. 1. Patterns of missing values on a single horizontal slab: (a) randomly miss

fluorescence landscape (c) and the corresponding systematically missing spectra
analysed on a Perking-Elmer LS50 spectrofluorometer

[24]. The 13 excitation wavelengths ranged between

245 and 305 nmwith steps of 5 nm, whereas in emission

the range comprised 131 wavelengths measured

between 260 and 390 nm with a step of 1 nm. Three

bartificialQ data sets were generated out of the single

measured one by selecting every third variable in the

emission mode in each replicate set [11]. Thus, replicate

set one used emission variable number 1, 4, 7, etc., and

replicate set two used variable 2, 5, 8, etc. The

procedure thus yielded two arrays of size 22�87�13

and one of size 22�88�13. The Rayleigh scatter was

removed by subtracting from each sample a bmodelQ of
the scatter. The Raman scatter was not treated.

(2) Fifteen solutions of DOPA, hydroquinone, tyrosine,

and tryptophan were analysed by means of a Cary

EClipse spectrofluorometer. The excitation mode

comprised wavelengths between 230 and 300 nm

measured at intervals of 5 nm (15 variables). In

emission, the wavelengths varied between 282 and

412 nm with 2-nm steps (66 variables). Full factorial

design with two concentration levels per constituent

was employed, and six instrumental replicates were

measured, thus generating six arrays of size 15�66�15.

The influence of Rayleigh and Raman scatter was

minimized by subtracting a blank.
ing values (RMV); (b) randomly missing spectra (RMS); (c and d) EEM

(SMS) pattern after the Rayleigh scatter removal (d).



G. Tomasi, R. Bro / Chemometrics and Intelligent Laboratory Systems 75 (2005) 163–180 169
(3) Forty-seven solutions of five compounds (cathecol,

hydroquinone, indole, tryptophan ,and tyrosine) were

measured with a Varian Cary EClipse spectrofluor-

ometer. The emission ranged from 230 to 500 nm

with intervals of approximately 2 nm, while the

excitation varied between 230 and 305 nm with 5-

nm steps [25]. The Rayleigh scatter on the original

data set was removed by setting the corresponding

elements in each sample to missing [6,7]. The

Raman scatter was not treated. The data set was

further reduced to a size of 47�80�16 by selecting

the emission wavelengths between 276 and 434 nm

in order to remove the largest part of the missing

values. A small part (5%), though, remained at the

low-emission/high-excitation wavelengths in a region

that did not interfere with the resolution of the

constituents.

Five replicates with random patterns of missing values

(i.e., for RMV and RMS) were generated to account for

minor statistical fluctuations. For SMS, five runs were

also tested using different starting values but the same

pattern.

Preliminary tests showed that for some of the constitu-

ents of the real data sets, the predictions worsened already at

30% of missing values in the SMS pattern. Therefore, two

more levels were added, and the real data sets were analysed

with fractions of missing elements varying from 10% to

70% with increments of 10%.

Table 2 shows the degree of collinearity, the explained

variation, and the core consistency [26] of the three data

sets of the underlying components obtained with the

complete data set. According to Kiers [27], on the basis

of the condition number of the loading matrices, both

data set I and II can be classified as mildly collinear and

data set III as severely collinear. None of them however

entirely falls into any category defined according to this

criterion. The Jacobian matrix associated with the

PARAFAC model contains more information on the

numerical difficulty and collinearity of the problem.

Due to its rank deficiency, the true condition number

cannot be employed for diagnostic purposes. However,

the number of numerically zero singular values related to
Table 2

Diagnostic parameters for the three real data sets: condition numbers for the Jacob

congruence between factors for the three loading matrices and their Khatri–Rao p

Data

set

Condition number Congruence (min-max)

Ja A B C A B C

I 18.43 2.83 20.4 5.96 0.31–0.49 0.002–0.88 0.15–0.9

II 35.85 8.99 12.24 8.07 0.46–0.50 0.15–0.86 0.55–0.9

III 115.06 5.96 41.93 40.6 0.36–0.55 0.22–0.98 0.52–0.9

a Computed according to Eq. (21).
b Computed according to Ref. [26].
the scaling indeterminacy is known beforehand to be 2F;

consequently, one can consider the bpracticalQ condition

number cJ instead:

cJ ¼
r1

r IþJþK�2ð ÞF
; ð21Þ

where r1 is the largest singular value of J, and

r(I+J+K�2)F is the last non-zero singular value after

having taken into account the scaling indeterminacy. As

mentioned in Section 2.2.1, the scaling convention

affects the value of cJ, therefore the loading vectors

were scaled so that OafO2=ObfO2=OcfO2.

cJ appears as more univocal than the condition numbers

of the separate loading matrices when it comes to describing

the degree of collinearity. Although no actual threshold can

be given nor suggested for cJ, a ranking can be clearly

observed between the three problems, were data set I is the

least collinear, data set III is the most collinear, and data set

II is in the middle. Furthermore, cJ also helps in describing

the effect of the missing values on the fitting procedure: cJ
increases systematically with the percentage of missing

values. In particular, for the real data sets, with 70% missing

elements, values of cJ in the order of 106 were observed

upon final convergence.

It should be noted that the factors were extracted

from the complete data sets and are thus affected by

small non-linearities in the recorded signal that may

show up as small interaction terms between the factors.

Such phenomena can be theoretically described in terms

of model error and might be bquantifiedQ by the core

consistency diagnostic [26]. It can clearly be seen that

data set III is particularly problematic in this respect: the

lower value of the core consistency reflects the presence

of relatively unstable components (or of deviations from

low-rank trilinearity) and thus may imply a more

difficult problem than for data set I and II, where the

PARAFAC model is clearly more adequate. The problem

of model error is further complicated by the effect of

certain patterns of missing values (see Appendix A).

Finally, it can be seen in Table 2 that, in spite of the

fact that in one mode the angle between two factors may

be small (with cosines up to 0.98), the whole compo-

nents are in fact rather well separated (mostly as a
ian J and the three loading matrices A, B, and C; minimum and maximum

roducts; core consistency.

Core

consistency

(%)b
AOB BOC AOC AOBOC

4 0.00–0.38 0.05–0.37 0.00–0.32 4d 10�4–0.32 98.9

4 0.07–0.42 0.26–0.46 0.06–0.35 0.06–0.35 99.3

7 0.11–0.52 0.22–0.45 0.08–0.43 0.08–0.43 69.6
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consequence of the design in the concentration levels).

The same holds for the Khatri–Rao products AOB,

BOC, and AOC, whose pseudoinverse is necessary for

the computation of the interim solutions (Eqs. (5a)–(5c)).

This suggests that the three real data problems in themselves

are not particularly difficult provided that all the information

is available.

For the real data sets, the position of the missing values

was selected on the same basis as for the artificial ones.

With specific reference to data set III, the missing values

resulting from the removal of the Rayleigh scatter are

completely covered by the artificially imposed ones in the

SMS case. This was not entirely the case for the other two

patterns, where the bnaturallyQ missing values summed up

with artificially set ones leading to a fraction of missing

values slightly larger than the required value, but still

reasonably close to it.

3.3. Criteria of interest

Two main aspects were considered in this work: the

statistical quality of the retrieved solutions and the computa-

tional aspects of the two algorithms. Specifically, the

diagnostics discussed in the following subsections were

used.

3.3.1. Recovery capability

One true factor (zf=cf�bf�af) is considered as recovered

if there is one component (ẑg=ĉg�b̂g�âg) in the fitted

solution having a congruence with it greater than a certain

threshold. If there are no extreme baselines, a threshold for

the single loading vector that guarantees recovery is 0.99;

correspondingly, the criterion for the component of three

loading vectors may be set at 0.993f0.97. The two criteria

are not entirely the same; in fact, with the latter, it is possible

that a component is considered as recovered also when one

of the corresponding loading vectors has a congruence

lower than 0.99. In practice, the results using a threshold for

the whole component of 0.97 give slightly more optimistic

results, but in general the interpretation does not change

much. While for the Monte Carlo simulation, the true

components are known, for the real data sets the factors

found from fitting the model to the original array (i.e.,

without artificially set missing values) were taken as the

correct underlying ones, although this is clearly only an

approximation.

The underlying model can be considered as fully

recovered (retrieved) if all its factors have been recovered

according to a threshold of 0.97. The recovery capability is

the percentage full retrievals over the total number of

computed models [11].

Because the factor order (permutation) in the solution is

not uniquely defined [7,13], all possible permutations of the

extracted factors need to be compared with the underlying

components to establish full recovery. The correct permu-

tation is defined as the one yielding the highest sum of the
cosines with the brealQ one [15,28]. In other words, the

bwinningQ permutation Pwin is found as a solution to

Pwin ¼ arg max tr
P

ATÂAP


4 BTB̂BP



4 CTĈCP


� 
���
ð22Þ

where A, B, and C are the real (column-wise normalised)

loading matrices, Â, B̂, and Ĉ are the estimated (column-

wise normalised) loading matrices, P are all the possible

permutation matrices for F columns and tr(M) indicates the

trace of the square matrix M.

3.3.2. Congruence product

The quality of the solution was also assessed on the basis

of the product of the congruences for the whole components

or the single loading matrices:

/z ¼
Y

f¼1 N F

u ẑzf ; zf


;

�
ð23Þ

3.3.3. Mean-squared error

The value of the Mean-Squared Error (MSE) for the

model parameters. With respect to A, the MSE is computed

as

MSEðA; ÂA;Pwin; SAÞ ¼
OA� ÂAPwinSAOF

IF
ð24Þ

where SA is a scaling matrix found as the solution to

arg min
SA;SB;SC

ðOA� ÂAPwinSAOFþOB� B̂BPwinSBOF

þOC� ĈCPwinSCOFÞ subject to SASBSC ¼ IF ð25Þ

Such a procedure is necessary because trivial differences

in scaling may yield unnecessarily high values for the MSE

[11,29].

3.3.4. Loss function value

The value of the loss function is important to establish

the capability of the two different algorithms to reach a

(global) minimum.

3.3.5. Error in calibration

The presence of the concentration matrices for the three

real data sets allows the use of one additional quality

diagnostic: the Root-Mean-Squared Error in Calibration

(RMSEC) in a linear regression model based on the loadings

in the first mode. Only the scores of the component

associated to the sought constituent are used in addition to

an intercept. Thus, for the f-th constituent:

RMSECf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oyf � ŷyfO

2
2

I

s
ð26Þ

where ŷyf ¼ ½af 1
 af 1
� �� 
þ

yf .
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3.3.6. Numerical assessments

The efficiency of the two algorithms is assessed in terms

of time consumption and number of iterations necessary to

reach convergence. Especially with respect to the latter, it is

well known that ALS methods require many more (less

expensive) iterations [11,21], thus a direct comparison is not

feasible. On the other hand, the number of iterations may be

of value, in relative terms, to assess the effect of a certain

feature on the convergence of the same algorithm.
Fig. 2. Different kinds of artefacts in the emission loadings of data set I

associated to the RMS (a) and SMS (b) missing values patterns.
4. Results and discussion

4.1. Simulated data sets

The first aspect that was considered was the capability of

full recovery for the two tested algorithms. In this respect,

INDAFAC performed slightly better, managing to retrieve

the true underlying components for 77.8% of all the

synthetic arrays compared to the 77.3% of ALS-SI.

The feature in the designed sets that affected the most the

number of complete recoveries is the pattern of the missing

values Table 3. As expected, the RMV case is the easiest to

be dealt with, and, apart from a small number of cases, the

correct factors are recovered in all the replicates by both

algorithms. The RMS proved to be somewhat more difficult

to solve, and in a minor fraction of cases full recovery was

not attained. The SMS pattern appeared to be much more

problematic, with an occurrence of full recoveries that is not

comparable with the other two.

The reasons for the lower recoveries of RMS and SMS

must be sought both in the convergence to local minima and

the presence of artefacts related to slabs with a large fraction

of missing values (Fig. 2). In the former case, it was

sufficient to restart the algorithm a number of times to yield

the correct solutions, whereas in the latter, restarting did not

accelerate convergence and yielded solutions with artefacts

in the same positions. In these cases, not even initialising the

algorithms using the real underlying factors prevented the

emergence of artefacts in the solution, which was associated

to a lower value of the loss function. In fact, the artefacts of

the type shown in Fig. 2 are only indirectly a function of the
Table 3

Percentage of full recoveries according to a threshold of 0.97 for the simulated d

Pattern Algorithm Rank Congruence Mi

3 4 0.5 0.9 30

RMVa ALS-SI 100.0 99.3 100.0 99.3 10

INDAFAC 100.0 100.0 100.0 100.0 10

RMSb ALS-SI 90.5 88.5 97.3 81.8 9

INDAFAC 91.0 89.0 97.3 82.8 9

SMSc ALS-SI 41.5 44.0 59.5 26.0 7

INDAFAC 46.5 46.3 59.3 33.5 8

a Randomly missing values.
b Randomly missing spectra.
c Systematically missing spectra.
fraction of missing values in the corresponding slab; they

are determined by the fact that the few values that remain in

a slab do not contain enough information with respect to the

sought components. Occurrence and magnitude of the

artefacts are not easy to predict as they are affected by the

different sources of variation (including the non-trilinear

ones such as scatter or noise [6]), as well as interactions

between factors during convergence allowed for by the
ata sets with respect to the separate design factors

ssing values (%) Noise (%)

40 50 60 70 0.5 2.0

0.0 100.0 100.0 99.4 98.8 100.0 99.3

0.0 100.0 100.0 100.0 100.0 100.0 100.0

6.9 94.4 93.8 88.8 73.8 90.8 88.3

7.5 91.9 94.4 90.0 76.3 91.0 89.0

8.8 67.5 38.1 25.0 4.4 46.5 39.0

2.5 71.3 46.3 25.0 6.9 50.3 42.5



Fig. 3. Effect of various design factors on the median MSE for both

algorithms for the RMV pattern: (a) rank 3, (b) rank 4; ( S ) low congruence,

(o) high congruence, (open symbol) low noise, (closed symbol) high noise.

The numbers are the percentage of missing values. The lines departing from

each symbol are the standard deviations for the MSE and the algorithm

corresponding to the direction of the line.
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pattern of missing values (see Appendix A). It is beneficial

to both speed of convergence and quality of the model to

remove whenever possible the problematic slabs, but at the

current stage there are few, if any, tools that allow their

identification [4,30]. Their development exceeds the pur-

poses of the work, and further studies will be necessary in

this direction.

With respect to the other factors in the design,

congruence has the most visible effects, along with the

fraction of missing values. The Levenberg–Marquadt

algorithm performs in general better for highly collinear

factors [31], and this property is retained in the presence

of missing values (Table 3); the INDAFAC algorithm

yields (apart from one single setting) the correct solution

more often than ALS-SI. It is once again evident how the

RMV case creates very few problems to either of the

algorithms, while the other two patterns yield a consis-

tently decreasing number of fully retrieved models.

Nevertheless, in the RMS case, even with 70% missing

values, the loadings are correctly estimated in more than

three cases out of four (for INDAFAC). In the SMS

pattern, these percentages decrease to the point that in

less than 50% of the cases overall the correct factors are

recovered and full recovery hardly ever occurs for 70%

missing values. Although, a slight worsening in the

quality of the solution could be observed for both MSE

(Fig. 3) and / (not shown) as a result of an increase of

rank from 3 to 4, this was too small to significantly affect

the recovery capability (Table 3). Analogous observations

could be made in the RMS case for the noise level,

although this factor affects the quality of the solution

more than the rank (Fig. 3). For the SMS pattern, the

recovery capability is affected also by noise, which most

likely influences magnitude and occurrence of artefacts

[6].

All these results were confirmed by ANOVA models

applied separately to the missing values patterns and having

the number of full recoveries over the 20 replicates as

response variable. As a result of such ANOVA models, also

the interaction between congruence of the underlying factors

and fraction of missing values appeared to be significant for

ALS-SI for both RMS ( pb0.012) and SMS ( pb0.005)

patterns and for INDAFAC only in the RMS case

( pb0.023). Such interaction is not unexpected and means

that missing values affect more critically data sets with more

collinear components.

If one looks at full recovery in the three modes separately

(Table 4), it is apparent how, in the SMS case, the recovery

of A, B, and C differs, and that A is correctly estimated

more often than the other two loading matrices. This is

particularly important for calibration purposes, where A is

used to determine the concentrations. Also in the RMS case,

there is an asymmetry in the retrieval of the various modes.

Although this is not apparent in the recovery capability

relative to this mode, it shows in the quality of the

estimations: /C is larger than /A and /B in approximately
60% of the cases, whereas in case of symmetry between

modes (e.g., in the RMV pattern), this percentage is should

be around 33%.

The different outcomes related to the RMS and SMS

patterns can be in part explained if one considers the

matricised form of the array X. In the RMS case, C spans

the column space of X(K�IJ), which columns are formed of

either completely missing elements or all real ones. Thus,

with respect to C, complete information is always available,

and the difficulties in retrieving the correct solution in this

mode are associated only with how collinear are the

columns of BOA after the removal of the rows correspond-

ing to the columns with missing values. Equivalently, for



Table 4

Mode recovery for the different patterns of missing values RMV, RMS, and SMS. All the factors and levels are considered. FR (fully recovered) indicates the

percentage of full recoveries for the specified loading matrix according to a congruence threshold of 0.99. BR (best recovered) for loadings matrix A is the

occurrence of /ANmax(/B,/C) (the values for B and C are found mutatis mutandis). Symmetry between modes yields identical BR for the three loading

matrices, i.e., approximately 33%

Pattern Algorithm A B C

FR (%) BR (%) FR (%) BR (%) FR (%) BR (%)

RMVa ALS-SI 99.6 32.8 99.6 33.6 99.8 33.6

INDAFAC 100.0 33.4 100.0 33.0 99.8 33.6

RMSb ALS-SI 89.1 15.6 89.3 25.8 90.3 58.6

INDAFAC 89.4 14.9 90.1 25.3 90.3 59.9

SMSc ALS-SI 56.0 70.4 41.9 13.8 42.9 15.9

INDAFAC 58.1 65.3 46.0 16.4 48.5 18.4

a Randomly missing values.
b Randomly missing spectra.
c Systematically missing spectra.
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SMS, A spans the column space of X(I�JK), which again

contains only completely full or completely missing

columns. This explains the better performance in the first

mode in the SMS case and links the difficulty of the

problem to the collinearity of the columns of COB once the

rows corresponding to the missing elements are removed.

Yet, the much greater difficulty in SMS compared to RMS

remains largely unexplained by these arguments. The small

simulation illustrated Appendix A suggests that the SMS

pattern may interfere with trilinearity by allowing for

binteractionsQ between the two loading matrices B and C.

Figs. 3 and 4 show the effect of the various factors on the

quality of the solution in terms of MSE. Fig. 3 describes the

behaviour of the two algorithms when both converge to a

meaningful solution. The plot is derived on the RMV

pattern, but it applies also to the other two when both

algorithms converge. The solution of the two algorithms is

substantially identical for the low-congruence case (i.e., the

symbols lie on the diagonal), although INDAFAC tends to

yield a lower value of MSE. This is particularly evident in

the high-congruence case. It can also be seen that the effect

of rank is very limited compared to that of noise and

particularly to that of congruence. These observations are

consistent with what was observed on the base of the

recovery capability. Note that a value of approximately 10�2

for the MSE appears as a good choice to establish full

recovery and yields, apart from a limited number of cases,

the same results as the aforementioned 0.97 threshold for the

congruence. In this sense, convergence to local minima or

solutions with large artefacts can be easily identified in Fig.

4. In particular, it can be seen that when INDAFAC does not

converge, it yields significantly larger values of MSE (i.e.,

symbols lying over the diagonal in the plot) than those of

ALS-SI in analogous conditions. This may be related to

some sort of stabilising effect associated to the fact that (1)

imputed values in ALS-SI are indirectly found through

linear combinations of the given values, and (2) if one looks

at the value of the loss function, INDAFAC clearly

outperforms ALS-SI in finding a minimum; it attained the

lowest value of the loss function in 97.25% of the cases.
Only in a fraction of these, though, the discrepancy (in

relative terms) was larger than 0.01%, namely, in 52.7%

(7.3% if one considered a difference of more than 1%) of the

2400 data sets. In all the 2.75% of the cases when ALS-SI

found a lower minimum, the difference was larger than

0.01% (2% with a 1% threshold). Thus, when both

algorithms do not converge, the better MSE of ALS-SI is

likely due to a lower capability of attaining a minimum

(albeit a non-relevant one) of this algorithm. Had ALS-SI

been able to determine the solution better, this would have

been just as bad in terms of MSE as the one obtained with

INDAFAC.

Table 5 shows the median number of iterations and of

computational time with respect to the percentage and the

pattern of the missing values. As expected, the number of

iterations increases with the number of missing values and

grows more rapidly for ALS-SI than for INDAFAC. It is also

very relevant that the number of iterations increases more as a

result of the pattern; as an average, the SMS pattern requires

20 times as many iterations as the RMV case for ALS-SI. The

ratio for INDAFAC varies with the fraction of missing values,

but is at most in the order of 8–10. This trend in the number of

iterations hardly ever turns into an advantage in terms of time

for the RMV pattern; only in 33% of the cases INDAFAC is

faster at 60% missing elements and in 40% of the cases at

70%. For all the other levels of missing values, ALS-SI was

faster. Vice versa, in the SMS case, INDAFAC is faster in

about one-third of the cases (35%) already at 30% missing

and in at least four out of five cases for 50% of missing

elements or more.

4.2. Real data sets

Data set I turned out to be most simple to fit, in perfect

accordance with the expectations based on cJ and core

consistency. Both algorithms recovered the correct compo-

nents in all the replicate models up to 70% missing values

for both the RMV and RMS pattern (not shown). The

results also confirmed that SMS is the most challenging

among the studied patterns. Artefacts similar to those of



Fig. 4. MSE for the A matrix in the rank 3, high congruence and low-noise

case. All replicates are displayed. When the MSE exceeds 10�2, the model

can be considered as not converged to a meaningful solution. (a) RMV

pattern, (b) RMS pattern, (c) SMS pattern.
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Fig. 2 appeared in most of the cases, and both INDAFAC

and ALS-SI were affected to the same extent. Never-

theless, A, which is the most relevant one for calibration

purposes, was correctly recovered (again according to a

threshold of 0.99 for each of the columns) in all the

instances. Fig. 5 shows how the RMSEC varies with

respect to the amount of missing elements for ALS-SI. The

three studied patterns present remarkable differences.

Whereas for both RMV and RMS, the effect of the

missing values on the concentration estimates is very

small, in the SMS case, there is an improvement in the

predictions as the percentage of missing values increases

for all constituents apart from phenylalanine. The reason

for this appears to be the effect of the Raman scatter ([5,6];

i.e., the small ridge visible in Fig. 1d on the right hand of

the main peak). Because of its position and magnitude, the

Raman scatter is often left in the data and is given less

attention than the Rayleigh one [25]. The setting of some

elements to missing in the SMS pattern progressively

cancels the Raman rather than removing it all at once from

one level of missing to the following. The behaviour of the

regression models then follows exactly the pattern

described elsewhere [6] for the much more intense

Rayleigh scatter; the predictions improve so long as more

scatter, but not significant parts of the spectra, is removed.

The degree of overlap of the single components determines

whether the Raman removal will have an effect. E.g.,

phenylalanine lies on top of the Raman scatter ridge at the

lowest excitation and emission wavelengths. Correspond-

ingly, it is hardly affected by the removal of the Raman or

by the setting of further missing values until 60% or 70%

is reached. Contrariwise, e.g., tryptophan’s main peak lies

mostly off the Raman ridge, and its predictions benefit by

the increase of the missing values. This observation is also

consistent with the fact that both the RMV and RMS

patterns have hardly any influence on the quality of the

predictions. In theory, it might be that the removal of a

certain part of the signal reduces the collinearity between

the columns of product COB relative to these two

constituents and the other constituents, but this does not

seem to be the case here.

Fitting a PARAFAC model to data set II proved to be

somewhat more difficult, once again in accordance with the

considerations made in Section 3.2. Although the compo-

nents were correctly recovered up to 70% missing values

with RMV patterns, both algorithms failed to retrieve the

underlying factors in 10–20% of the cases with the RMS

pattern (not shown). The A matrix alone was correctly

estimated at 70% of missing values only in 70% of the

cases. The higher difficulty associated to fitting the

PARAFAC model in presence of an SMS pattern is made

apparent by the fact that full recovery is no longer

guaranteed for the components when 20% of the elements

are missing (for the A matrix, this happens at 50% of

missing values). The variation of the RMSEC as a function

of the percentage of missing values is more erratic than in



Table 5

Median number of iterations (# it.) and of computational time for the two algorithms for both simulated and real data sets

Pattern Data set Algorithm Percentage of missing values

10 20 30 40 50 60 70

# It. Time (s) # It. Time (s) # It. Time (s) # It. Time (s) # It. Time (s) # It. Time (s) # It. Time (s)

RMVa Monte Carlo ALS-SI – – – – 23 0.5 23 0.5 32 0.7 37 0.9 52 1.2

INDAFAC – – – – 9 3.2 9 3.1 9 3.0 9 2.8 9 2.7

I ALS-SI 40 1.2 40 1.2 46 1.4 50 1.6 56 1.8 72 2.4 101 3.4

INDAFAC 9 8.8 9 8.1 9 7.5 9 6.9 9 6.4 9 5.8 10 5.6

II ALS-SI 76 1.6 70 1.5 90 1.9 81 1.8 111 2.5 125 2.8 176 4.1

INDAFAC 30 12.1 18 7.8 23 7.8 16 6.1 20 6.3 22 5.9 25 5.9

III ALS-SI 243 12.2 235 13.6 292 15.8 349 19.9 376 20.9 520 29.6 598 35.0

INDAFAC 20 30.6 16 24.1 19 24.0 20 23.1 21 21.7 23 21.0 23 19.7

RMSb Monte Carlo ALS-SI – – – – 48 1.0 55 1.3 92 2.1 191 4.6 335 8.2

INDAFAC – – – – 9 3.4 10 3.4 10 3.3 13 3.3 16 3.4

I ALS-SI 38 1.1 42 1.3 48 1.5 50 1.6 77 2.5 348 11.4 718 24.1

INDAFAC 9 8.7 9 8.1 9 7.5 9 6.9 10 6.8 11 6.5 14 7.2

II ALS-SI 89 1.8 80 1.7 109 2.4 111 2.4 161 3.6 411 9.3 1114 25.8

INDAFAC 37 13.2 27 10.0 28 9.2 29 8.5 32 8.7 37 8.8 83 17.1

III ALS 242 12.9 273 14.6 271 14.9 352 20.0 436 23.1 486 29.1 728 43.1

INDAFAC 19 30.0 19 27.3 18 23.3 23 25.8 30 27.2 29 23.2 26 20.0

SMSc Monte Carlo ALS-SI – – – – 184 4.2 288 6.3 671 15.1 798 18.5 1267 30.4

INDAFAC – – – – 15 4.7 18 5.0 35 8.3 46 9.0 78 13.0

I ALS-SI 38 1.1 93 2.7 216 6.5 368 11.4 446 13.9 1294 42.0 2436 81.1

INDAFAC 9 8.7 14 11.7 15 11.2 18 11.9 48 22.3 58 25.3 83 30.3

II ALS-SI 104 2.1 320 6.6 785 16.4 1165 25.0 1843 40.3 4052 91.1 7222 164.1

INDAFAC 28 10.2 33 12.6 25 8.9 29 8.9 49 12.9 59 12.9 97 19.3

III ALS-SI 295 15.1 411 21.3 640 34.9 1770 90.8 3583 192.1 6110 359.1 10000 583.2

INDAFAC 25 37.7 27 36.9 30 34.9 37 37.7 73 62.0 81 60.5 131 88.1

a Randomly missing values.
b Randomly missing spectra.
c Systematically missing spectra.
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Fig. 5. Median RMSEC for the four constituents of data set I: (a) DOPA, (b) hydroquinone, (c) phenylalanine, and (d) tryptophan. The solid line refers to the

RMV pattern, the dotted line to the RMS pattern, and the dashed line to the SMS pattern. All plots refer to the ALS-SI solutions.
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data set I, most likely reflecting the higher difficulty,

although some specific aspects are retained (Fig. 6).

Tryptophan prediction improves with an increasing percent-

age of missing values, reaching a maximum at 70%. For

DOPA, the minimum is reached between 30% and 50%, and

then the quality slightly deteriorates. These observations are

consistent with the hypothesis of influence of the Raman

scatter; further analyses of the raw data showed that the

subtraction of a blank is insufficient to completely remove

the Raman scatter peaks. For the other constituents, the

behaviour is quite the opposite and the predictions worsen

considerably along with an increasing amount of missing

information. Data set III (Fig. 7) essentially confirms the

results illustrated thus far: tryptophan predictions slightly

improve with the percentage of missing elements in the

SMS case, with a clear worsening starting at 60%; hydro-

quinone and tyrosine behave analogously to data set II. The

different behaviour of the same analyte (particularly of

hydroquinone) with respect to the different sets is probably

to be associated to more aspects than the sole Raman scatter

(e.g., the higher difficulty of the fitting problems or
instrumental effects); nonetheless, the results for the three

data sets appear rather consistent.

The two algorithms, in terms of quality of the predic-

tions, performed equivalently for all data sets and patterns.

In general, the relative difference of the RMSEC between

the two was contained within 0.1%, becoming larger only

when the models themselves become very unstable.

With respect to the computational efficiency, the real

data sets confirmed all the observations made for the

simulations: the number of iterations required for the SMS

case is much higher than for the two other patterns, to the

point that at 70% missing 10000 iterations were not

sufficient for ALS-SI to converge to a solution. Table 5

makes apparent the correctness of the classification of the

problems in terms of cJ: the number of iterations increases

going from data set I to II to III, which is clearly the most

difficult problem.

With respect to the time consumption, INDAFAC was

faster on data sets II and III in 93–100% of the replicates for

the SMS pattern starting at about 30–40% missing elements.

On the other hand, ALS-SI was faster in the vast majority of



Fig. 6. Median RMSEC for the four constituents of data set II: (a) DOPA, (b) hydroquinone, (c) tryptophan, and (d) tyrosine. The solid line refers to the RMV

pattern, the dotted line to the RMS pattern, and the dashed line to SMS pattern. All plots refer to the ALS-SI solutions.

G. Tomasi, R. Bro / Chemometrics and Intelligent Laboratory Systems 75 (2005) 163–180 177
the cases (for all the data sets and patterns) when 10% or

20% elements were missing.
5. Conclusions

Two algorithms for fitting the PARAFAC model in

presence of missing values, ALS with single imputation,

and INDAFAC—based on a Levenberg–Marquadt method

for non-linear least squares—have been tested by means of

a Monte Carlo simulation and on three fluorescence data

sets of various complexity. In terms of capability of

recovering the correct solution, they performed almost

equally, although INDAFAC appeared slightly better for

difficult problems (e.g., when the underlying components

are very collinear). In terms of time consumption, the

derivative-based algorithm is faster when the fraction of

missing values exceeds 30% for patterns typical of

fluorescence data and 60% when they are uniformly

scattered over the array.
A classification was proposed for the possible patterns

of missing elements within an array: randomly missing

values (RMV) and spectra (RMS), and systematically

missing values (SMV) and spectra (SMS). A clear

association has been shown between these patterns and

the performances of the two algorithms in fitting a

PARAFAC model.

The most remarkable result is that a PARAFAC model

can be successfully fit even when 70% of the values are

missing compared to, for example, PCA on a matrix, for

which the limit appears to be in the order of 25–40% [1,4].

The reason for this can be found in the trilinear structure of

the PARAFAC model and its added rigidity. In spite of very

large fractions of missing values, it was possible to

adequately predict the concentration of analytes in synthetic

solutions of up to five constituents.

Furthermore, possible explanations were given for the

different behaviour of the algorithms with respect to the

pattern of missing values, especially with respect to the

SMS case, which is by far the most common in, e.g.,



Fig. 7. Median RMSEC for the four constituents of data set III: (a) cathecol, (b) hydroquinone, (c) indole, (d) tryptophan, and (e) tyrosine. The solid line refers

to the RMV pattern, the dotted line to the RMS pattern, and the dashed line to SMS pattern. All plots refer to the ALS-SI solutions.
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fluorescence spectroscopy. Possibly, this will provide new

tools for studying the application of more complex missing

values patterns that do not interfere with multilinearity to the

same extent as the SMS case presented here [25], or of ad

hoc techniques for dealing with missing values and non-

multilinear variation [31,32].
Finally, a new and very general tool has been proposed

for establishing the difficulty of fitting a PARAFAC model:

the Jacobian (practical) condition number cJ, which

accounts not only for the collinearity in any of the loading

matrices but also of the binteractionQ between the model and

the data it is fitted to.
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Appendix A. Effect of the SMS pattern on the

convergence

A noiseless 2�20�20 array X was generated where A=I,

b1, and c1 were Gaussian curves with l=3, and r=2, b2 and
c2 were Gaussians with l=17 and r=2 (Fig. 8a). The two

components are orthogonal, and on the complete array with

random initialisation, the algorithm always converged to the

correct solution within the first five iterations. On the other

hand, if 50% of the values were set to missing according to

an SMS pattern (Fig. 8b), both algorithms never converged

within the first 10000 iterations. Fig. 8c shows the loading

vectors of B and C for such problem: small peaks are visible

in each loading vector in correspondence with the peak of

the other component. These small bghostQ peaks have no
Fig. 8. (a) B (and C) of a noiseless 2�20�20 array; (b) landscape of the first ho

missing values in the SMS pattern; (d) landscape of the first horizontal slab in th
effect on the loss function as they are entirely included in

the missing areas (Fig. 8d), on the other hand, they interfere

with the trilinear structure, as part of the second component

is described by the first and vice versa. The problem

becomes apparent if one computes the Tucker core and the

core consistency [26] relative to the two solutions. When

missing values are present, the core consistency is lower

than 100% (99.28% in the case showed in the figure), and

the Tucker core, while dominated by the two elements on

the bsuperdiagonalQ, contains small values with opposite

signs and almost equal magnitude(1.4d 10�5) at positions

g211 and g122:

G ¼ 4:0d 10�2 4:1d 10�3

1:5d 10�5 4:3d 10�3

���� 4:1 10�3 � 1:4d 10�5

4:2 10�3 4:1d 10�2

�
:

�

As the iterative method proceeds (both ALS-SI and

INDAFAC), the decrease in the loss function becomes

increasingly small, the loss function tends to zero, and the

core consistency to 100%. Repeated tests confirmed this

observation. The shape of the ghost peaks in real life would

be affected by noise or other nonmultilinear structures in the

data [6].
rizontal slab of X; (c) B (and C) of a noiseless 2�20�20 array with 50%

e PARAFAC model of X.
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