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CORRESPONDENCE 

Canonical Correlation Technique for Rank Estimation of 
Excitation-Emission Matrices 
Sir: One of the major problems that has challenged ana- 

lytical chemists for a long time is to determine the number 
of components in a multicomponent sample. Often the sample 
data occur in the form of a matrix whose rank, in the absence 
of noise, is equal to the number of components. The presence 
of random noise in the data, however, will generally cause the 
rank of the mixture matrix to exceed the number of compo- 
nents in the mixture. The problem then is to estimate what 
the rank would be if the noise were removed. 

An eigenanalysis in the form a sirigular value decomposition 
of the measured mixture matrix provides information that is 
useful for estimating rank. Most methods that have been 
proposed utilize information from the eigenvalues and ignore 
the information contained in the eigenvectors (14).  An ex- 
ception is the frequency analysis method proposed by Rossi 
and Warner (7), which relies on the prior expectation that the 
Fourier transforms of noise eigenvectors will have heavily 
weighted coefficients for the high frequencies. 

In this communication we will report a new approach to 
this problem which incorporates eigenvector information 
without requiring prior expectations about the nature of the 
eigenvectors. It utilizes the multivariate statistical technique 
of canonical correlations. We will present the methodology 
in the context of fluorescent mixtures and will also assume 
that the readers are familiar with the excitation-emission 
matrix (EEM). For information on the formulation of the 
EEM and its basic properties, see ref 8 and 9. 

GENERAL CONSIDERATION 
The mathematical formulation of the EEM for a k-com- 

ponent sample in the noise-free case can be expressed as 

where S is an m by n matrix, X is the m by k matrix whose 
j th  column is the excitation spectrum for the j th component, 
Y is the n by k matrix whose j t h  column is the emission 
spectrum for the j t h  component, and D is a k by k diagonal 
matrix whose elements depend on the concentrations of the 
fluorescence emitters, fluorescence quantum efficiency, molar 
absorptivity, etc. We assume that both the columns of X and 
the columns of Y are linearly independent, which implies that 
the rank of S is equal to k, the number of components in the 
mixture. If M is the measured EEM, then M will typically 
contain a noise term N in addition to the signal S, i.e. 

M = S + N  (2) 
A common method for estimating k (the rank of S) is to 

inspect the singular values from the singular value decom- 
position of M. If the noise is low compared to the signal, one 
would expect to see a large drop between the kth and (k + 
1)st singular values and much smaller drops between the ( k  
+ 1)st and later singular values. When the noise level is not 
low, however, this method is likely to fail, especially when the 
mixture contains more than two or three individual compo- 
nents and/or the individual components are highly correlated, 
i.e. have high spectral overlap. 

We propose an alternative method for estimating k. This 
alternative approach utilizes canonical correlations and can 
be applied whenever there are a t  least two measured EEMs 
for mixtures containing the same k constituents. The method 
does not require that the constituents be present in the same 
proportions in both mixtures. However, for simplicity and 

S = XDYT (1) 

ease of exposition, we will illustrate the method for replicate 
measurements on the same mixture. 

Let M1 and M2 be m by n EEM’s of a k-component mix- 
ture obtained under the same experimental conditions. We 
assume that k < m I n. Write M1 and M2 as 

M 1 =  XDYT + N1 

M2 = XDYT + N 2  

where N1 and N2 denote random noise and the UiLiViT (1 
I i 5 2) are the singular value decompositions for M1 and 
M2. 

Traditional methods of rank estimation utilize the infor- 
mation contained in the singular values, which appear in the 
diagonal matrices L1 and L2. However, there is also useful 
information in the eigenvectors, the columns of the Ui and 
Vi matrices. We will show how that information can be ex- 
tracted, using the statistical technique of canonical correla- 
tions. 

In the absence of noise L1 = L2, U1 = Uz, Vl = Vz, and the 
singular values from k + 1 to m are equal to zero. Further- 
more, the first k columns of U span the same subspace of the 
m-dimensional space as the columns of X do, and the first k 
columns of V span the same subspace of the n-dimensional 
space as the columns of Y do. 

In the presence of noise we expect that L, and L2 will differ 
and that in each case all m singular values will be positive. 
However, if the noise is low, all singular values from k + 1 
to m should be close to zero. Traditional methods for esti- 
mating k exploit this expectation by looking for a pattern in 
the singular values in which all those from k + 1 to m are near 
zero. 

With noise we also expect differences between U1 and Uz 
and between V, and Vz. If the noise is low, we expect that 
the subspace spanned by the first k columns of U1 and the 
subspace spanned by the first k columns of U2 will each be 
close to the subspace spanned by the columns of X, and 
therefore close to each other. When we include the (k + 1)st 
columns of U1 and Uz, the contribution is mainly the result 
of noise. Since the noise matrices N1 and N2 are independent, 
there is no reason to expect any relationship between the 
directions they contribute to an eigenanalysis. 

These considerations lead us to an expectation about the 
structure of the subspaces spanned by the first k + 1 columns 
of U1 and U2, Le. there are k dimensions in which these two 
subspaces nearly coincide, but their (k + 1)st dimensions are 
nearly orthogonal. Canonical correlations (10-12) have an 
interpretation as the cosines of the angles between two sub- 
spaces. If we calculate canonical correlations between the first 
k + 1 columns of U1 and U2, we expect to see k high corre- 
lations and one low correlation. If this pattern does in fact 
appear in the data, it provides us with an estimate of k. 

Similar statements apply to the columns of Vl and V2 We 
would therefore expect that an estimate of k obtained from 
a canonical correlation analysis of the eigenvectors of MIMIT 
and M2M2T would be confirmed by a canonical correlation 
analysis of the eigenvectors of MITMl and M2TM2. 

This methodology might be described as rank estimation 
by canonical correlation analysis of matrix pairs (RECCAMP). 
It may be helpful to point out some of the similarities and 

= UIL,VIT (3) 

= U2LzV,T 
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Flgure 1. Plots of the noise-free EEM's for (a) B(b)F: (b) B(k)F: (c) BgP (d) DPA. and (e) mixture of B(b)F. B(k)F. BgP, and DPA 

Table I. Uncorrected Matrix Correlations between the 
EEM's of the Individual Components in the Simulated 
Mixture 

B(b)F B(k)F BgP DPA 

B(b)F 1 0.364 0.538 0.45 
B(UF 1 0.742 0.816 
BKP 1 0.763 
DPA 1 

differences between RECCAMP and GRAM, the generalized 
rank annihilation method (13 ,14) ,  before proceeding to the 
next section. On the surface the methods may appear quite 
similar because both require two data matrices and both rely 

on eigenandyscs. The similarity ends there. however. GRAM 
is a cditiration methd, not a method ior rank estimation. The 
tuo mntrices used in GRAM need nut have the same rank as 
Img ns all d' the compments in one u i  the matrices (the 
sample) appear also in the other rcalihratiun or calihrntion 
f sample). I t  is pointless to apply GRAM to replicate mcu- 
wres o i the  same sample. Hy contrast RECCA\lP requirci 
that the two matrices have the same constituent cumpunenti 
and neressarily, therefore. the same rank. I t  IS sensihle t u  use 
RFCCAMI' on replicate measures of the same <ample. 

RESULTS AND DISCUSSION 

The cnnnnical corrdatim technique descriherl here was 
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Table 11. Eigenvalues of caSTS and the Seven Leading Eigenvalues of MITM1, M2TM2, and WM, 
Where M = (1/2)(M1 + M2)" 

C 2STS 
~ i ~ ~ i  
M2TM2 
MTM 

C2STS 
MITMl 
M2TM2 
MTM 

C2STS 
MITMl 
M2TM2 
WTM 

C2STS 
M I ~ M I  
M2TM2 
M T M  

C W S  
MITMl 
M2TM2 
M T M  

CWS 
MITMl 
M2TM2 
M T M  

eigl 

6995.7 
7000.2 
6995.2 
6997.6 

1119.3 
1121.2 
1119.2 
1120.1 

402.95 
404.11 
402.896 
403.46 

279.83 
280.81 
279.796 
280.26 

179.09 
179.89 
179.08 
179.44 

100.74 
101.36 
100.75 
101.01 

eig2 

85.723 
86.043 
87.49 
86.712 

13.72 
13.9 
14.48 
14.14 

4.938 
5.093 
5.438 
5.2103 

3.43 
3.576 
3.863 
3.664 

2.195 
2.334 
2.562 
2.392 

1.234 
1.367 
1.536 
1.395 

eig3 eig4 

c = 25 r = 0.6% 
5.035 4.093 
5.068 4.275 
5.033 4.085 
5.005 4.129 

c = 10 r = 1.7% 
0.806 0.655 
0.861 0.791 
0.874 0.709 
0.821 0.696 

c = 6  r=2 .9% 
0.290 0.2357 
0.372 0.3443 
0.387 0.3067 
0.324 0.2745 

c = 5  r = 3 . 5 %  
0.201 0.1637 
0.2989 0.2599 
0.3088 0.2402 
0.2426 0.2008 

c = 4 r = 4.3% 
0.1289 0.1048 
0.2423 0.1935 
0.2493 0.1889 
0.1781 0.1407 

c = 3  r = 5 . 8 %  
0.073 0.059 
0.205 0.172 
0.209 0.155 
0.131 0.0978 

eig5 

0.179 
0.152 
0.08 

0.178 
0.149 
0.0797 

0.177 
0.146 
0.079 

0.176 
0.1458 
0.0787 

0.173 
0.145 
0.078 

0.149 
0.143 
0.075 

e1g6 

0.152 
0.142 
0.0713 

0.152 
0.141 
0.0712 

0.151 
0.139 
0.071 

0.151 
0.141 
0.071 

0.1493 
0.1393 
0.0708 

0.141 
0.138 
0.0699 

e1g7 

0.1374 
0.1365 
0.0706 

0.137 
0.135 
0.0702 

0.137 
0.133 
0.0695 

0.137 
0.132 
0.069 

0.136 
0.131 
0.0686 

0.135 
0.131 
0.068 

O r  is calculated as the ratio of the standard deviation of the simulated normal noise to the maximum element of cS. 

applied to a four-component simulated mixture. The signal 
spectra were composed of four individual components obtained 
from the steady-state EEMs of benzo[b]fluoranthene [B(b)F], 
benzo[k]fluoranthene [B(k)F], benzo[ghi]perylene (BgP) and 
9,lO-diphenylanthracene (DPA). Each EEM has 50 rows and 
50 columns, corresponding to excitation wavelengths from 330 
to 420 nm and emission wavelengths from 390 to 490 nm. The 
normalized rank-one fits of these EEMs are plotted in Figure 
1. The normalization condition was Tr(MMT) = 1, i.e. the 
Frobenius matrix norm l l . l l F  (15,16). The uncorrected matrix 
correlations (27) between the EEMs for the individual com- 
ponents are listed in Table I. The noise-free EEM of the 
simulated mixture is the s u m  of these rank-one fits and is also 
plotted in Figure 1. 

The data used for the simulation were obtained in the 
following form: 

(4) M1 = cS + N1, and 

M2 = cS + N 2  

where S is the noise-free EEM of the mixture, c is a scalar 
used to control the signal-to-noise ratio, and N1 and N2 are 
simulated white noise matrices. The entries of N1 and N2 
were generated independently from a normal distribution 
function with mean 0 and variance 0.001. By varying c in (4), 
we can also see how the methodology is affected by changes 
in the signal-to-noise ratio. 

Any reasonable method of rank estimation will work well 
when the noise level is very low and poorly when the noise 
level is very high. To discern meaningful differences between 
competing methods, we must evaluate their performances at 
intermediate levels of noise. By simulating the noise as we 
have done, we can explore these critical intermediate levels 

of the signal-to-noise ratio. Notice, though, that our simulated 
noise has been applied to a signal derived from real data. 

For the six selected values of c (25, 10, 6, 5, 4, and 3) the 
four eigenvalues of c2STS (or c2SST) and the leading seven 
eigenvalues of Ml-1 (or MIMIT) and M2-2 (or M2M2T) 
are listed in Table 11. These eigenvalues are the squares of 
the singular values of S, M1, and M2. The EEMs of M1 for 
these values of c are plotted in Figure 2 (the EEMs of M2 are 
similar to those of Ml and therefore are not plotted). 

Rank estimation based on eigenvalues (or singular values) 
requires only a single measured EEM, not two. If two mea- 
sured EEMs are available, it is logical to average them to 
reduce the noise. Therefore, Table I1 also contains the ei- 
genvalues obtained from M, the average of M1 and M2. 

A visual inspection of the eigenvalues in Table I1 shows that 
the selected range for c is appropriate for the rank estimation 
problem based on eigenvalues. At c = 25 the break between 
the fourth and fifth eigenvalues is dramatic, suggesting a 
confident estimate of 4 for the value of k .  At c = 3 the break 
between the fourth and fifth eigenvalues is scarcely noticeable. 

To implement the canonical correlation procedure, let Cli 
and Ci denote the subspaces spanned by the respective i 
leading eigenvectors of MIMIT and M2M2T. Then, for i = 
1, 2,3,  etc., calculate canonical correlations between C,' and 
Ci. These correlations will necessarily fall in the range be- 
tween 0 and l. A correlation not significantly different from 
0 is an indication that we have reached the noise. Therefore, 
at the ith step we test the statistical significance of the ith 
canonical correlation coefficient (18,19). If the significance 
level, i.e. P value is sufficiently small, continue. If not, stop 
and declare k = i - 1. Confirm by repeating the process for 
Rli and Rj,  the subspaces spanned by the respective i leading 
eigenvectors of MITMl and M2TM2. 
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These computations were performed for our simulated data 
using the SAS statistical program PROC CANCORR. The 
results for c = 3,4, 5 are presented in Table I11 and Table 
IV. Exactly what significance level to use as a cutoff criterion 
is a fine-tuning question, the answer to which will have to wait 
for more experience. However, the results are clear in this 
example. In the general practice of statistical significance 
testing, the most commonly used cutoff levels for declaring 
“statistical significance” are 0.10,0.05 and 0.01. If any of these 
are applied here the algorithm correctly identifies 12 = 4 when 
c = 4 or 5. At c = 3 it picks up three components and misses 
the fourth. 

Is there any reason to continue the calculations for larger 
values of i once a nonsignificant results has been obtained? 

Again, a definitive answer will have to wait for more expe- 
rience, but under certain conditions the answer may be yes. 
Notice that the third and fourth eigenvalues derived from the 
signal are not very different. When these eigenvalues are 
equal, or nearly so, it is possible in the presence of noise that 
the third canonical correlation would be insignificant at i = 
3, but that the third and fourth canonical coefficients both 
become significant when we move to i = 4. Despite the 
closeness of the third and fourth eigenvalues in our example, 
that phenomenon did not occur in our simulation. It could 
still happen for some future data set. For completeness the 
canonical correlation calculations at  i = 6 and i = 7 are in- 
cluded in Tables I11 and IV. The first seven canonical cor- 
relations for all the selected values of c are listed in Table V. 
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Table 111. Canonical Correlations between the Column 
Subspaces C i  and C i  and the Corresponding P Values for 
the Hypothesis That the Current and the Smaller 
Canonical Correlations Are 0 

c = 3  c = 4  c = 5  
can. corr P value can. corr P value can. corr P value 

i = 1 0.9996 
i = 2 0.9996 

0.9554 
i = 3 0.9996 

0.9585 
0.4300 

i = 4 0.9996 
0.9601 
0.5207 
0.0462 

i = 5 0.9996 
0.9606 
0.5336 
0.1404 
0.0287 

i = 6 0.9996 
0.9617 
0.6096 
0.3075 
0.1722 
0.0527 

i = 7 0.9996 
0.9656 
0.6482 
0.3580 
0.2051 
0.1912 
0.0257 

0.0001 
0.0 
0.0001 
0.0 
0.0001 
0.0020 
0.0 
0.0001 
0.0059 
0.7550 
0.0001 
0.0001 
0.0706 
0.9211 
0.8476 
0.0001 
0.0001 
0.0550 
0.7645 
0.8386 
0.7276 
0.0001 
0.0001 
0.1478 
0.9022 
0.9444 
0.8068 
0.8669 

0.9997 
0.9997 
0.9743 
0.9997 
0.9766 
0.6124 
0.9997 
0.9771 
0.7433 
0.4708 
0.9998 
0.9774 
0.7586 
0.5195 
0.0002 
0.9998 
0.9784 
0.7770 
0.5196 
0.2002 
0.0404 
0.9998 
0.9808 
0.7894 
0.5684 
0.2196 
0.1977 
0.0340 

0.0 
0.0 
0.0001 
0.0 
0.0001 
0.0001 
0.0 
0.0001 
0.0001 
0.0007 
0.0 
0.0001 
0.0001 
0.0073 
0.9987 
0.0 
0.0001 
0.0001 
0.0773 
0.7629 
0.7894 
0.0 
0.0001 
0.0001 
0.2024 
0.9213 
0.7827 
0.8241 

0.9998 0.0 
0.9998 0.0 
0.9833 0.0001 
0.9998 0.0 
0.9850 0.0001 
0.7161 0.0001 
0.9998 0.0 
0.9852 0.0001 
0.8445 0.0001 
0.6546 0.0001 
0.9998 0.0 
0.9853 0.0001 
0.8528 0.0001 
0.6686 0.0001 
0.0151 0.9193 
0.9998 0.0 
0.9862 0.0001 
0.8553 0.0001 
0.6709 0.0010 
0.2026 0.7598 
0.0324 0.8304 
0.9998 0.0 
0.9876 0.0001 
0.8656 0.0001 
0.7147 0.0049 
0.2328 0.9114 
0.1901 0.8028 
0.0398 0.7949 

Table IV. Canonical Correlations between the Row 
Subspaces 
the Hypothesis That the Current and the Smaller 
Canonical Correlations Are 0 

and &' and the Corresponding P Values for 

c = 3  c = 4  c = 5  
can. corr P value can. corr P value can. corr P value 

i = 1 0.9994 
i = 2 0.9995 

0.9620 
i = 3 0.9995 

0.9657 
0.3407 

i = 4 0.9995 
0.9676 
0.3712 
0.0228 

i = 5 0.9995 
0.9729 
0.4327 
0.2350 
0.1026 

i = 6 0.9995 
0.9773 
0.4706 
0.4174 
0.1621 
0.0746 

i = 7 0.9995 
0.9820 
0.5581 
0.4253 
0.2977 
0.2178 
0.0695 

0.0001 
0.0 
0.0001 
0.0 
0.0001 
0.0166 
0.0 
0.0001 
0.1485 
0.8774 
0.0001 
0.0001 
0.2011 
0.5576 
0.4922 
0.0001 
0.0001 
0.1945 
0.3732 
0.8439 
0.6218 
0.0001 
0.0001 
0.2062 
0.5477 
0.7181 
0.6859 
0.6497 

0.9997 0.0 
0.9997 0.0 
0.9787 0.0001 
0.9997 0.0 
0.9807 0.0001 
0.5482 0.0001 
0.9997 0.0 
0.9811 0.0001 
0.6268 O.oO01 
0.4993 0.0003 
0.9997 0.0 
0.9818 0.0001 
0.6556 0.0001 
0.5292 0.0049 
0.0779 0.6026 
0.9997 0.0 
0.9866 0.0001 
0.6858 0.0001 
0.5745 0.0232 
0.1599 0.7654 
0.1273 0.3991 
0.9997 0.0 
0.9900 0.0001 
0.7059 0.0007 
0.5875 0.0802 
0.2957 0.6909 
0.2377 0.6276 
0.0536 0.7264 

0.9998 0.0 
0.9998 0.0 
0.9864 0.0001 
0.9998 0.0 
0.9877 0.0o01 
0.6744 0.0001 
0.9998 0.0 
0.9877 0.0001 
0.7750 0.0001 
0.6593 0.0001 
0.9998 0.0 
0.9886 0.0001 
0.7783 0.0001 
0.6636 0.0001 
0.0468 0.7545 
0.9998 0.0 
0.9913 0.0001 
0.7903 0.0001 
0.7071 0.0002 
0.1543 0.7918 
0.1213 0.4219 
0.9998 0.0 
0.9937 0.0001 
0.7970 0.0001 
0.7189 0.0022 
0.2810 0.7456 
0.2335 0.6540 
0.0388 0.8002 

For comparison purposes Table VI presents the results for 
our data from the imbedded error function and factor indicator 
function rank estimation methods described by Malinowski 
(4 ,5 ) .  Both these methods are based exclusively on the ei- 
genvalues. As Table VI shows, both methods correctly identify 

k = 4 when c = 25 or c = 10. At c = 6 the IE method misses 
two of the components, and at lower values of c both methods 
incorrectly give 2 as the value of k .  

In summary, when at least two data matrices are available 
for linear mixtures containing the same constituents, infor- 

Table V. Canonical Correlations between the Column Subspaces CI1 and C2I and between the Row Subspaces RI7 and &' and 
the Corresponding P Values for the Hypothesis That the Current and the Smaller Canonical Correlations Are 0 

column space row space column space row space 
can. corr P val can. corr P Val can. corr P Val can. corr P val 

1.0000 
0.9995 
0.9950 
0.9883 
0.2611 
0.1647 
0.0308 

0.9999 
0.9914 
0.9092 
0.8005 
0.2406 
0.1845 
0.0420 

c = 25 
0.0 
0.0 
0.0001 
0.0001 
0.8970 
0.8765 
0.8407 

c=6 
0.0 
0.0001 
0.0001 
0.0001 
0.9059 
0.8182 
0.7837 

1.0000 
0.9997 
0.9909 
0.9879 
0.2938 
0.1372 
0.0066 

0.9999 
0.9957 
0.8540 
0.7995 
0.2795 
0.2130 
0.0269 

0.0 
0.0 
0.0001 
0.0001 
0.8641 
0.9371 
0.9654 

0.0 
0.0001 
0.0001 
0.0001 
0.7925 
0.7348 
0.8603 

1.0000 
0.9969 
0.9686 
0.9261 
0.2525 
0.1729 
0.0390 

0.9998 
0.9876 
0.8656 
0.7147 
0.2328 
0.1901 
0.0398 

c = 10 
0.0 
0.0001 
0.0001 
0.0001 
0.9009 
0.8519 
0.7991 

c=5 
0.0 
0.0001 
0.0001 
0.0049 
0.9114 
0.8028 
0.7949 

1.0000 
0.9984 
0.9448 
0.9245 
0.2894 
0.1642 
0.0105 

0.9998 
0.9937 
0.7970 
0.7189 
0.2810 
0.2335 
0.0388 

0.0 
0.0001 
o.oO01 
o.Ooo1 
0.8443 
0.8835 
0.9451 

0.0 
o.oO01 
0.0001 
0.0022 
0.7456 
0.6540 
0.8002 

c = 4  c = 3  
0.9998 0.0 0.9997 0.0 0.9996 0.0001 0.9995 o.oO01 
0.9808 0.0001 0.9900 0.0001 0.9656 0.0001 0.9820 o.Ooo1 
0.7894 0.0001 0.7059 0.0007 0.6482 0.1478 0.5581 0.2062 
0.5684 0.2024 0.5875 0.0802 0.3580 0.9022 0.4253 0.5477 
0.2196 0.9213 0.2957 0.6909 0.2051 0.9444 0.2977 0.7181 
0.1977 0.7827 0.2377 0.6276 0.1912 0.8068 0.2178 0.6859 
0.0340 0.8241 0.0536 0.7264 0.0257 0.8669 0.0695 0.6497 
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Table VI. Values of the Imbedded Error Function (IE) and 
the Factor INDicator Function (IND) Calculated from the 
Eigenvalues of 'I"%, Where Asterisk Indicates the Number 
Determined by the Respective Criterion 

IE IND IE IND 

C 

0.071 452 22 
0.033 220 82 
0.029 432 07 
0.014 836 16* 
0.016 207 69 
0.017 387 01 
0.018 341 97 

= 25 
0.000 549 225 7 
0.000 195 297 7 
0.000 153 292 1 
0.000072 864 8* 
0.000077 816 7 
0.000 083 635 9 
0.000 090 057 3 

c = 6  
0.018839 17 0.000 144 809 5 
0.012 901 66* 0.000075 845 9 
0.01429905 0.0000744742 
0.014 798 52 0.000072 679 9* 
0.016 171 71 0.000077 643 9 
0.017 347 47 0.000083 445 6 
0.018 310 1 0.000 089 900 8 

c = 10 
0.029 573 8 0.000 227 322 4 
0.01635837 0.000096167 17 
0.016 651 65 0.000086 727 36 
0.014 822 12* 0.000072 795 83* 
0.016 194 21 0.000077 751 94 
0.017 372 44 0.000083 565 79 
0.01833081 0.00009000248 

c =5 
0.016 279 75 0.000 125 136 2 
0.012 214 1* 0.000071803 95* 
0.013 838 56 0.000072 075 85 
0.014 783 17 0.000072 604 55 
0.016 15743 0.000077 575 34 
0.017 331 64 0.000083 369 52 
0.018 296 46 0.000089 833 82 

c = 4  c = 3  
0.013 826 32 0,000 106 277 6 0.011 547 13 0.000 088 758 38 
0.0116245* 0.0000683778* 0.011 14895* 0.0000655422* 
0.01343851 0.0000699922 0.013 10495 0.00006825494 
0.014 754 58 0.000 072 464 1 0.014 683 68 0.000072 115 93 
0.016 131 74 0.000 077 452 0.016 072 22 0.000077 166 27 
0.017 303 53 0.000 083 234 3 0.017 242 63 0.000 082 941 38 
0.018 271 4 O.oOO089 710 8 0.018 213 31 0.000089 425 57 

mation useful for rank estimation can be extracted from 
canonical correlations of the eigenvectors. The example 
presented here suggests that an algorithm incorporating 
canonical correlations of the eigenvectors will outperform 
traditional methods, but more experience is needed to fine 
tune the parameters of the algorithm. 
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