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CORRESPONDENCE

Canonical Correlation Technique for Rank Estimation of

Excitation—Emission Matrices

Sir: One of the major problems that has challenged ana-
lytical chemists for a long time is to determine the number
of components in a multicomponent sample. Often the sample
data occur in the form of a matrix whose rank, in the absence
of noise, is equal to the number of components. The presence
of random noise in the data, however, will generally cause the
rank of the mixture matrix to exceed the number of compo-
nents in the mixture. The problem then is to estimate what
the rank would be if the noise were removed.

An eigenanalysis in the form a sirigular value decomposition
of the measured mixture matrix provides information that is
useful for estimating rank. Most methods that have been
proposed utilize information from the eigenvalues and ignore
the information contained in the eigenvectors (1-6). An ex-
ception is the frequency analysis method proposed by Rossi
and Warner (7), which relies on the prior expectation that the
Fourier transforms of noise eigenvectors will have heavily
weighted coefficients for the high frequencies.

In this communication we will report a new approach to
this problem which incorporates eigenvector information
without requiring prior expectations about the nature of the
eigenvectors. It utilizes the multivariate statistical technique
of canonical correlations. We will present the methodology
in the context of fluorescent mixtures and will also assume
that the readers are familiar with the excitation-emission
matrix (EEM). For information on the formulation of the
EEM and its basic properties, see ref 8 and 9.

GENERAL CONSIDERATION

The mathematical formulation of the EEM for a k-com-
ponent sample in the noise-free case can be expressed as

S = XDYT (1)

where 8 is an m by n matrix, X is the m by & matrix whose
Jth column is the excitation spectrum for the jth component,
Y is the n by & matrix whose jth column is the emission
spectrum for the jth component, and D is a k by k diagonal
matrix whose elements depend on the concentrations of the
fluorescence emitters, fluorescence quantum efficiency, molar
absorptivity, etc. We assume that both the columns of X and
the columns of Y are linearly independent, which implies that
the rank of S is equal to k, the number of components in the
mixture. If M is the measured EEM, then M will typically
contain a noise term N in addition to the signal S, i.e.

M=S+N 2

A common method for estimating k (the rank of S) is to
inspect the singular values from the singular value decom-
position of M. If the noise is low compared to the signal, one
would expect to see a large drop between the kth and (k +
1)st singular values and much smaller drops between the (k
+ 1)st and later singular values. When the noise level is not
low, however, this method is likely to fail, especially when the
mixture contains more than two or three individual compo-
nents and/or the individual components are highly correlated,
i.e. have high spectral overlap.

We propose an alternative method for estimating k. This
alternative approach utilizes canonical correlations and can
be applied whenever there are at least two measured EEMs
for mixtures containing the same %k constituents. The method
does not require that the constituents be present in the same
proportions in both mixtures. However, for simplicity and

ease of exposition, we will illustrate the method for replicate
measurements on the same mixture.

Let M1 and M2 be m by n EEM’s of a k-component mix-
ture obtained under the same experimental conditions. We
assume that k < m < n. Write M1 and M2 as

M1 = XDYT + N1
= U,L,V,T 3

M2 = XDYT + N2
= Uszva

where N1 and N2 denote random noise and the U;L;V,T (1
< i £ 2) are the singular value decompositions for M1 and
M2.

Traditional methods of rank estimation utilize the infor-
mation contained in the singular values, which appear in the
diagonal matrices L; and L,. However, there is also useful
information in the eigenvectors, the columns of the U; and
V; matrices. We will show how that information can be ex-
tracted, using the statistical technique of canonical correla-
tions.

In the absence of noise L; = Ly, U, = Uy, V; = V,, and the
singular values from % + 1 to m are equal to zero. Further-
more, the first £ columns of U span the same subspace of the
m-dimensional space as the columns of X do, and the first k
columns of V span the same subspace of the n-dimensional
space as the columns of Y do.

In the presence of noise we expect that L, and L, will differ
and that in each case all m singular values will be positive.
However, if the noise is low, all singular values from k + 1
to m should be close to zero. Traditional methods for esti-
mating k exploit this expectation by looking for a pattern in
the singular values in which all those from k& + 1 to m are near
zero.

With noise we also expect differences between U; and U,
and between V, and V,. If the noise is low, we expect that
the subspace spanned by the first & columns of U, and the
subspace spanned by the first k& columns of U, will each be
close to the subspace spanned by the columns of X, and
therefore close to each other. When we include the (k + 1)st
columns of U; and U,, the contribution is mainly the result
of noise. Since the noise matrices N; and N, are independent,
there is no reason to expect any relationship between the
directions they contribute to an eigenanalysis.

These considerations lead us to an expectation about the
structure of the subspaces spanned by the first & + 1 columns
of U; and U,, i.e. there are k dimensions in which these two
subspaces nearly coincide, but their (k¥ + 1)st dimensions are
nearly orthogonal. Canonical correlations (10-12) have an
interpretation as the cosines of the angles between two sub-
spaces. If we calculate canonical correlations between the first
k + 1 columns of U; and U,, we expect to see k high corre-
lations and one low correlation. If this pattern does in fact
appear in the data, it provides us with an estimate of k.

Similar statements apply to the columns of V; and V,. We
would therefore expect that an estimate of k obtained from
a canonical correlation analysis of the eigenvectors of M1M1T
and M2M2T would be confirmed by a canonical correlation
analysis of the eigenvectors of M1TM1 and M2TM2.

This methodology might be described as rank estimation
by canonical correlation analysis of matrix pairs (RECCAMP).
It may be helpful to point out some of the similarities and
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Figure 1. Plots of the noise-free EEM’s for (a) B(b)F; (b) B(k)F; (c) BgP; (d) DPA, and (e) mixture of B(b)F, B(k)F, BgP, and DPA.

Table I. Uncorrected Matrix Correlations between the
EEM’s of the Individual Components in the Simulated
Mixture

B(b)F B(k)F BgP DPA
B(b)F 1 0.364 0.538 0.45
B(K)F 1 0.742 0.816
BgP 1 0.763
DPA 1

differences between RECCAMP and GRAM, the generalized
rank annihilation method (13, 14), before proceeding to the
next section. On the surface the methods may appear quite
similar because both require two data matrices and both rely

on eigenanalyses. The similarity ends there, however. GRAM
is a calibration method, not a method for rank estimation. The
two matrices used in GRAM need not have the same rank as
long as all of the components in one of the matrices (the
sample) appear also in the other (calibration or calibration
+ sample). It is pointless to apply GRAM to replicate mea-
sures of the same sample. By contrast RECCAMP requires
that the two matrices have the same constituent components
and necessarily, therefore, the same rank. It is sensible to use
RECCAMP on replicate measures of the same sample.

RESULTS AND DISCUSSION

The canonical correlation technique described here was
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Table II. Eigenvalues of ¢2STS and the Seven Leading Eigenvalues of M1™1, M2TM2, and M™M,

Where M = (1/2)(M1 + M2)®

eigl eig2 eig3 eigd eigh eigh eig?

c=25 r=06%

c?8TS 6995.7 85.723 5.035 4.093

M1T™™1 7000.2 86.043 5.068 4.275 0.179 0.152 0.1374

M2TM2 6995.2 87.49 5.033 4.085 0.152 0.142 0.1365

M™ 6997.6 86.712 5.005 4.129 0.08 0.0713 0.0706
c=10 r=17%

c?8TS 1119.3 13.72 0.806 0.655

M1™!1 1121.2 13.9 0.861 0.791 0.178 0.152 0.137

M2T™™2 1119.2 14.48 0.874 0.709 0.149 0.141 0.135

M™ 1120.1 14.14 0.821 0.696 0.0797 0.0712 0.0702
c=6 r=29%

c*STS 402.95 4.938 0.290 0.2357

Mi1™1 404.11 5.093 0.372 0.3443 0.177 0.151 0.137

M2TM2 402.896 5.438 0.387 0.3067 0.146 0.139 0.133

M™ 403.46 5.2103 0.324 0.2745 0.079 0.071 0.0895
c=5 r=35%

c*STS 279.83 3.43 0.201 0.1637

Mi1™1 280.81 3.576 0.2989 0.2599 0.176 0.151 0.137

M2TM2 279.796 3.863 0.3088 0.2402 0.1458 0.141 0.132

M™ 280.26 3.664 0.2426 0.2008 0.0787 0.071 0.069
c=4r=43%

c*8TS 179.09 2.195 0.1289 0.1048

M1™!1 179.89 2.334 0.2423 0.1935 0.173 0.1493 0.136

M2TM2 179.08 2.562 0.2493 0.1889 0.145 0.1393 0.131

M™ 179.44 2.392 0.1781 0.1407 0.078 0.0708 0.0686
c=3 r=58%

c?8TS 100.74 1.234 0.073 0.059

M1TM1 101.36 1.367 0.205 0.172 0.149 0.141 0.135

M2TM2 100.75 1.536 0.209 0.155 0.143 0.138 0.131

M™ 101.01 1.395 0.131 0.0978 0.075 0.0699 0.068

3r is calculated as the ratio of the standard deviation of the simulated normal noise to the maximum element of ¢S.

applied to a four-component simulated mixture. The signal
spectra were composed of four individual components obtained
from the steady-state EEMs of benzo[b]fluoranthene [B(b)F],
benzo[k]fluoranthene [B(k)F], benzo[ghi]perylene (BgP) and
9,10-diphenylanthracene (DPA). Each EEM has 50 rows and
50 columns, corresponding to excitation wavelengths from 330
to 420 nm and emission wavelengths from 390 to 490 nm. The
normalized rank-one fits of these EEMs are plotted in Figure
1. The normalization condition was Tr(MMT) = 1, i.e. the
Frobenius matrix norm |||| (15, 16). The uncorrected matrix
correlations (17) between the EEMs for the individual com-
ponents are listed in Table I. The noise-free EEM of the
simulated mixture is the sum of these rank-one fits and is also
plotted in Figure 1.

The data used for the simulation were obtained in the
following form:

M1 = ¢S + N1, and 4)
M2 = ¢S + N2

where S is the noise-free EEM of the mixture, ¢ is a scalar
used to control the signal-to-noise ratio, and N1 and N2 are
simulated white noise matrices. The entries of N1 and N2
were generated independently from a normal distribution
function with mean 0 and variance 0.001. By varying ¢ in (4),
we can also see how the methodology is affected by changes
in the signal-to-noise ratio.

Any reasonable method of rank estimation will work well
when the noise level is very low and poorly when the noise
level is very high. To discern meaningful differences between
competing methods, we must evaluate their performances at
intermediate levels of noise. By simulating the noise as we
have done, we can explore these critical intermediate levels

of the signal-to-noise ratio. Notice, though, that our simulated
noise has been applied to a signal derived from real data.

For the six selected values of ¢ (25, 10, 6, 5, 4, and 3) the
four eigenvalues of ¢,STS (or ¢,8ST) and the leading seven
eigenvalues of M1TM1 (or M1M1T) and M2TM2 (or M2M27)
are listed in Table II. These eigenvalues are the squares of
the singular values of 8, M1, and M2, The EEMs of M1 for
these values of ¢ are plotted in Figure 2 (the EEMs of M2 are
similar to those of M1 and therefore are not plotted).

Rank estimation based on eigenvalues (or singular values)
requires only a single measured EEM, not two. If two mea-
sured EEMs are available, it is logical to average them to
reduce the noise. Therefore, Table II also contains the ei-
genvalues obtained from M, the average of M1 and M2.

A visual inspection of the eigenvalues in Table II shows that
the selected range for c is appropriate for the rank estimation
problem based on eigenvalues. At ¢ = 25 the break between
the fourth and fifth eigenvalues is dramatic, suggesting a
confident estimate of 4 for the value of k. At ¢ = 3 the break
between the fourth and fifth eigenvalues is scarcely noticeable.

To implement the canonical correlation procedure, let C;’
and C; denote the subspaces spanned by the respective i
leading eigenvectors of MIM1T and M2M2T. Then, for i =
1, 2, 8, ete., calculate canonical correlations between C,i and
C,'. These correlations will necessarily fall in the range be-
tween 0 and 1. A correlation not significantly different from
0 is an indication that we have reached the noise. Therefore,
at the ith step we test the statistical significance of the ith
canonical correlation coefficient (18, 19). If the significance
level, i.e. P value is sufficiently small, continue. If not, stop
and declare k =i — 1. Confirm by repeating the process for
R/ and Ry, the subspaces spanned by the respective i leading
eigenvectors of M1TM1 and M2TM2.
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Figure 2. Plots of the noise-simulated EEM M1 at (a) ¢ = 25; (b) ¢ = 10; (c) c = 6; (d) c = 5; (e} c = 4, and (f) c = 3.

These computations were performed for our simulated data Again, a definitive answer will have to wait for more expe-
using the SAS statistical program PROC CANCORR. The rience, but under certain conditions the answer may be yes.
results for ¢ = 3, 4, 5 are presented in Table III and Table Notice that the third and fourth eigenvalues derived from the
IV. Exactly what significance level to use as a cutoff criterion signal are not very different. When these eigenvalues are
is a fine-tuning question, the answer to which will have to wait equal, or nearly so, it is possible in the presence of noise that
for more experience. However, the results are clear in this the third canonical correlation would be insignificant at i =
example. In the general practice of statistical significance 3, but that the third and fourth canonical coefficients both
testing, the most commonly used cutoff levels for declaring become significant when we move to i = 4. Despite the
“statistical significance” are 0.10, 0.05 and 0.01. If any of these closeness of the third and fourth eigenvalues in our example,
are applied here the algorithm correctly identifies & = 4 when that phenomenon did not occur in our simulation. It could
¢ =4or5. Atc = 3it picks up three components and misses still happen for some future data set. For completeness the
the fourth. canonical correlation calculations at i = 6 and i = 7 are in-

Is there any reason to continue the calculations for larger cluded in Tables III and IV. The first seven canonical cor-

values of i once a nonsignificant results has been obtained? relations for all the selected values of ¢ are listed in Table V.
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Table III. Canonical Correlations between the Column
Subspaces Cy and C,' and the Corresponding P Values for
the Hypothesis That the Current and the Smaller
Canonical Correlations Are 0

c=3 c=4 c=5
can. corr P value can. corr P value can.corr P value
1=1 0.9996 0.0001 0.9997 0.0 0.9998 0.0
i=2 09998 0.0 0.9997 0.0 0.9998 0.0
0.9554 0.0001 0.9743 0.0001 0.9833 0.0001
=3 0999% 0.0 0.9997 0.0 0.9998 0.0

0.9585 0.0001 0.9766 0.0001 0.9850  0.0001
0.4300 0.0020 0.6124 0.0001 0.7161 0.0001

i=4 09996 0.0 09997 0.0 0.9998 0.0
09601 0.0001 0.9771 0.0001 0.9852  0.0001
0.5207 0.0059 0.7433 0.0001 0.8445 0.0001
0.0462 0.7550 0.4708 0.0007 0.6546  0.0001

i=5 09996 0.0001 09998 0.0 0.9998 0.0
0.9606 0.0001 0.9774 0.0001 0.9853  0.0001
0.5336  0.0706  0.7586  0.0001  0.8528  0.0001
0.1404 0.9211 0.5195 0.0073 0.6686  0.0001
0.0287 0.8476 0.0002 0.9987 0.0151 0.9193

i=6 0999 0.0001 09998 0.0 09998 0.0
0.9617 0.0001 0.9784 0.0001 0.9862  0.0001
0.6096 0.0550 0.7770 0.0001  0.8553  0.0001
0.3075 0.7645 0.5196  0.0773 0.6709  0.0010
0.1722 0.8386 0.2002 0.7629  0.2026  0.7598
0.0527 0.7276  0.0404 0.7894 0.0324  0.8304

i=7 09996 0.0001 0.9998 0.0 0.9998 0.0
0.9656  0.0001 0.9808 0.0001 0.9876  0.0001
0.6482 0.1478 0.7894 0.0001 0.8656  0.0001
0.3580 0.9022 0.5684 0.2024 0.7147  0.0049
0.20561 0.9444 0.2196 0.9213 0.2328 0.9114
0.1912 0.8068 0.1977 0.7827 0.1901  0.8028
0.0257 0.8669 0.0340 0.8241 0.0398 0.7949

Table IV. Canonical Correlations between the Row
Subspaces R, and Ry’ and the Corresponding P Values for
the Hypothesis That the Current and the Smaller
Canonical Correlations Are 0

c=3 c=4 c=5
can. corr P value can. corr P value can. corr P value
i=1 0.9994 0.0001 0.9997 0.0 0.9998 0.0
1=2 09995 0.0 0.9997 0.0 0.9998 0.0
0.9620 0.0001 0.9787 0.0001 0.9864 0.0001
i=3 09995 0.0 0.9997 0.0 0.9998 0.0

0.9657 0.0001 0.9807 0.0001 0.9877 0.0001
0.3407 0.0166  0.5482 0.0001  0.6744  0.0001

t=4 09995 0.0 0.9997 0.0 0.9998 0.0
0.9676  0.0001  0.9811 0.0001  0.9877  0.0001
03712 0.1485 0.6268 0.0001 0.7750  0.0001
0.0228 0.8774 0.4993 0.0003 0.6593  0.0001

i=5 09995 00001 0.9997 0.0 0.9988 0.0
0.9729  0.0001 0.9818 0.0001 0.9886  0.0001
0.4327 0.2011 0.6556  0.0001 0.7783  0.0001
0.2350 0.5576  0.5292  0.0049 0.6636  0.0001
0.1026  0.4922 0.0779 0.6026 0.0468  0.7545

i=6 0999 00001 09997 0.0 0.9998 0.0
0.9773  0.0001 0.9866 0.0001 09913  0.0001
0.4706  0.1945 0.6858 0.0001 0.7903  0.0001
0.4174 0.3732 0.5745 0.0232  0.7071  0.0002
0.1621 0.8439 0.1599 0.7654 0.1543 0.7918
0.0746  0.6218 0.1273 0.3991 0.1213  0.4219

i=7 0999 00001 0997 00 0.9998 0.0
0.9820 0.0001 0.9900 0.0001 0.9937  0.0001
0.5581  0.2062 0.7059  0.0007 0.7970  0.0001
0.4253 0.5477 0.5875 0.0802 0.7189  0.0022
0.2077  0.7181  0.2957 0.6909  0.2810  0.7456
0.2178 0.6859 0.2377 0.6276 0.2335  0.6540
0.0695 0.6497 0.0536 0.7264  0.0388  0.8002

For comparison purposes Table VI presents the results for
our data from the imbedded error function and factor indicator
function rank estimation methods described by Malinowski
(4, 5). Both these methods are based exclusively on the ei-
genvalues. As Table VI shows, both methods correctly identify

k = 4 when ¢ = 25 or ¢ = 10. At ¢ = 6 the IE method misses
two of the components, and at lower values of ¢ both methods
incorrectly give 2 as the value of k.

In summary, when at least two data matrices are available
for linear mixtures containing the same constituents, infor-

Table V. Canonical Correlations between the Column Subspaces C,” and C,” and between the Row Subspaces R,” and R,” and
the Corresponding P Values for the Hypothesis That the Current and the Smaller Canonical Correlations Are 0

column space row space
can. corr P val can. corr P val
c=25
1.0000 0.0 1.0000 0.0
0.9995 0.0 0.9997 0.0
0.9950 0.0001 0.9909 0.0001
0.9883 0.0001 0.9879 0.0001
0.2611 0.8970 0.2938 0.8641
0.1647 0.8765 0.1372 0.9371
0.0308 0.8407 0.0066 0.9654
c=6
0.9999 0.0 0.9999 0.0
0.9914 0.0001 0.9957 0.0001
0.9092 0.0001 0.8540 0.0001
0.8005 0.0001 0.7995 0.0001
0.2406 0.9059 0.2795 0.7925
0.1845 0.8182 0.2130 0.7348
0.0420 0.7837 0.0269 0.8603
c=4
0.9998 0.0 0.9997 0.0
0.9808 0.0001 0.9900 0.0001
0.7894 0.0001 0.7059 0.0007
0.5684 0.2024 0.5875 0.0802
0.2196 0.9213 0.2957 0.6909
0.1977 0.7827 0.2377 0.6276
0.0340 0.8241 0.0536 0.7264

column space row space
can. corr P val can. corr P val
c=10
1.0000 0.0 1.0000 0.0
0.9969 0.0001 0.9984 0.0001
0.9686 0.0001 0.9448 0.0001
0.9261 0.0001 0.9245 0.0001
0.2525 0.9009 0.2894 0.8443
0.1729 0.8519 0.1642 0.8835
0.0390 0.7991 0.0105 0.9451
c=5
0.9998 0.0 0.9998 0.0
0.9876 0.0001 0.9937 0.0001
0.8656 0.0001 0.7970 0.0001
0.7147 0.0049 0.7188 0.0022
0.2328 09114 0.2810 0.7456
0.1901 0.8028 0.2335 0.6540
0.0398 0.7949 0.0388 0.8002
c=3
0.9996 0.0001 0.9995 0.0001
0.9656 0.0001 0.9820 0.0001
0.6482 0.1478 0.5581 0.2062
0.3580 0.9022 0.4253 0.5477
0.2051 0.9444 0.2977 0.7181
0.1912 0.8068 0.2178 0.6859

0.0257 0.8669 0.0695 0.6497
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Table VI. Values of the Imbedded Error Function (IE) and
the Factor INDicator Function (IND) Calculated from the
Eigenvalues of TTM, Where Asterisk Indicates the Number
Determined by the Respective Criterion

IE IND IE IND

c=25 c=10

0.07145222 0.0005492257 0.0295738  0.0002273224
0.03322082 0.0001952977 0.01635837 0.00009616717
0.02943207 0.0001532921 0.01665165 0.000086 727 36
0.01483616* 0.0000728648* 0.01482212* 0.00007279583*
0.01620769 0.0000778167 0.01619421 0.00007775194
0.01738701 0.0000836359 0.01737244 0.000083 56579
0.01834197 0.0000900573 0.01833081 0.00009000248

c=6 ¢ =5

0.01883917 0.0001448095 0.01627975 0.0001251362

0.01290166* 0.0000758459 0.0122141* 0.00007180395*
0.01429905 0.0000744742 0.01383856 0.00007207585
0.01479852 0.0000726799* 0.01478317 0.000072604 55
001617171 0.0000776439 0.01615743 0.00007757534
0.01734747 0.0000834456 0.01733164 0.000083 36952
0.0183101 0.0000899008 0.01829646 0.00008983382

c=4 c=3
0.01382632 0.0001062776 0.01154713 0.000088758 38
0.0116245*% 0.0000683778* 0.01114895* 0.000065 542 2*
0.01343851 0.0000699922 0.01310495 0.000068 254 94
0.01475458 0.0000724641 0.01468368 0.00007211593
0.01613174 0.000077452 0.01607222 0.00007716627
0.01730353 0.0000832343 0.01724263 0.000082941 38
0.0182714 0.0000897108 0.01821331 0.00008942557

mation useful for rank estimation can be extracted from
canonical correlations of the eigenvectors. The example
presented here suggests that an algorithm incorporating
canonical correlations of the eigenvectors will outperform
traditional methods, but more experience is needed to fine
tune the parameters of the algorithm.
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