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Abstract

Direct determination of doxorubicin (DXR), a cytotoxic anthracycline antibiotic, in human plasma was accomplished
based on excitation–emission matrix (EEM) fluorescence measurements and multi-way chemometric methods based on
parallel factor analysis (PARAFAC) and N-PLS. Several different procedures, such as residual analysis, core consistency
diagnostic (CONCORDIA) and split-half analysis were employed to determine the correct number of factors in PARAFAC.
These procedures converged to a choice of two factors, attributed to DXR and to the sum of two fluorescence species present
in the plasma. Sample PARAFAC loadings were employed to build a regression model against concentration, resulting in a
RMSECV of 0.060�g ml−1. N-PLS using two factors produced a RMSECV of 0.045�g ml−1. Figures of merit (FOM), such
as sensitivity (SEN), selectivity (SEL) and limit of detection (LD) were determined for both PARAFAC and N-PLS.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Doxorubicin (DXR) or adriamicin is a cytotoxic
anthracycline antibiotic widely employed in clinical
practice, showing activity against a wide range of
human neoplasms, including a variety of solid tu-
mors. Doxorubicin, first isolated in the 60’s[1], is
an amphiphilic molecule that has a fluorescent naph-
thacenedione nucleus linked at C7 to a hydrophilic
aminoglycosidic side chain. Its chemical structure[2]
is shown inFig. 1.
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The highlight in determination and monitoring of
anthracyclines is based on their toxic effects com-
monly observed after long-term treatment, such as the
toxicity to the myocardium, disturbance in hair growth
and spermatogenic suppression[3]. The clinical effi-
cacy of doxorubicin is related to its actual concentra-
tion in the tumor tissue, however the metabolism of
the drug and consequently its concentration in vivo
varies from patient to patient and has to be evaluated
for each one[4]. Consequently, several methodologies
have been developed for the determination of doxoru-
bicin in biological fluids using high performance liq-
uid chromatography[5–8], capillary electrophoresis
[9–11], UV-Vis [12] and Raman[13] spectroscopies.
In recent review, Zagotto et al.[4] report news devel-
opments on the determination of anthracyclines, using
figures of merit (FOM) for validation and comparison
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Fig. 1. Chemical structure of doxorubicin.

between the several methods. Currently, figures of
merit applied in multi-way determination are scarce,
however this is an important process for comparison
and to validate methodologies.

Determination of DXR in biological fluids has only
been reported using separations methodologies, but
these are relatively time consuming and laborious. Di-
rect fluorescence measurement in plasma can be an
attractive alternative, due to its high sensitivity (SEN)
and selectivity (SEL), allied to fast and clean spectra
acquisition, since DXR has a fluorophore group.

However, a method based on direct fluorescence
measurements of DXR in plasma, which is the case
for real samples, using univariate calibration at a sin-
gle emission wavelength may be biased by the native
fluorescence of the samples, and bad results will be
obtained. Human plasma is composed of a variety of
components and some of them make significant con-
tributions to the overall fluorescence. The fluorescence
of plasma can be split into two parts; one part com-
prises the highly fluorescent ultraviolet region, basi-
cally due the strong fluorescence of tryptophan. The
other part comprises the near-ultraviolet and visible
part of spectrum, due to many components, like nicoti-
namide adenine dinucleotide (NAD) and its phosphate,
riboflavin, bilirubin and others[14]. These compo-
nents present into the plasma can significantly change
from individual to individual, and the difference in the
fluorescence profile can be due to pH variation, intrin-
sic characteristics of each individual or even the bad
performance of certain organs, as verified by Madhuri
et al.[15] who related the differences between normal

and liver-diseased subjects from native fluorescence
characteristics of blood plasma.

Also first-order calibration methods such as par-
tial least squares (PLS)[16] are difficult to be used
in this case, since they require that all detectable
species (analytes and interferents) must be present in
both standards for calibration and unknown plasma
samples, which is practically impossible in this case.
A procedure to overcome these calibration difficul-
ties is to apply second-order calibration[17] from
excitation–emission matrix (EEM) fluorescence. In
this experimental procedure, for each sample a ma-
trix of data is obtained and a three-way arrangement
is formed from several samples. By usingN-way
or second-order chemometric methods, quantitative
analyses can be performed in the presence of uniden-
tified interferences or in cases when there are com-
pounds which are not present in all samples. Only the
species of interest must be the same in the calibration
standards and the samples to be analyzed. Qualitative
analysis can be also performed, resulting in spectral
deconvolution used for a better understanding of the
system.

Several methods and algorithms have been pro-
posed to be applied in second-order data sets, based
on direct algebraic solutions such as TLD or GRAM
[18] or on iterative procedures such as parallel fac-
tor analysis (PARAFAC)[19], MCR [20] or N-PLS
[21]. The methods based on iterative algorithms have
been most widely employed because they are less
sensitive to instrumental noise and model deviations,
opening a large number of practical applications in
HPLC-spectroscopy[22], flow injection analysis[23]
and tandem MS[24]. Also there are several applica-
tions with excitation–emission matrix fluorescence,
including environmental monitoring[25–27], analy-
sis of biological samples[28–30] and quantitation of
drugs[31].

In this paper, a method for determination of dox-
orubicin in human plasma based on EEM fluores-
cence measurements is proposed and validated by its
figures of merit. PARAFAC was employed for EEM
spectra deconvolution and DXR quantitation. During
the spectral deconvolution step, several procedures
were used to determine the number of different fluo-
rophores present in the data set, such as the split-half
method, core consistency diagnostic (CORCONDIA)
and residual analysis. All procedures converged to
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the same number of two components. One compo-
nent was identified as doxorubicin and the other as
the sum of several fluorescence species of the plasma.
In PARAFAC quantitation, the sample factor loadings
were used to establish a linear relationship with DXR
concentration and good results were obtained for sam-
ples at low mg l−1 concentrations. Also N-PLS was
employed for DXR quantitation and cross-validation
was used to find the optimum number of factors. The
optimum number of factors was two and better results
in relation to PARAFAC were obtained.

2. Theory

2.1. EEM fluorescence

In dilute solutions, the emission fluorescence inten-
sity I, obtained at several excitation–emission mea-
surements for many fluorescing species in a sample,
can be describe as

Iij =
F∑

f=1

af δfiεfj (1)

where Iij is the measured intensity at the emissioni
and excitationj wavelengths;af the concentration of
thefth fluorophore;δfi the relative emission coefficient
at the emission wavelengthi of the fth fluorophore;
εfj the molar absorptivity coefficient at the excitation
wavelengthj of the fth fluorophore;F is the number
of fluorophores in the sample.

For many samples containing several different flu-
orophores,Eq. (1)can be written as matrix products:

F = A(C| ⊗ |B)T (2)

whereA is the matrix of emission spectral profile of
all fluorescing species at all measured wavelengths;
B is a concentration matrix of all fluorescing species;
C is the matrix of absorption spectral profiles of all
fluorescing species at all measured wavelengths;|⊗|is
the Katri-Rao product.

All terms involved into the fluorescence equation
have linear independence, making a perfectly trilin-
ear profile model. However, the presence of elastic
Rayleigh scatter at a specific EEM region produces
non-linear profiles, not related to species fluores-
cences. If a trilinear model is intended to be adjusted,

these non-linear regions should be replaced by miss-
ing values.

2.2. PARAFAC

Parallel factor analysis (PARAFAC) is a decompo-
sition method forN-way data proposed by psychome-
tricians in the seventies and used since the nineties by
chemists[32]. A PARAFAC model of a three-way ar-
ray is given by three loading matrices,A, B andC,
with elementsaif , bjf andckf (Eq. (3)), respectively.
The trilinear model is found to minimize the sum of
squares of the residuals,eijk, in the model.

xijk =
N∑

f=1

aifbjfckf + eijk (3)

wherexijk is an element of the trilinear data set.
The algorithm used to solve the PARAFAC model

is alternating least squares (ALS). ALS successively
assumes the loadings in two modes and then estimates
the unknown set of parameters of the last mode. In
some instances, constraints are used to help algo-
rithm convergence and the physical meaning of the
loadings.

PARAFAC can be considered a constrained ver-
sion of the more general method Tucker3[32] with a
super-identity core matrix. It is less flexible, uses fewer
degrees of freedom, and provides unique solutions
that are not dependent on rotation. This last feature is
a great advantage for the modeling of spectroscopic
data. On the other hand, this is also a problem, be-
cause initial knowledge about the underlying factors
is required. For certain systems, only the experimental
analyst’s knowledge or techniques such as split-half
analysis[33] or estimation of the core consistency
[32] have been shown to be efficient. In the split-half
experiments, one type of jack-knife validation[34],
the data set is split into several sub-blocks and then
PARAFAC is performed on each sub-block. Identical
loadings on sub-blocks will be obtained if the correct
number of factors (fluorophores) was chosen, due to
the uniqueness of the PARAFAC model. The core con-
sistency diagnostic indicates how well the model is
in concert with the distribution of superdiagonal and
off-superdiagonal elements of the Tucker3 core. If the
PARAFAC model is correct, then it is expected that
the superdiagonal elements will be close to one and
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the off-diagonal elements close to zero. The core con-
sistency diagnostic (CORCONDIA) is defined as

CORCONDIA

= 100×
(

1 −
∑F

d=1
∑F

e=1
∑F

f=1(gdef − tdef)
2∑F

d=1
∑F

e=1
∑F

f=1t
2
def

)

(4)

wheregdef is the calculated element of the core us-
ing the PARAFAC model, defined by dimensions
(d × e × f ); tdef the element of a binary array with
zeros in all elements and ones in the superdiagonal
(the expected Tucker3 core) andF is the number of
factors in the model. In an ideal PARAFAC model,
gdef is equal totdef and, in this case, CORCONDIA
will be equal to 100%.

PARAFAC can be also used for quantitation. The
sample loadings are fitted against the known concen-
tration of a calibration set and new samples can be
analyzed using the model developed in the calibration
phase.

2.3. N-way regression—N-PLS

Partial least squares regression[16] is a super-
vised method for building regression models between
sets of pairs: independent (calledX) and depen-
dent variables (calledY). Multi-linear PLS (N-PLS)
[21] is an extension of the two-way PLS algorithm
for cases where the independent set is an array of
higher order than two. As with PLS, the aim is
to find components in the multidimensional array,
that have maximum covariance with the dependent
variables. In the case of excitation–emission fluores-
cence calibration, the independent set is a three-way
array formed by excitation–emission fluorescence
measurements of several samples and the dependent
set is a vector of concentrations, explained by the
argument:

max
wJ

a ,wK
a


cov(ta, y)|min


 I∑

i=1

J∑
j=1

K∑
k=1

(xijk − ta,iw
J
a,jw

K
a,k)

2






(5)

wherey (I × 1) is the concentration vector;ta (I × 1)
the PLS scores andwJ

a (J × 1) andwK
a (K × 1) are

the PLS weight vectors for theath model factor. The

factor term is called latent variable in bidimensional
PLS.

Unlike PARAFAC, the choice of the number of
factors is not performed directly from the number of
fluorescing species present and more or fewer factors
than the number of fluorophores can be chosen. This
larger number of factors can be necessary to explain
non-linearities such as quenching, Rayleigh scatter
and missing values, whereas a lesser number of fac-
tors can be found in the presence of highly correlated
fluorophores species in the studied system. An ade-
quate choice of the factor number makes a suitable
modeling without over fitting and a lack of trilinear-
ity is not considered critical, as the main aim in the
model is to find a subspace inX which can be used
for regression. It has been shown in the literature that
multi-linear regression methods can work well even
on data with no strict multi-linear structure. The most
employed method to find the adequate number of
factors is cross-validation with the leave-one-out pro-
cedure[16] where, from the calibration samples, one
sample is left out and the model is developed using
different numbers of factors. The concentration for the
sample that did not participate in model development
is predicted with several factor numbers and, from
comparison with the true valor, an error is estimated
for each factor number employed. This procedure
is repeated for all calibration samples and a mean
error is calculated. The number of factors that pro-
duced the least error within a threshold value is then
chosen.

2.4. Figures of merit

Alternatives methodologies need to be validated by
comparison with other established methods. The most
important process for comparison of analytical meth-
ods is the determination of figures of merit, such as
sensitivity, selectivity and limit of detection (LD). In
multivariate calibration, the net analyte signal (NAS)
calculation[35] is strictly necessary for the FOM eval-
uation. The NAS for multi-way data is analogous to
those for first-order procedures, which is defined as
the part of the signal that relates uniquely to the ana-
lyte of interest. In this case, as the data is bilinear, the
NAS is the pure analyte data obtained by PARAFAC
[36]. The sensitivity is estimated as the NAS at unit
concentration, as shown inEq. (6), and the selectivity
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is the ratio between the sensitivity and the total signal,
as shown inEq. (7).

SEN= ||NAS||F (6)

SEL = ||NAS||F
||N ||F (7)

where NAS is a matrix with dimensions 56× 282;
N is the matrix of the total signal and|| · ||F is the
Frobenius norm.

For N-PLS the sensitivity is calculated as for
first-order calibration, i.e. the inverse of the norm of
vector of regression coefficients. In this case, the ma-
trix of coefficients of regression generated by N-PLS
are transformed to a vector. Multiplying this parameter
by analyte concentration gives the NAS. From NAS
it is possible to calculate the selectivity byEq. (7).

The limit of detection (LD) [30] is calculated as

LD = 3.3s(0) (8)

wheres(0) is the standard deviation in the concentra-
tion estimated for three different blank samples, in the
PARAFAC and N-PLS models.

3. Experimental

3.1. Apparatus

The samples were measured on a Perkin-Elmer
LS 55 Luminescence Spectrometer with a 10 mm
quartz cuvette at 23± 1◦C. The FL WinLab Soft-
ware (Perkin-Elmer) was used for measurements,
and the spectra were imported to Matlab ver-
sion 6.1, using a homemade program. TheN-way
toolbox for Matlab version 2.1[37], available at
http://www.models.kvl.dk/source, was employed for
PARAFAC and N-PLS calculations. All programs
were run on an AMD Thunderbird 1.3 GHz micro-
processor IBM compatible microcomputer.

3.2. Reagents and solutions

Doxorubicin hydrochloride was obtained as a crys-
talline powder from Instituto de Tecnologia do Paraná
(TecPar), Brazil. A stock solution with a concentration
of 150�g ml−1 was prepared by dissolving the dox-
orubicin hydrochloride in water and stored in glass at

−20◦C, protected from light, for a maximum period
of 1 week.

Deionized water (Millipore) was used in all exper-
imental preparations. All glassware used were previ-
ously soaked in 10% (v/v) HNO3 for 62 h and rinsed
with distilled and deionized water.

3.3. Samples

Ten blood samples were obtained from healthy vol-
unteers at the Clinical Hospital of Campinas State Uni-
versity, Brazil. On the same day, the samples were
centrifuged for 20 min at 3500 rpm and 3.0 ml of su-
pernatant were transferred to a clean vacuum tube
and stored at−20◦C until the experiments were per-
formed.

3.4. Procedure

DXR usually is injected as a dose of 60–75 mg m−2,
giving an initial concentration of about 20�g ml−1 in
an adult male. Only a fraction of this injected drug
will be present in the plasma. Therefore, we decided
to work in concentrations not superior to 50% of the
initial dose. The experimental points were studied
with different concentrations of DXR in the range of
0.75–11.25�g ml−1. These points were made from
the appropriate addition of the stock solution of dox-
orubicin into 2 ml of plasma directly in the quartz
cuvette, homogenized with a micro-magnetic bar.
The EEM spectra were recorded at excitation wave-
lengths from 390 to 500 nm at regular steps of 2 nm
and the emission wavelengths from 510 to 650 nm at
0.5 nm steps. The excitation and emission monochro-
mator slit widths were 10 nm and a scanning rate of
900 nm min−1 was used. For each sample a matrix
of fluorescence intensities with dimensions 56× 282
(excitation wavelengths× emission wavelengths) was
obtained.

4. Results and discussion

4.1. Natural fluorescence of human plasma

A three-dimensional plot of an EEM fluorescence
of human plasma is presented inFig. 2(a). It is pos-
sible to observe that there are two main bands, one

http://www.models.kvl.dk/source
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Fig. 2. Typical fluorescence excitation–emission spectrum of (a) human plasma, (b) bilirubin and (c) riboflavin.
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at excitation/emission wavelengths around 450 nm/
515 nm and another at an excitation wavelength near
to 390 nm and emission wavelength around 515 nm.
By comparison with the excitation–emission pro-
files of species normally present in the plasma, the
peaks observed can be attributed mainly to bilirubin
(Fig. 2(b)) and riboflavin (Fig. 2(c)).

Rayleigh scatter in the range of 490–500 nm ex-
citation wavelengths and at 510–520 nm emission
wavelengths is also observed. The Rayleigh scatter is
not related to trilinear EEM fluorescence and these
areas were replaced by missing values. When us-
ing the N-way toolbox developed by Andersson and
Bro [37], the missing values are initially replaced by
random elements. After each iteration a model is cal-
culated, and the missing values are replaced with the
model estimates. It is very important to note that the
elements in this triangular part of the matrix holding
the data of each sample cannot be replaced with ze-
ros. Even though emission values below the Rayleigh
area are approximately zero because fluorescence
below the excitation wavelengths does not exists,
this part does not conform to the trilinear model.
Therefore, a PARAFAC model using all experimen-
tal data would be prone to some instability in this
area.

5. PARAFAC

5.1. Number of factors

When using PARAFAC, a initial definition of the
number of factors to build the model is necessary.
This choice is of fundamental importance because all
conclusions about the deconvolution and quantitation
results will be related with this number of factors.

In PARAFAC, it is possible to use several con-
straints such as non-negativity, unimodality or or-
thogonality. In this work an unconstrained model was
preferred as more realistic results can be obtained,
because in fluorescence the structural model in itself
should be unique. Orthogonality is not applicable
for spectral data and, based on prior knowledge, it
is known that the spectra are not unimodal. Only
non-negativity could be tried, but no improvement
was observed when it was applied in relation to an
unconstrained model.

Unconstrained PARAFAC models of the EEM data
were developed using one to five components and the
percentage of fit was used as the initial approach to se-
lect the number of factors. The percentage of fit value
corresponds to how well the model can reproduce the
experimental data and it is given as

fit (%)=100×
(

1−
∑I

i=1
∑J

j=1
∑K

k=1(xijk − x̂ijk)2∑I
i=1
∑J

j=1
∑K

k=1x
2
ijk

)

(9)

wherexijk is theijkth experimental element andx̂ijk the
ijkth element predicted by the model. This operation is
only performed with non-missing values in the EEM
fluorescence data, since no calculations were possible
with missing-values. In this case, first the PARAFAC
model was developed using missing-values and for
percentage of fit estimation, zeros were placed in sub-
stitution of the missing-values.

The results are presented inTable 1. It is possible to
note that this parameter is not conclusive for selection
of the number of factors, since percentage of fit higher
than 99% were obtained using from 2 to 5 factors.
This parameter is important to identify if there are
factors lacking in the model. Therefore, other more
conclusive tools, such as CORCONDIA and split-half
analysis, were used in this study.

5.2. Core consistency diagnostic (CORCONDIA)

All data set (10×56×282) was utilized for the core
consistency evaluation, using one to five factors, with
the values calculated according toEq. (4). The results
are also shown inTable 1. The analysis using COR-
CONDIA indicates that two factors are necessary, be-
cause the utilization of more factors leads to a great
decrease of the core consistency and hence of the tri-
linearly of the data modeled. Two factors give a COR-
CONDIA value of 100% (a perfect trilinear model)

Table 1
Fit (%) and core consistency diagnostic (CORCONDIA) for
PARAFAC models using 1–5 factors

Number of factors 1 2 3 4 5

Fit (%) 94.77 98.75 99.39 99.68 99.86
CORCONDIA (%) 100 100 0.83 2.78 0.59
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Fig. 3. Split-half procedures: (a) using one factor, (b) two factors, (c) three factors, (d) four factors and (e) five factors.
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whilst, when using three or more factors, this value
diminishes to values below to 3%.

5.3. Split-half analysis

Firstly, the fluorescence data with ten samples (di-
mension 10× 56 × 282) was split into four groups,
named A, B, C and D, where each one had five samples
and same an equal of excitation and emission wave-
lengths (new dimension for each group: 5×56×282).
Set A consisted of the first half of the samples and set
B the last half. Set C was created from the first three
samples of set A and the last two of B. While set D
consisted of the last two samples from A and the first
three of B.

Each original group (A, B, C and D) was divided
into 25 parts with dimensions: (5×12×57), (5×12×
56), (5×11×57) or (5×11×56), generating 100 new
sets. In the next step, 100 unconstrained PARAFAC
models were developed to appraise the loading simi-
larities.Fig. 3shows the PARAFAC results using 1–5
factors for the mode related to the emission spectra.
Only when two factors were used did all 100 models
of subset converge to the same result. These results
confirm that two factors are most adequate, since for
a higher number of factors the loading vectors diverge
considerably, depending on the subset used.

Therefore, both split-half analysis and core consis-
tency indicated the use of two factors for deconvolu-
tion. Chemically, two factors are a suitable conclusion
because the EEM has two patterns: the fluorescence of
doxorubicin and the inherent fluorescence of human
plasma. Certainly, several fluorophores are present in
the plasma but if they are similar, the PARAFAC model
will not interpret them as independent factors.

5.4. Deconvolution and calibration

As presented inSection 5.3, two factors for the
unconstrained PARAFAC model furnished the best
model for the deconvolution of data and two triads
were obtained after decomposition. Each triad con-
sisted of three orthogonal loadings, composed by
concentration× excitation wavelength× emission
wavelength.Fig. 4 shows the results obtained, where
one factor is clearly related to DXR, as confirmed
by comparison with the excitation–emission spectra
of the pure drug, presented inFig. 5. Another factor

Fig. 4. PARAFAC decomposition using two factors ((- - -) plasma
and (—) DXR): (a) sample mode, (b) excitation mode and (c)
emission mode.
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Fig. 5. (a) Excitation–emission spectrum of pure DXR and (b) excitation–emission spectra of PARAFAC recovered first factor.

is not considered a fluorescence of a single analyte,
but it is related to a mixture of plasma constituents,
such as bilirubin and riboflavin.Fig. 6 shows the
emission–excitation profile of this factor. It is possi-
ble to observe that this profile is very similar to that
presented inFig. 2(a), the inherent EMM fluorescence
of plasma. A possible explication for these results is
that bilirubin and riboflavin excitation–emission pro-
files are similar and PARAFAC did not resolve these
chemical species into separated factors.

The PARAFAC loadings of concentration mode
(scores) associated with DXR were used to estab-
lish a linear relationship with DXR concentration,
generating a calibration model. A cross-validation
procedure with leave-one-out samples was performed
to verify calibration model viability. In this proce-
dure, ten models were developed with one different
prediction sample at a time and in all of them good
regression curves were obtained (regression coeffi-
cients higher than 0.95). A root mean square error
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Fig. 6. Excitation–emission profile of the second PARAFAC factor.

of cross-validation (RMSECV) of 0.060�g ml−1 and
a mean relative error of prediction of 4.4% were
obtained. These results indicate that it is possible to
quantify DXR in human plasma using the PARAFAC
scores.

In this application, we have observed that the plasma
constituents cause quenching in the fluorescence emis-
sion. Our first attempts were to built a calibration
model using samples of DXR prepared in water. By us-
ing the second order advantage, DXR in plasma would
be predicted from the calibration curve developed in
water. However, fluorescence emission of DXR in wa-
ter is greater than in plasma and the model failed.
Only when using all calibration samples in plasma
was a feasible model developed. A possible alterna-
tive would be to dilute the plasma samples to avoid
the quenching effects, but this procedure can produce
an increase in detection limits, for example.

5.5. N-PLS

In the N-PLS calculations, a cross-validation with
leave-one-out procedure was adopted to find the best
number of latent variables (factors) to be used.Table 2
shows the explained variance for bothX andY blocks
using 1–5 factors. Based on the results, two factors
were chosen because they produced the lowest error of
prediction and described practically all data variance

in theXandYblocks. Using two factors, a mean square
error of cross-validation of 0.045�g ml−1 and a mean
relative error of prediction of 2.0% were obtained.

These better results of N-PLS, in relation to
PARAFAC, must to be interpreted with caution, be-
cause only 10 samples were used to calculate the er-
rors. However, these results can be explained because
in N-PLS the algorithm is optimized to establish a
relationship between the fluorescence spectra and
DXR concentrations, and other sources of variations
or noise are not incorporated into the model.

5.6. Figures of merit

A RMSECV of 0.060�g ml−1 and a mean relative
error of prediction of 4.4% were obtained for DXR
determination using PARAFAC and a RMSECV of
0.045�g ml−1 and a mean relative error of prediction
of 2.0% for N-PLS.Table 3presents other figures of
merit such as sensitivity, selectivity, limit of detec-
tion and precision, expressed as the repeatability (three

Table 2
Explained variance forX and Y blocks

Number of factors 1 2 3 4 5

X block (%) 73.13 95.73 97.73 98.09 99.67
Y block (%) 88.95 99.57 99.98 100.00 100.00
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Table 3
Analytical figures of merit

Figures of merit PARAFAC N-PLS

Sensitivity (FLRa ml �g−1) 380 270
Selectivity 0.49 0.70
Limit of detection (�g ml−1) 0.032 0.032
Precision (%) 2.0 2.0

a FLR is the fluorescence intensity (arbitrary units).

concentrations/three replicates). As can be observed,
the figures of merit for both PARAFAC and N-PLS
are very similar and only the selectivity of N-PLS is
greater than that of PARAFAC.

These results can be compared with other methods
developed for DXR determination. There are meth-
ods based on HPLC separation with ES–MS detec-
tion [6] and based on capillary electrophoresis with
laser-induced fluorescence detection[9] that present
limits of detection on the order of 0.001�g ml−1.
Also, there are methods based on UV-Vis detection
[12] and Raman detection[13], whose detection lim-
its are in the range of 0.034–0.42�g ml−1. The EMM
fluorescence/chemometric approach presented in this
paper can be successfully compared with these meth-
ods. The other separation methods, based on very sen-
sitive detection, present lower detection limits. How-
ever, they all require sample pretreatment procedures
and separation steps prior to detection.

6. Conclusions

This work demonstrated that the use of excitation–
emission matrix fluorescence and multi-way analysis
is a powerful tool for complex analysis of drugs in
plasma since, in most cases, these compounds present
fluorescence.

Deconvolution using PARAFAC resulted in two fac-
tors, one due the DXR and other due to two plasma
constituents. It was demonstrated that the conjunction
of several procedures such as percentage of fit, COR-
CONDIA and split-half analysis lead to a more realis-
tic estimation of the number of factors in a PARAFAC
model.

The figures of merit calculated for both PARAFAC
and N-PLS were very similar and the results should be
considered satisfactory based on the complexity of the

samples analyzed. They are acceptable for some real
applications, such as pharmacokinectic investigations
in cancer patients.
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