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Multidimensional scaling (MDS) techniques provide a promising measurement strategy for characteriz-
ing individual differences in cognitive processing, which many clinical theories associate with the
development, maintenance, and treatment of psychopathology. The authors describe the use of deter-
ministic and probabilistic MDS techniques for investigating numerous aspects of perceptual organization,
such as dimensional attention, perceptual correlation, within-attribute organization, and perceptual
variability. Additionally, they discuss how formal quantitative models can be used, in conjunction with
MDS-derived representations of individual differences in perceptual organization, to test theories about
the role of cognitive processing in clinically relevant phenomena. They include applied examples from
their work in the areas of eating disorders and sexual coercion.

Cognitive theorists implicate individual differences in social
information processing, particularly construal processes, in the
development, maintenance, and treatment of various forms of
psychopathology (Beck, 1976; Ellis, 1994; Kelly, 1955; McFall,
1982). Clinical scientists have had difficulty finding valid methods
to assess social information-processing constructs, however. One
promising solution draws on the theoretical and measurement
models of cognitive science (McFall, Treat, & Viken, 1997, 1998).
The purpose of this article is to illustrate the potential of this
solution by focusing on the use of a specific method, multidimen-
sional scaling (MDS), for investigating individual differences in
perceptual organization, that is, the way in which persons organize
and represent incoming stimulus information.

We first examine the conceptual strengths and methodological
weaknesses of cognitive theory in clinical psychology. Next, we
describe deterministic and probabilistic MDS models, which offer
promise in overcoming some of these methodological limitations,
and discuss their application to investigations of individual differ-
ences in perceptual organization. Finally, we describe the use of
MDS to test hypotheses about the influence of perceptual organi-
zation on the operation of other cognitive processes. For illustra-
tive purposes, we refer to two ongoing lines of research. The first

is our investigation of individual differences in women’s percep-
tions of information about other women’s body size and affect and
the links between these perceptions and eating disorders (Viken,
Treat, Nosofsky, McFall, & Palmeri, in press). The second is our
evaluation of individual differences in men’s perceptions of
women and the links between these perceptions and men’s sexu-
ally coercive behavior (Treat, McFall, Viken, & Kruschke, 2001).

Clinical-Cognitive Theory: An Exemplar

George A. Kelly’s personal construct theory (1955) is a prom-
ising exemplar of a cognitive theory in clinical psychology. Of
course, it is only one of many possible exemplars we might choose
or cite. Beck’s (1976) theory, for example, has had a greater
influence on cognitive–behavioral therapists, and treatments based
on Beck’s theory have garnered an impressive record of empirical
support (see Chambless & Ollendick, 2001). If we look beyond
Kelly’s idiosyncratic language, however, we find that his theory
has more in common with contemporary cognitive science than
many cognitive theories in clinical psychology. Thus, we believe
that it provides a useful point of departure for building bridges
between clinical science and cognitive science.

In the 40-plus years since its publication, Kelly’s (1955) classic,
two-volume opus, The Psychology of Personal Constructs, has
exerted a significant metatheoretical influence on the areas of
personality and clinical psychology. For example, the theory is
featured prominently in many contemporary undergraduate text-
books in personality and clinical psychology. At the same time,
however, the theory has had less influence on day-to-day experi-
mental research in personality and clinical psychology. This dis-
parity between the theory’s metaphorical and empirical impacts
reflects both its conceptual strengths and its methodological
weaknesses.

On the conceptual side, Kelly was ahead of his time in focusing
on individual differences in human information processing and on
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the influence such cognitive processes exert on human behavior.1

Kelly’s cognitive focus is set forth in the theory’s fundamental
postulate: “A person’s processes are psychologically channelized
by the ways in which he anticipates events” (p. 46).2 This focus on
cognitive processing is elaborated in a series of 11 corollaries,
including the construction corollary: “A person anticipates events
by construing their replications” (p. 50); the individuality corol-
lary: “Persons differ from each other in their construction of
events” (p. 55); the commonality corollary: “To the extent that one
person employs a construction of experience which is similar to
that employed by another, his psychological processes are similar
to those of the other person” (p. 90); the organization corollary:
“Each person characteristically evolves, for his convenience in
anticipating events, a construction system embracing ordinal rela-
tionships between constructs” (p. 56); and the dichotomy corol-
lary: “A person’s construction system is composed of a finite
number of dichotomous constructs” (p. 59). These postulates and
corollaries, as elaborated in the remainder of Kelly’s two-volume
work, anticipated many ideas found in contemporary cognitive
science.

On the methodological side, however, Kelly offered few re-
search tools or experimental paradigms for testing his theory.
Consequently, despite its prescient focus and abstract appeal, the
theory has not lent itself readily to rigorous empirical tests, as
required of good scientific theories (Popper, 1959). Personality
and clinical psychologists have found it difficult, if not impossible,
to operationalize, assess, and build quantitative models of the
theory’s hypothetical constructs and their nomological relation-
ships (Cronbach & Meehl, 1955; MacCorquodale & Meehl, 1948;
McFall & Townsend, 1998).

The Repertory Grid Technique (REP Test; Kelly, 1955) is the
sole exception in Kelly’s otherwise empty methodological toolbox.
The REP Test is a novel assessment method designed to identify
and map the relations among the bipolar core constructs in each
individual’s personal construct system. Unfortunately, despite ef-
forts to refine, extend, and validate the REP Test, it has achieved
only limited success (see Kihlstrom & Cunningham, 1991), largely
because of the test’s inherent problems. For example, the REP Test
is used idiographically: Testees typically are instructed to supply
the names of the particular individuals who fill the roles of specific
“significant others” in their lives (e.g., mother, father, siblings,
best friend, intimate partner). This idiographic method of gener-
ating test stimuli results in a unique stimulus set for each testee,
which means that the test stimuli are not standardized. This, in
turn, makes it almost impossible to conduct nomothetic analyses of
test results or to make direct comparisons across individuals.

Furthermore, in the second step of the REP Test procedure,
testees are instructed to consider subsets of “significant others” in
groups of three and then to assign verbal labels to the ends of a
bipolar personal construct dimension, labels that capture the most
important ways in which the testee sees two of these people as
“alike” and “different” from the third. This method of generating
verbal labels for the testee’s personal construct dimensions as-
sumes that testees are capable of representing their constructs
verbally.3

Finally, once a testee has generated a list of bipolar construct
dimensions by considering the similarities and differences among
numerous subsets of three “significant others,” these construct
dimensions and the ordinal relations among them must be quanti-
fied, analyzed, and interpreted. Unfortunately, there still is no

satisfactory method of scoring, analyzing, and interpreting the
REP Test’s output, even though Kelly and his students devoted
much of their effort to developing this aspect of the test (see
Kihlstrom & Cunningham, 1991). Because the test results cannot
be compared with norms and cannot be scaled quantitatively, they
are of dubious value for generating quantitative interpretations and
actuarial predictions.

Despite these limitations, the REP Test could be regarded, in
retrospect, as a bold, innovative, and insightful attempt at assessing
individual differences in personal construct systems. The underly-
ing conception—namely that behavior is constrained by the way
an individual construes situations—is full of promise. Unfortu-
nately, until recently, the promise of this idea was lost in the
translation from conception to measurement.

MDS Models of Perceptual Organization

MDS techniques provide a promising alternative for the assess-
ment of individual differences in perceptual organization (Borg &
Groenen, 1997; Davison, 1992; MacCallum, 1988; Schiffman,
Reynolds, & Young, 1981). Numerous researchers across areas of
psychology use MDS for data summary and reduction, but cogni-
tive psychologists also view MDS as a useful tool for providing a
“psychological model” of a person’s perceptual representation,
that is, a person’s construal, to use Kelly’s term (Nosofsky,
1992b). Unlike alternative strategies, the MDS approach does not
assume that participants can report accurately on the characteris-
tics of their perceptual representations. Moreover, MDS-derived
characterizations of perceptual organizations can be compared
meaningfully because all participants make judgments about the
same set of stimuli. The parameters of MDS models also map well
onto cognitive constructs of interest to clinical theorists, as we see
in the remainder of this article. Cognitive psychologists have
developed formal models of the way in which MDS-derived rep-
resentations of perceptual organization can be used to predict
performance on tasks assessing other cognitive processes, such as
classification, memory, and learning. Thus, MDS models of per-
ceptual organization have been incorporated by cognitive scientists
into a coherent and elaborate set of theoretical and measurement
models of human information processing.

Similarity ratings of all possible pairs of stimuli are the typical
input to MDS algorithms. Other possible inputs are dissimilarity

1 Kelly resisted being characterized as a cognitive theorist. In fact, he
resisted all efforts to “pigeon-hole” his theory. He felt that these labeling
efforts were a form of stereotyping that led inevitably to distortions
regarding the theory. His theory often was labeled “phenomenological,” for
instance; on seeing this label, people were inclined to assume that they now
knew something important about his theory, even though they may not
have read it and even though the theory differed in crucial ways from other
theories with the same label. He wanted his theory to be read and appre-
ciated as a distinctive approach to understanding human behavior, not
merely as one member of any particular class of theories.

2 Kelly’s use of “he” reflects the customs of a different era, of course.
We have chosen to retain his original wording for the sake of authenticity
even as we recognize the potential effect of this decision on contemporary
sensibilities.

3 Paradoxically, Kelly emphasized elsewhere in his books that some of
the most important personal constructs often tend to be preverbal.
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ratings and matrices containing the frequency of same–different
judgments or identification confusions (i.e., the frequencies with
which each stimulus is misidentified, or “confused,” with every
other stimulus). In our own studies of eating disorders, for exam-
ple, we first created a stimulus set of 24 photographs of under-
graduate women who varied in body size and facial affect. We then
asked participants to rate the similarity of all possible stimulus
pairs (276 pairs; n � (n � 1)/2) on a 10-point scale ranging from 1
(very different) to 10 (very similar). Finally, we used MDS to
obtain a spatial representation of participants’ perceptual organi-
zations. Panel A in Figure 1 presents a scaling solution, or “psy-
chological space,” for these 24 stimuli, in which interstimulus
distance decreases as perceived similarity increases. Thus, two
stimuli judged to be very similar were scaled closer together than
two stimuli judged to be very dissimilar.

The remainder of the article provides an overview of both
deterministic and probabilistic MDS models. Deterministic models
assume that stimulus perception does not fluctuate across trials
(i.e., that stimulus values are perceived very precisely). For exam-
ple, the body size of the same woman might be perceived very
similarly across presentations. Thus, deterministic methods repre-
sent stimulus perception as a single fixed value. In contrast,

probabilistic models assume a random component to participants’
perceptions, whereby stimulus values or their differences are per-
ceived variably across trials (e.g., perception of body size might
vary on each presentation, creating a distribution of perceived
body-size values). The probabilistic scaling model discussed in
this article, PROSCAL (MacKay, 1989, 2001; MacKay & Zinnes,
1986; Zinnes & MacKay, 1983, 1992), accommodates this per-
ceived variability by treating stimulus perception as a distribution
of values rather than as a single fixed value. We discuss the
strengths and weaknesses of these two approaches as well as the
conditions under which they should be used as we proceed.

Deterministic MDS Models

One of the strengths of deterministic MDS methods lies in their
simultaneous representation of both shared and unshared aspects
of construal processes across individuals and stimuli. In the most
general MDS model, some parameters capture differences between
individuals (i.e., they are estimated separately for each individual),
some parameters represent differences between stimuli (i.e., they
are estimated separately for each stimulus), and some parameters
remain fixed across individuals and stimuli (i.e., they are assumed

Figure 1. Panel A presents a hypothetical two-dimensional scaling solution for photographs of women varying
along body-size and affect dimensions; Panels B and C illustrate hypothetical perceptual organizations for
body-size-oriented and affect-oriented participants, respectively, and also show Prototypes A and B as well as
stimulus i, which is to be classified; Panel D illustrates 3 participants’ attention weight vectors in a hypothetical
subject space.
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to be the same for all individuals and stimuli). This approach
instantiates nicely the theoretical expectation that both normal and
abnormal construal processes can be characterized by differing
parameter values within a single model. Next, therefore, we must
acquaint ourselves with some of the parameters of the most general
deterministic scaling model—coordinates, subject weights, and
dimensional correlations—and with two common constrained ver-
sions of this model, in which only a subset of the parameters in the
general model is estimated.

In 1984, Young proposed the most general deterministic scaling
model of the perceived dissimilarity of stimuli i and j by partici-
pant k, dijk (cf. Young, 1987). Participants typically find it easier to
make similarity ratings than dissimilarity ratings, but MDS algo-
rithms conventionally model dissimilarities. Reversing (i.e., re-
flecting) participants’ similarity ratings provides the necessary
dissimilarity data (e.g., 10 � 1, 9 � 2, etc.), in which larger values
indicate greater perceived dissimilarity. For ease of exposition, we
refer to these reversed similarity ratings as dissimilarity ratings
throughout the remainder of the article. According to the general
Euclidean model, the dissimilarity rating, dijk, is a function of the
weighted Euclidean distance between the two stimuli, �ijk, along r
dimensions4:

� ijk � ��xi � xj��ViWk��xi � xj�
T �1/ 2.

Both xi and xj are r-dimensional row vectors containing the
coordinates of particular points i and j in an r-dimensional space.
Both Vi and Wk are r � r matrices: Vi contains dimension-specific
stimulus weights for stimulus i, and Wk contains dimension-
specific subject (or attention) weights, which we discuss in detail
later. Two commonly used deterministic models are constrained
versions of this general model: (a) the weighted MDS model
(WMDS) (also known as the INDSCAL model; Carroll & Chang,
1970; Carroll & Wish, 1974); and (b) Tucker’s (1972) correla-
tional model. Both special cases discussed here treat Vi as an
identity matrix, but interesting models also emerge from relaxing
this constraint (see Young, 1987).

The WMDS Model: Quantifying Individual Differences in
Dimensional Attention

According to the WMDS model, individual participants per-
ceive the relative positioning of the stimuli along each dimension
of the group’s configuration in the same way, but each individual
stretches and shrinks these dimensions differentially. Technically,
WMDS represents individual differences in the importance of
stimulus dimensions to participants’ similarity ratings by estimat-
ing individual-specific attention weights for each dimension of the
group’s multidimensional space. This model is a special case of
Young’s (1984) general Euclidean model, when Vi is an identity
matrix and Wk is a diagonal matrix (Carroll & Chang, 1970;
Carroll & Wish, 1974; see also Takane, Young, & de Leeuw,
1977).

Panels B and C in Figure 1 present two possible transformations
of the group configuration shown in Panel A of Figure 1; both are
consistent with the WMDS model. Panel B shows the perceptual
organization of an extremely “body-size-oriented” (BSO) partici-
pant, who placed much more importance on body size than on
affect when making her similarity ratings. The WMDS model
represented her differential weighting of body size and affect by

stretching the group configuration along the body-size dimension
and shrinking it along the affect dimension. This transformation
captured her perception that heavy and light stimuli were much
more dissimilar than happy and sad stimuli. In contrast, an ex-
tremely “affect-oriented” (AO) participant, as depicted in Panel C,
showed a large attention weight for affect and a small attention
weight for body size, reflecting her perception of happy and sad
stimuli as much more dissimilar than heavy and light stimuli.

Each participant’s attention weights specify the end point of a
participant-specific vector in an r-dimensional “subject space,”
which is depicted in Panel D of Figure 1. The two dimensions of
the subject space correspond to the magnitude of the attention
weights for affect and body size, respectively. The number of
vectors in the subject space indicates the number of participants in
the sample (three in this example). Vector direction indicates the
participant’s relative attention to the stimulus attributes, and vector
length specifies the fit of the model to a participant’s data (i.e., the
degree to which the specified dimensions explain the participant’s
judgments). A participant who attended relatively more to body
size than affect, such as shown in Panel B, would be represented
in the subject space by a vector directed toward the upper left
region of the space, such as wb. In contrast, a participant attending
relatively more to affect than to body size, as shown in Panel C,
would be represented in the subject space by a vector such as wc.
Vector wa represents a participant who attended similarly to affect
and body size; this participant’s perceptual organization would
resemble that presented in Panel A. The similar length of these
three vectors indicates the similar fit of the WMDS model to the
three participants’ judgments, but their differing directions indicate
the marked discrepancy in their relative attention to the stimulus
attributes.

“Flattened subject weights” (FSWs) quantify individual differ-
ences in relative attention to pairs of stimulus attributes by trans-
forming each pair of attention weights into a single index of
relative attention (MacCallum, 1977; Schiffman et al., 1981;
Young & Lewyckyj, 1996). In our case, positive values reflect
greater attention to dimension one (affect) and negative values
reflect greater attention to dimension two (body size). Thus, in
Panel D of Figure 1, vectors directed toward the lower right corner
of the subject space, such as wc, receive positive FSWs; vectors
directed toward the upper left corner, such as wb, receive negative
FSWs; and vectors such as wa receive FSWs near zero.

Tucker’s Correlational Model: Quantifying Individual
Differences in Dimensional Correlation

Additional individual-specific parameters become available for
investigation in a second constrained version of Young’s (1984)
general Euclidean model, in which off-diagonal elements of Wk

can be nonzero. Tucker’s (1972) correlational model allows
individual-specific correlations between the axes of the group

4 Under some conditions, it is more appropriate to assume a city-block,
rather than a Euclidean, distance metric (Nosofsky & Palmeri, 1996;
Shepard, 1964, 1987). Researchers generally assume that the city-block
metric underlies judgments of stimuli with readily separable dimensions,
whereas the Euclidean metric underlies judgments of integral stimuli,
which are perceived in a more holistic fashion. The Euclidean distance
metric is used in all analyses reported here because it consistently resulted
in better fits than the city-block metric for our stimulus sets.
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space in addition to individual-specific weights on the group
perceptual axes. Figure 2 depicts the perceptual organizations of
three participants who placed similar importance on body size and
affect when making their similarity ratings but who varied in their
perception of the association between body-size and affect infor-
mation. The first participant, shown in the left panel, perceived
affect and body-size information to be uncorrelated. In contrast,
the second participant, shown in the middle panel, perceived these
two types of information to be associated positively, such that
heavier women were more likely to be perceived as happy and
lighter women as sad. The third participant, shown in the right
panel, perceived a negative relationship between the two attributes
and tended to perceive heavier women as sad and lighter women as
happy. This example assumed that the attention weights for body
size and affect were similar for all three participants, but these
parameters also are free to vary across individuals in Tucker’s
model. Thus, both the WMDS model and Tucker’s model allow
individual differences in participants’ weighting of the dimensions
of a common group configuration, but Tucker’s model generalizes
the WMDS model by adding participant-specific correlations as
well.5

Summary

Deterministic MDS models can be used to assess individual
differences in perceptual organization in a more quantitative, the-
oretically coherent, and performance-based fashion than is feasible
with existing clinical measures, such as Kelly’s (1955) REP Test
(Jones, 1983; Rudy & Merluzzi, 1984). Scaling solutions appear to
operationalize well the “construct system” to which Kelly referred
in his construction and organization corollaries. The WMDS
model and Tucker’s correlational model neatly instantiate Kelly’s
commonality and individuality corollaries by representing simul-
taneously both the shared and the individual-specific aspects of
construal processes. In addition, these perceptual representations
can be derived without relying on participants’ introspective verbal
reports of how they are processing information.

In the next section, we discuss the application of these MDS
models to questions of interest to clinical scientists. Clinical and
social psychological investigators commonly have used MDS
methods in an atheoretical, exploratory fashion in the hope of
discovering or revealing unknown dimensions underlying social
perception (see Jones, 1983, for a review). In contrast, we recom-
mend using MDS methods in the theory-driven, hypothesis-testing
approach more characteristic of cognitive scientists, who typically
use structured, well-defined stimuli for which the underlying di-
mensions influencing participants’ perceptions are known in ad-
vance. We extend the typical approach of cognitive scientists,
however, by focusing simultaneously on normative and individual-
specific aspects of perception and by using more socially relevant
stimuli.

Using Deterministic Scaling Approaches to Evaluate
Clinically Relevant Perceptual Organization

MDS measurement models can be used to evaluate theoretical
expectations about individual differences in at least three charac-
teristics of participants’ perceptual organizations: (a) attention to
stimulus attributes; (b) perceived correlation between stimulus
attributes; and (c) intradimensional attribute organization. We il-

lustrate the use of MDS methods to address research questions
relevant to these three characteristics with both empirical and
hypothetical examples drawn from our investigations into the role
of cognitive processing in eating disorders.

Individual Differences in Attention to Stimulus Attributes

Cognitive theorists have argued that women exhibiting prob-
lematic eating patterns attend more than control participants to
information related to shape, weight, food, and eating (Vitousek,
1996; Vitousek & Hollon, 1990; Williamson, Muller, Reas, &
Thaw, 1999). We hypothesized that this preoccupation should
result in relatively less attention to other potentially important
information, such as facial affect. To test this hypothesis, we
developed a stimulus set specifically designed to assess individual
differences in women’s relative attention to other women’s body
size and affect. Undergraduate females were photographed wear-
ing black tights and a white T-shirt while standing in front of a
neutral background. A separate group of undergraduate females
provided normative ratings of the body size and affect of the
woman in each stimulus photo. We used these ratings to construct
a final stimulus set, in which stimuli were distributed fairly uni-
formly across the two-dimensional psychological space and the
correlation between the normative ratings for affect and body size
was near zero. Although this stimulus development process was
somewhat tedious and time consuming, it was well worth the effort
in terms of the strength and precision of the inferences it allowed
us to make. By standardizing clothing and background, we focused
variation in the stimulus set on the two attributes of interest. By
also allowing numerous other attributes to vary across stimuli (e.g.,
hair color, attractiveness), we produced a well-defined, but eco-
logically valid, set of photographs. By selecting stimuli such that
there was a negligible correlation between the attributes of interest,
we ensured that our estimates of attention to these attributes were
relatively independent.

We used this stimulus set to investigate the hypothesized links
between eating disorders and relative attention to body size and
affect. Undergraduate women who reported either many or few
symptoms of bulimia on a mass screening questionnaire completed
a similarity-ratings task with these stimuli (Viken et al., in press).
The WMDS model was used to evaluate whether bulimic and
control participants showed differential attention to body size and
affect. We adopted a confirmatory, rather than an exploratory,
approach because we were using WMDS to test specific hypoth-
eses about perceptual differences in a highly structured stimulus
set. We constrained the two-dimensional solution to correspond to
the normative ratings for body size and affect, and we estimated
attention weights only for body size and affect in the MDS analysis
(i.e., stimulus coordinates were fixed rather than estimated). As
expected, bulimics, relative to controls, showed significantly larger
attention weights for body size, significantly smaller attention

5 IDIOSCAL (Carroll & Chang, 1972), an alternative MDS model, also
relaxes the diagonality constraint on Wk and is mathematically equivalent
to Tucker’s correlational model. IDIOSCAL provides an alternative inter-
pretation of what is varying across individuals, however, by estimating
individual-specific orthogonal rotations of the group’s configuration as
well as individual-specific weights on these rotated dimensions, or “direc-
tions.” Thus, IDIOSCAL captures individual differences in the location of
participants’ primary perceptual axes in the group psychological space.
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weights for affect, and significantly more negative FSWs.6 In other
words, the BSO perceptual organization shown in Panel B of
Figure 1 was more typical of bulimics, whereas the AO organiza-
tion depicted in Panel C was more characteristic of controls. In the
subject space shown in Panel D, bulimics’ vectors tended to point
toward the upper left corner, whereas controls’ vectors tended to
point toward the lower right corner. A separate study of 30
undergraduate women demonstrated that these attention weights
were highly stable over a 2-week period when assessed under
highly similar conditions; test–retest correlations for affect and
body-size attention weights were .81 and .75, respectively (Viken,
Treat, & Vazquez, 1996).

Individual Differences in Perceived Correlation Between
Stimulus Attributes

In future studies, we plan to use Tucker’s correlational model to
evaluate whether bulimics perceive body size (light to heavy) and
affect (sad to happy) to correlate more negatively than controls,
particularly under conditions likely to increase symptomatic be-
havior (e.g., after consumption of taboo food or an experience of
negative interpersonal evaluation). Referring back to Figure 2, we
would expect that the right panel best characterizes bulimics’
perceptual organizations, whereas the left panel best approximates
controls’ organizations.

Individual Differences in Intradimensional Attribute
Organization

We also plan to examine whether bulimics perceive body size in a
more categorical, “all-or-none” fashion. Suppose, for example, that
participants rated the similarity of the body size of the women in the
photos, and we estimated a unique one-dimensional solution for each
participant. Then we could quantify for each participant the extent to
which stimuli were distributed evenly across the body-size dimension,
as in the lower half of Figure 3, rather than being clustered into
discrete subgroups, as in the upper half of Figure 3.7

The deterministic MDS models discussed thus far assume that
stimulus perception does not vary across trials and that it can be
represented as a fixed value in psychological space rather than as
a distribution of values. However, perceptual variability may be
the rule rather than the exception in many circumstances of interest
to clinical scientists. Under these circumstances, consideration of
probabilistic MDS models, which represent this variability explic-
itly, may be beneficial.

Probabilistic MDS Models

Probabilistic scaling models are well suited for circumstances in
which intra- or interindividual perceptual variability or stimulus
confusability is present. In both cases, stimulus values are per-
ceived variably across trials. Perceptual variability may play an
important role when investigating perceptual organizations of pa-
tient populations with marked cognitive impairment, such as with
schizophrenia or dementia. Alternatively, perceptual variability
might result from alcohol consumption, anger, fatigue, or other
transient influences on cognitive processing.8 Marked stimulus
confusability might occur when stimuli are very similar to one
another, the duration of stimulus presentation is very short, or
stimulus quality is degraded. Probabilistic methods should provide
more valid estimates of stimulus coordinates under these circum-
stances. Additionally, the variance estimates may be of intrinsic
interest to investigators because they could vary meaningfully as a
function of the stimulus, the stimulus dimension, personal charac-
teristics, or relevant manipulations. For example, individual dif-
ferences in the magnitude of the variance estimates might be a
useful indicator of the extent of cognitive impairment.

Given the uniqueness and complexity of the various probabilis-
tic scaling models, we focus here on one probabilistic scaling
model: PROSCAL (MacKay, 1989, 2001; MacKay & Zinnes,
1986; Zinnes & MacKay, 1983, 1992). PROSCAL’s unique ability

6 Alternatively, we could have evaluated this hypothesis using a multiple
regression approach, in which separate, unconstrained two-dimensional
solutions were estimated for each participant and the resulting coordinates
were regressed onto the normative ratings for body size and affect in two
separate regression analyses (see Chapter 12 in Schiffman et al., 1981, and
Chapter 8 in Davison, 1992). The resulting multiple Rs for body size and
affect are similar conceptually to the attention weights for body size and
affect that were estimated using the constrained WMDS approach. In our
experience, the multiple regression approach results in slightly more reli-
able group differences, particularly when some correlation is present be-
tween the normative ratings for the stimulus dimensions. We typically
adopt the constrained WMDS approach, however, because of the greater
ease of implementation and the relative independence, by design, of
normative ratings for affect and body size in our stimulus set.

7 Cluster-analytic techniques also might be applied profitably to partic-
ipants’ similarity ratings here because individual differences in weights
applied to the resulting clusters might provide related information (Arabie,
Carroll, & DeSarbo, 1987; Carroll & Chaturvedi, 1995).

8 In some cases, the variance estimates also may be capturing perceptual
uncertainty, rather than perceptual variability, which occurs when the observer
has no idea what an object’s scale value may be on a given dimension.

Figure 2. Three participants’ perceptions of body size and affect. The left, middle, and right panels illustrate
no correlation, positive correlation, and negative correlation, respectively.
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to account for differential variability in stimulus perception makes
it particularly appropriate for the applications described later.
PROSCAL9 provides a multidimensional generalization of Thur-
stone’s (1927) unidimensional probabilistic scaling model. Percep-
tion of each stimulus i is assumed to follow a multivariate normal
distribution, and unique maximum likelihood estimates of mean
and variance parameters may be obtained for each stimulus on
each of r dimensions. The r � r covariance matrix, �i, contains all
of the variances and covariances associated with a particular
stimulus. These variance estimates are assumed to reflect either
intraindividual differences in perceived stimulus locations, when
judgments from a single person are analyzed, or both intra- and
interindividual differences in perception, when multiple partici-
pants’ judgments are analyzed simultaneously.10

Four restricted versions of the full PROSCAL model, which place
constraints on the stimulus covariance matrices, commonly are esti-
mated in practice. These submodels result from specifying whether
variance estimates differ within a dimension (i.e., Case V vs. Case III
models) and whether variance estimates differ across dimensions (i.e.,
isotropic vs. anisotropic models). Following Thurstone’s (1927) no-
menclature, Case V models estimate the same variance for all stimuli
within a dimension (e.g., variability in perception of body size is
constant across stimuli), whereas the more general Case III models
estimate a variance for each stimulus within a dimension (e.g., vari-
ability in perception of body size is stimulus specific). The second
distinction specifies whether variances differ across dimensions. Now
following MacKay’s (1989) terminology, isotropic models estimate
the same variance across dimensions for a particular stimulus (e.g.,
variability in perception of body size and affect is the same for a
particular stimulus). In contrast, anisotropic models estimate different
variances across dimensions for a particular stimulus (e.g., variability
in perception of body size and affect differs for a particular stimulus),
and these variances may or may not be correlated. Factorial combi-
nation of the case and tropic distinctions results in four possible
variance structures, which Figure 4 illustrates: Case V isotropic (Panel
A), Case III isotropic (Panel B), Case V anisotropic (Panel C), and
Case III anisotropic (Panel D).

In many cases of interest to clinical scientists, perceptual vari-
ability may be consistent with a Case III anisotropic variance–
covariance structure. For example, we might expect that bulimics’
perceptions of light stimuli are more precise than their perception
of heavy stimuli and that their perception of body size is more
precise overall than their perception of affect. Figure 5 illustrates
this hypothesized perceptual organization. This Stimulus � Di-
mension interaction in variance estimates corresponds to a Case III
anisotropic variance–covariance structure. Similarly, we might
anticipate that men who exhibit sexually coercive behavior would

perceive variability in women’s sexual interest less precisely than
variability in the provocativeness of their dress, particularly when
provocativeness-of-dress is marked.

Probabilistic models are at a clear advantage over deterministic
models when estimating stimulus configurations in which stimulus
variances are large relative to interstimulus distances, particularly
when variances differ by stimulus or dimension (Zinnes &
MacKay, 1983). PROSCAL disentangles perceptual variability
from interstimulus distances, whereas deterministic models con-
found these two influences on participants’ judgments. Determin-
istic models assume that the scaled interstimulus distances increase
monotonically with participants’ dissimilarity judgments. Thus,
deterministic methods misconstrue large dissimilarity judgments
resulting from large perceptual variability as indicators of large
interstimulus distances. In the extreme case, in which stimulus
variability far exceeds interstimulus distances, the magnitude of
the perceptual variability can determine almost entirely the stim-
ulus locations estimated by deterministic methods.11

9 PROSCAL and relevant publications can be downloaded at http://
proscal.com.

10 The variance estimates also presumably reflect whatever decisional vari-
ability is present. In part to separate perceptual and decisional contributions to
parameter estimates, MacKay added a measurement model to PROSCAL,
which relates participants’ similarity judgments to underlying dissimilarities
using additive, scale, and exponent constants (for details see PROSCAL
manual at http://proscal.com). This decision-making model is simplistic, how-
ever, and it is doubtful that its inclusion completely eliminates the influence of
decisional variability on perceptual parameter estimates.

11 Understanding the advantages of the probabilistic model necessitates
grasping the distinction between three distance measures used in the
model: the participant’s dissimilarity judgments, dij, the scaled distances,
�ij, and the expected distances E(dij). Transformations of the participant’s
dissimilarity judgments, dij, are assumed to correspond directly to the
perceived Euclidean (or city-block; see MacKay, 2001) distance between
the two stimuli. Perception of xi and xj is expected to vary on a trial-by-trial
basis, so dij also varies trial by trial. In contrast, �ij is the scaled distance
between �i and �j, the mean percepts of stimulus i and j; �ij is not a random
variable and does not change from trial to trial. Finally, E(dij) is the
expected value of the participant’s dissimilarity judgments, dij. According
to the PROSCAL model, E(dij)3 �ij as the ratio of interpoint distances to
stimulus variances increases. As the stimulus variances approach infinity,
however, E(dij)3 	, even as �ij3 zero. To appreciate this property, note
that if two stimuli have identical means (i.e., �ij � 0) and nonzero
variances, all of the judgments will be positive.

In sum, according to the PROSCAL model, both participants’ dissimi-
larity judgments and the expected distances should increase as the stimulus
variances increase. Except in a Case V isotropic situation, however, the
scaled distances should not increase monotonically with participants’ dis-
similarity judgments and the expected distances. PROSCAL earns its
advantage over deterministic methods by treating transformations of the
expected distances as the best model of participants’ judgments. In con-
trast, deterministic models treat transformations of the scaled distances as
the best model of participants’ dissimilarity judgments and erroneously
conclude that large dissimilarity judgments resulting from large perceptual
variability are due to large differences in stimulus locations. Thus, proba-
bilistic models are at a clear advantage over deterministic models when
marked perceptual variability or stimulus confusability is present, partic-
ularly when Case III or anisotropic variance structures hold. Stated differ-
ently, if the researcher believes that some stimuli or dimensions are
perceived more uniformly than others, probabilistic models, such as
PROSCAL, should be used.

Figure 3. Participants’ perception of body size. The upper half illustrates
“clumped” perception of body size as either heavy or light, whereas the
lower half depicts more graduated perception of body size.
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Zinnes and MacKay (1983) illustrated the limits of deterministic
methods in the presence of noise in a classic hexagon simulation.
They created a two-dimensional configuration containing 12
points; 6 formed an interior hexagon, and 6 formed an exterior
hexagon (see Panel A of Figure 6). Variances for stimuli on the
interior hexagon were substantially greater than variances for
stimuli on the exterior hexagon. Thirty replications of all interpoint
distances were simulated and subjected to deterministic analysis
by KYST (Kruskal, 1964; Kruskal & Wish, 1978) and probabilis-
tic analysis by PROSCAL. As expected, PROSCAL recovered the
true configuration well (see Panel C of Figure 6), whereas KYST
incorrectly reversed the hexagons (see Panel B of Figure 6). The
failure of KYST to recover the true configuration was attributed to
its systematic misattribution of the large simulated variances as-
sociated with the inner hexagon to large interpoint distances.12

Explicit representation of perceptual variability in PROSCAL
enhances the precision of MDS-derived maps of participants’
perceptual organizations when marked inter- or intraparticipant
variability in perception is present. Specification of an error model
also facilitates hypothesis testing about dimensionality and the
equality of stimulus locations and variances because both types of
hypotheses can be tested using chi-square nested-model compari-
sons (Wickens, 1982) or information-criterion statistics (Akaike,
1974; Bozdogan, 1987). Researchers using deterministic models,
in contrast, frequently cannot draw strong conclusions about di-

mensionality and constrained solutions by comparing different
models’ fit indices statistically. Thus, researchers often resort to
qualitative strategies to determine dimensionality and speculate
about whether the improved fit of a less constrained configuration
is substantial enough to warrant rejection of the restricted model.13

The advances resulting from probabilistic representation of per-
ceptual organization sometimes are costly, however, because the
increased number of free parameters necessitated by estimation of
complex variance structures (e.g., Case III, which estimates
stimulus-specific variances) places greater demands on the data
submitted for analysis. If a simple variance structure is assumed,
however, PROSCAL estimates only a few additional parameters
(e.g., one for the Case V isotropic structure and r for the Case V
anisotropic structure). Additionally, deterministic methods typi-
cally overestimate dimensionality in simulation studies, so
PROSCAL solutions often estimate fewer parameters than deter-
ministic methods (MacKay & Dröge, 1990; MacKay & Zinnes,
1986, 1988).

Nonetheless, PROSCAL’s developers have reduced the number
of free parameters, in part, by excluding individual-specific pa-
rameters from simultaneous analyses of multiple participants’ data.
Thus, replicated judgments are critical to reliable parameter esti-
mation from a single participant’s data, if individual-specific in-
ferences about perceptual organization are of greatest interest and
a complex variance structure is assumed. Group-specific infer-
ences require fewer judgments from each participant, but variance
estimates reflect both inter- and intraindividual differences in the
perceived locations of stimuli. The ideal solution to this dilemma
will necessitate extending PROSCAL to allow individual-specific
estimation of a subset of model parameters. In the interim, re-
searchers can increase the precision and interpretability of these

12 Fortunately, the fit of KYST to data that are grossly inconsistent with
a deterministic model should be extremely poor, and researchers would
have little reason to take seriously the estimated configuration.

13 Nosofsky (1985) illustrated how restricted versions of deterministic
MDS models could be evaluated using likelihood-ratio methods, how-
ever, by estimating the scaling solutions within an MDS-choice model
framework.

Figure 4. Four possible variance–covariance structures for 10 stimuli
varying along two dimensions. The ellipses are referred to as equal-
likelihood contours, which are composed of all points lying 1 standard
deviation from the mean of the multivariate normal distribution for a
particular stimulus. Panel A depicts a Case V isotropic structure, in which
variance estimates are the same for all stimuli along both dimensions;
Panel B presents a Case III isotropic structure, in which the variance
estimates differ by stimulus but not by dimension; Panel C shows a Case
V anisotropic structure, in which the variances differ by dimension but not
by stimulus; and Panel D depicts a Case III anisotropic structure, in which
the variances differ by both stimulus and dimension.

Figure 5. Illustrative hypothetical representation of bulimics’ perceptual
organization of body-size and affect stimulus information, in which body
size is perceived more precisely when small and body size is perceived
more precisely overall than affect.
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group- and individual-level parameter estimates by making every
effort to minimize perceptual variability resulting from factors that
are not of primary theoretical interest.

Using Probabilistic Scaling Approaches to Evaluate
Clinically Relevant Perceptual Organization

Not surprisingly, PROSCAL estimates parameter values better
than deterministic methods when simulated data are generated
explicitly by a probabilistic model. A more stringent evaluation of
the incremental utility of probabilistic approaches necessitates
demonstrating that (a) PROSCAL detects the presence of percep-
tual variability in real data, when theoretically it is expected to be
present (e.g., when participants are subjected to an alcohol manip-
ulation) and (b) parameter estimates from the probabilistic and
deterministic analyses show predictable, systematic discrepancies
(i.e., stimuli estimated by PROSCAL to have larger variances are
scaled closer to the exterior of the deterministic space than the
probabilistic space).

We provided such an evaluation of the potential utility of
probabilistic scaling approaches with clinically relevant, nonsimu-
lated data in the following pilot study, which was designed to
examine the effect of alcohol consumption on individual differ-
ences in men’s perceptions of women (McFall, Treat, & Viken,
1999; Treat, MacKay, & Nosofsky, 1999). Fourteen male partic-
ipants older than 21 years were assigned randomly either to an
alcohol condition, in which they consumed enough alcohol to raise
their breath alcohol level to approximately .05, or to a placebo
condition, in which they were told they would consume alcohol but
consumed a nonalcoholic beverage instead. Participants consumed
and absorbed their beverage and then rated the similarity of all
possible pairs of 14 photos of women, which were selected to vary
along dimensions such as provocativeness, affect, appeal, ap-
proachability, and attractiveness.

Group-level analyses were carried out because individual par-
ticipants did not provide enough judgments to warrant participant-
specific probabilistic analyses. All analyses assumed a Euclidean
metric and a two-dimensional configuration. ALSCAL14 (Young
& Lewyckyj, 1996) was used for deterministic analyses, and
PROSCAL was used for probabilistic analyses. Final PROSCAL
analyses assumed a Case III anisotropic variance structure because
estimation of this complex variance structure improved model fit
significantly. Four scaling solutions were estimated, one for each
combination of condition (alcohol or placebo) and MDS model
(ALSCAL or PROSCAL). Each configuration was transformed
such that (a) it was centered around zero and (b) the sum of the
squared coordinates was equal to the number of stimuli. These
transformations made the centroid of each configuration zero and
the ranges of the solutions comparable. In all cases, the stimulus
dimensions estimated by the two models were interpretable as
appeal and provocativeness.

The variances estimates from the PROSCAL analysis were
readily interpretable. Alcohol participants showed significantly
larger variance estimates than placebo participants, t(27) � 1.733,
p 
 .05, ES � .32, which is consistent with evidence that alcohol
disrupts cognitive performance (Finnigan & Hammersley, 1992).

14 ALSCAL is available in the SPSS statistical package and also can be
downloaded at http://forrest.psych.unc.edu/.

Figure 6. Results of Zinnes and MacKay’s (1983) hexagon simulation.
(a) The configuration used to simulate distances; stimuli in the inner
hexagon were characterized by substantially larger variance estimates
than stimuli in the outer hexagon. (b) and (c) Best solutions estimated
by KYST and PROSCAL, respectively. From “A Probabilistic Multi-
dimensional Scaling Approach: Properties and Procedures,” by J. L.
Zinnes and D. B. MacKay, in Multidimensional Models of Perception
and Cognition (p. 48), edited by F. G. Ashby, 1992, Hillsdale, NJ:
Erlbaum. Copyright 1992 by Erlbaum. Reprinted with permission.
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Additionally, variance magnitude was related strongly to our sub-
jective sense of either how easily a stimulus could be placed along
the dimension or the likely magnitude of individual differences in
placement of the stimulus (given that a large variance estimate
could reflect either or both). For example, in both the alcohol and
placebo participants’ analyses, seminude stimuli showed a small
variance along the provocativeness dimension but a large variance
along the appeal dimension. This was in keeping with our judg-
ment that these photos consistently were viewed by college males
as provocative but there was much less consensus about how
appealing they were.

Our concerns about the distorting effect of perceptual variability
on the deterministic scaling solutions were well founded, as indi-
cated by visual inspection of the untransformed probabilistic and
deterministic scaling solutions for alcohol and placebo partici-
pants, shown in Figure 7. In marked contrast to the probabilistic
scaling solutions, the deterministic solutions in the lower half of
the figure were characterized by a large empty interior region. In
other words, stimuli in the deterministic scaling solutions were
scaled closer to the exterior of the space. This qualitative finding
is consistent with the results of several stimulation studies, such as
the hexagon example described earlier (Zinnes & MacKay, 1983),
in which deterministic methods scaled higher variance stimuli
toward the exterior of the space. To evaluate this effect quantita-
tively, we calculated for each stimulus the ratio of its distance from
the centroid of the deterministic analysis to its distance from the
centroid of the probabilistic analysis; this computation was com-
pleted separately for alcohol and placebo participants’ solutions.
We expected that stimuli that were scaled farther from the centroid
of the deterministic than the probabilistic solution (i.e., those
stimuli with ratio scores � 1.0) would show significantly greater
variances than those stimuli that were scaled closer to the centroid
of the deterministic than the probabilistic solution (i.e., those

stimuli with ratio scores � 1.0). We also expected that this effect
would be more pronounced for participants in the alcohol condi-
tion and potentially absent for participants in the placebo condition
because probabilistic and deterministic results should diverge as
perceptual variability increases.

Probabilistic and deterministic representations of alcohol partic-
ipants’ data deviated as expected: Stimuli scaled closer to the
exterior of the deterministic than the probabilistic solution showed
significantly greater variance estimates than stimuli scaled closer
to the exterior of the probabilistic than the deterministic solution,
t(12) � 4.84, p 
 .001, ES � 2.83. In contrast, probabilistic and
deterministic solutions for placebo participants’ data did not differ
significantly, and the effect size was much weaker; variance esti-
mates for stimuli scaled closer to the exterior of the deterministic
space were more similar to variance estimates for stimuli scaled
closer to the exterior of the probabilistic space (ES � .71). These
results illustrate the impact of inter- and intraindividual perceptual
variability on configuration estimation by deterministic methods.
ALSCAL placed stimuli farther from the centroid of the space
when they were estimated by PROSCAL to have larger variances.
Additionally, the magnitude of this effect was greater for alcohol
participants, who showed larger variance estimates.

More generally, this example highlights the potential incremen-
tal utility of the probabilistic scaling approach under clinically
relevant circumstances (see also MacKay & Dröge, 1990, for an
alternative applied evaluation of the incremental utility of proba-
bilistic representations of perceptual organization). When marked
perceptual variability is present or stimuli are very confusable,
probabilistic methods should provide more precise and valid esti-
mates of participants’ perceptual organizations. Thus, the re-
searcher, or clinician, has a higher resolution representation of
participants’ or clients’ perceptual organizations at his or her
disposal. In contrast, deterministic methods should show a system-
atic bias toward placing stimuli associated with larger variance
estimates closer to the exterior of the psychological space. Thus, if
nonnegligible perceptual variability or stimulus confusability is
present, probabilistic methods should prove particularly helpful
when the investigator is interested in individual differences in
intradimensional organization (e.g., when the researcher hopes to
distinguish between the upper and lower halves of Figure 3).
Additionally, individual differences in the magnitude of the vari-
ance estimates may prove to be of intrinsic interest. For example,
marked deterioration in precise perception of a woman’s sexual
interest under the influence of alcohol might place a man at
particularly high risk of engaging in sexually coercive behavior.

Thus far, we have examined the use of deterministic and prob-
abilistic MDS methods for characterization of clinically relevant
individual differences in perceptual organization. Probabilistic
models are preferable in the presence of significant perceptual
variability or stimulus confusability, particularly when intradimen-
sional perceptual organization or the magnitude of variance esti-
mates are of primary interest. Under less variable circumstances,
however, probabilistic and deterministic solutions converge. In
such cases, deterministic techniques are preferable when individ-
ual differences are of primary interest, because deterministic meth-
ods’ treatment of individual differences is more advanced at this
point. Thus, readers should consider both options and select the
one that is more appropriate to their circumstances.

In our experience, the use of MDS methods to evaluate ques-
tions about clinically relevant perceptual organization is limited

Figure 7. PROSCAL Case III anisotropic group solutions for alcohol
(Panel A) and placebo (Panel B) participants; ALSCAL group solutions for
alcohol (Panel C) and placebo (Panel D) participants.
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primarily by logistical and theoretical considerations. Logistically,
MDS analysis typically requires the collection of extensive simi-
larity ratings, identification confusions, or same–different judgments.
It may be possible to collect a carefully chosen subset of judgments
instead, however, particularly when MDS is used in a confirmatory
fashion, because fewer parameters must be estimated (MacCallum,
1988; Spence & Domoney, 1974; Zinnes & MacKay, 1983).
Theoretically, it is important to avoid assuming that characteristics
of MDS solutions are stable across time, context, and stimulus-set
modifications. Increasing the variability along the body-size di-
mension in our stimulus set, for example, would increase our
estimates of attention to body size. The tendency toward reification
of MDS solutions also is at odds with cognitive psychologists’
view of cognitive processing as dynamic and contextualized. Fi-
nally, although similarity ratings do not rely on introspective
reports about cognitive processing, they nonetheless are subject to
presentation biases. Researchers may be able to minimize demand
characteristics and discourage deliberative responding by requiring
speeded responses or shortening stimulus durations.

Use of the MDS approach is appropriate even when participants
cannot provide a valid account of the way in which they process
information. Some clinical investigators have moved in the direc-
tion of using more performance-based assessment strategies, typ-
ically based on the Stroop or dichotic listening paradigms (Bruder,
1991; MacLeod, 1991; Williams, Mathews, & MacLeod, 1996).
These methods, however, lack the theoretical coherence of MDS
methods, which are part of an extensive set of interrelated mea-
surement models developed by cognitive psychologists to evaluate
information processing. In the final section, we address and illus-
trate the use of MDS methods, in conjunction with formal cogni-
tive process models, to investigate theoretical models of the way in
which perceptual organization influences cognitive processing.

Predicting Cognitive Processing From MDS-Derived
Representations of Perceptual Organization

A fundamental premise of cognitive psychology is that percep-
tual organization influences and constrains the operation of other
cognitive processes presumably “downstream” from perceptual
organization, such as identification, classification, recognition
memory, and category learning. Thus, perceptual organization
alone does not explain behavior, but rather is only the first step in
an unfolding process. One of the primary goals of cognitive
psychologists has been the development of formal mathematical
models of the mechanisms by which perceptual organization af-
fects these other cognitive processes. For example, Nosofsky,
Kruschke, and colleagues have used MDS-derived representations
of participants’ perceptual organizations successfully to predict
performance across independent tasks assessing classification,
memory, and learning processes (Kruschke, 1992; Kruschke &
Johansen, 1999; Nosofsky, 1986, 1991, 1992a, 1992b; Nosofsky,
Kruschke, & McKinley, 1992). Formal mathematical models tra-
ditionally have been used to investigate associations among nor-
mative performances on tasks assessing these different processes,
typically using simple, artificial stimuli. Fortunately, several stud-
ies demonstrated that basic information-processing models gener-
alize well to an evaluation of information processing under much
less idealized circumstances, in which investigators examine the
role of individual differences in information processing (Nosofsky
& Zaki, 1998), sometimes with much more complex, socially

relevant stimuli (e.g., Carter & Neufeld, 1999; Treat et al., 2001;
Viken et al., in press). These studies serve as exemplars of how
formal process models, in concert with MDS-based representations
of perceptual organization, can be used to make clinically relevant
inferences about perceptual organization, the operation of down-
stream cognitive processes, and the linkages between perceptual
organization and these other processes. We describe one study in
some detail (Viken et al., in press), but readers also may want to
consult Carter and Neufeld (1999), Nosofsky and Zaki (1998), and
Treat et al. (2001).

Social information-processing models of eating disorders pro-
pose that bulimic behaviors are maintained in part by differential
attention to, classification of, memory for, and learning of infor-
mation related to shape, weight, eating, and food (Vitousek, 1996;
Vitousek & Hollon, 1990; Williamson et al., 1999). Thus, bulim-
ics’ differential attention to body size and affect in similarity
ratings tasks should result in their differential sensitivity to body
size and affect in classification tasks. We evaluated this hypothesis
formally as a part of the study described earlier (Viken et al., in
press). Bulimics and controls first rated the similarity of all pos-
sible pairs of 24 stimulus photos of women, who varied along
facial-affect and body-size dimensions. Participants next com-
pleted two prototype classification tasks (Cohen & Massaro, 1992;
Massaro, 1991). In each task, participants first viewed two proto-
typical stimuli, which varied along both body-size and affect
dimensions. In the first task, for example, participants viewed a
happy-heavy woman (Prototype A) and an unhappy-light woman
(Prototype B). Participants then classified each of the remaining 22
stimuli as Type A or Type B women. Participants could base their
classifications on body size, affect, both attributes, or any attribute
perceived to differentiate the two prototypes.

To evaluate whether individual differences in perceptual orga-
nization predicted individual differences in classification, we fit
Nosofsky’s (1987) weighted-prototype model of classification to
participants’ averaged classification judgments. The model speci-
fied that the probability of classifying stimulus i as a Type A
woman increased as the perceived similarity of i to Prototype A
increased, and that similarity was a decreasing function of distance
in psychological space. The distance between i and A, diA, was
computed using a weighted Euclidean metric, as in the determin-
istic MDS models described earlier:

diA � � �
m�1

2

wm�xim � xAm�2� 1/ 2

,

where wm represents the weights for Dimensions 1 (body size)
and 2 (affect), which sum to 1.0. Then, the similarity of i to A, �iA

was an exponentially decreasing function of diA:

� iA � e�cdiA,

in which c was a scaling parameter that determines the rate at which
similarity declines with distance. The classification probabilities,
P(A�i), were represented by the weighted similarity of i to A,
relative to the sum of the weighted similarities of i to A and i to B:

P�A�i� �
�A�iA

�A�iA � �1 � �A)�iB
,

where �A was a response-bias parameter representing relative use
of Type A classification responses.
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This model potentially could predict differential classification
probabilities for bulimics and controls by including group-specific
parameter estimates of wm. An intuitive grasp of the model’s
predictions can be gained by reinspecting Figure 1. Panels B and
C present sample perceptual organizations for BSO and AO par-
ticipants, respectively. Prototypes A and B are identified on both
graphs, and their coordinates differ along both the affect and
body-size dimensions. Stimulus i is much more similar to (i.e.,
closer to) Prototype A than Prototype B in the BSO participant’s
psychological space; the opposite circumstance characterizes the
AO participant’s representation. Thus, a model containing group-
specific estimates of wm should predict that BSO participants were
much more likely to classify stimulus i as a Type A woman, and
that AO participants were much more likely to classify stimulus i
as a Type B woman, if no biases toward more frequent use of one
response were present.

Results were consistent with these theoretical predictions for
both classification tasks when different versions of the model were
fit to participants’ classification data. All models contained at
least three parameters: a single scaling parameter, a single
response-bias parameter, and a single attention-weight parameter.
Alternative models assumed that one or more of these three pa-
rameters was group specific (i.e., estimated separately for bulimics
and controls). Thus, the most general model had six parameters. As
expected, the best fitting model contained four parameters: a single
scaling parameter, a single response-bias parameter, and group-
specific attention-weight parameters. Additionally, group-specific
estimates of attention weights showed that body size was more
salient (hence, affect was less salient) for bulimics than for con-
trols. This model fit significantly better than a three-parameter
model, which estimated only scaling, response-bias, and attention-
weight parameters, and better than two alternative four-parameter
models, which estimated either group-specific scaling or group-
specific response-bias parameters.

Nosofsky’s (1987) weighted-prototype classification model is
but one of many specifying a formal link between an MDS-based
representation of perceptual organization and the operation of
other cognitive processes. Alternative models, for example, could
be used to evaluate the congruence of recognition-memory or
category-learning processes with perceptual organization (Krus-
chke, 1992; Kruschke & Johansen, 1999; Nosofsky, 1986, 1991,
1992a, 1992b). Models such as these have guided our preliminary
investigations of whether bulimics show differential memory for
and learning of body-size and affect information, compared with
controls (Treat, 2000).

Formal modeling strategies allow researchers to test theoretical
expectations about the linkage between perceptual organization
and cognitive processing in a rigorous and specific fashion. Fitting
formal process models should strengthen clinical scientists’ infer-
ences about where information processing is going awry and may
suggest novel intervention strategies. At a more general level,
these strategies also should help us determine whether a single
model of human cognition, which allows individual- or group-
specific parameter estimates, can provide a sufficient account of
both normal and abnormal processing.

Implications for Clinical Assessment and Intervention

Enhancing our understanding of the cognitive mechanisms un-
derlying or covarying with psychopathology ultimately should

inform our assessment and intervention strategies with individual
clients. Thus, before closing, we briefly speculate about the po-
tential utility of MDS methods and formal process modeling for
individualized clinical assessment and treatment. An important
preliminary step in this direction entails augmentation of the
analytical strategies used in clinical research to allow simultaneous
estimation of group- and individual-specific parameters. The de-
terministic scaling methods discussed earlier (e.g., WMDS and
Tucker’s correlational approach) already allow this possibility by
estimating individual-specific attention weights and dimensional
correlations while simultaneously estimating group-specific stim-
ulus coordinates. Probabilistic scaling methods and formal process
models could be extended in a similar fashion. This work would
allow us to form normative distributions of parameter estimates
and to evaluate the relationship between these distributions and
aspects of psychopathology.

This hybridization of nomothetic and idiographic research ap-
proaches should serve as a useful bridge to more idiographic, but
nomothetically informed, applications. Eventually, individual cli-
ents might be asked to complete relevant cognitive-performance
tasks, such as those described here, as a routine component of both
initial and ongoing assessment. Formal modeling of a client’s data
would provide parameter estimates that could be compared with
existing normative data, and the clinician might target or monitor
relevant cognitive processes during treatment.

The assessment findings also might suggest novel treatment
approaches that capitalize on cognitive psychologists’ expertise in
modifying cognitive processing. Suppose, for example, that a
woman who presented with bulimic symptoms completed at intake
a battery of cognitive-performance tasks designed to assess her
relative attention to, memory for, and learning of affect and body-
size information. Suppose further that her modeled performance
was particularly noteworthy in that she attended very little to
affective information, which then resulted in poor memory for and
learning of affective information. An important initial step in
therapy, therefore, might involve training the client to attend more
to such information, particularly under conditions associated with
an increased likelihood of symptomatic behavior (e.g., after con-
sumption of a taboo food or a negative interpersonal encounter).
Similarly, a critical step in the early stages of treating a man who
repeatedly exhibited sexually coercive behavior with acquaintan-
ces might entail formal training aimed at (a) increasing the accu-
racy of his perceptions of a woman’s level of sexual interest,
particularly under high-risk conditions (e.g., while intoxicated or
sexually aroused), and (b) decreasing his perceived association
between her level of sexual interest and the provocativeness of her
dress.

Currently, only promissory notes about such applications are
tenable because we simply do not know enough yet about the role
of cognitive processing in eating disorders and sexual coercion to
capitalize on these opportunities. Nonetheless, we hope to have
piqued the reader’s interest in these potential applications of MDS
methods and formal process modeling for individualized clinical
assessment and treatment.

Conclusion

Numerous clinical theories assign a critical role to cognitive
processing in the development and maintenance of psychopathol-
ogy, such as Kelly’s (1955) personal construct theory, but mea-
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surement models capable of investigating these theories have been
lacking. We have argued that MDS techniques provide a promising
method of characterizing clinically relevant individual differences
in perceptual organization. Here we focused on the characteristics
of dimensional attention, perceptual correlation, within-attribute
organization, and perceptual variability. Additionally, we have
suggested that process models can be used in conjunction with
MDS-derived representations of perceptual organization to illumi-
nate the role of construal processes in the operation of downstream
cognitive processes. Using the theoretical and measurement mod-
els drawn from cognitive science to evaluate the role of cognition
in psychopathology is an important step toward bridging the gap
that has separated basic and applied work on human cognition
(McFall et al., 1997, 1998). These bridging efforts are likely to
prove mutually beneficial to clinical and cognitive scientists. They
simultaneously should increase the strength of clinical scientists’
inferences about cognitive influences on psychopathology (Platt,
1964), while enhancing the relevance of cognitive scientists’ the-
ories and methods to real-world problems.
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