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Consideration is given to determination of parameters of a functional
relation between two variables by the means of factor analysis techniques.
If the function can be separated into a sum of products of functions of the
individual parameters and corresponding functions of the independent
variable, particular values of the functions of the parameters and of the
functions of the independent variables might be found by factor analysis.
Otherwise approximate solutions may be determined. These solutions may
represent important results from experimental investigations.

The possible use of factor analysis techniques to determine parameters
of nonlinear functional relations l~as been a topic for occasional informal
discussion. If a factorial approach could be developed it would have con-
siderable application to experimental problems such as learning curves,
work decrement curves, dark adaptation curves, etc. This note gives a
theoretical basis for determination of parameters by factor analysis for
many nonlinear functions.

Factor analytic methods have been limited to investigations applying
linear functions of the form (see [2], equation 3, p. 71):

(1) si, -= ~ ai~s,~, ,

where the s;~ are the observations, and a;~ and s~ are to be estimated. The
aim are task parameters, and the s,~, are individual parameters.

In the present context we will consider the functional relation between
two variables x and y. Variable x might be termed the independent variable
and y might be termed the dependent variable. A general statement of this
functional relation for any given individual i is given by

(2) y, = ¢(po, , x),

for which there are a number of parameters p, which have specific values
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p~ for each individual. Such a relation is shown graphically in Fig. 1. There
exists a family of functions of the form of any given ~b with the values of p~,
defining the particular member of the family. Let j be a particular point of
this function with coordinates x~ and y;~ . Then

(3) Y~, = 4~(P~, , Xi).

Many functions may be transformed so as to produce

(4) y~, ---

The ]~(x;) are a number of functions of the independent variable x; . The
F,~(p~) are corresponding functions of the parameters Pg~ ̄  The number, r,
of such functions may be finite, or it may be infinite. In this latter case, (4)
represents an infinite series, such as Maclaurin’s or Taylor’s power series or
Fourier’s trigonometric series (see a standard advanced calculus text, e.g.,

Yi

Y~i

x. x

FmVRE 1
A Functional Relation of the Form of (2)

[1], [3]). Frequently, in this case, a small number of terms of the series will
yield an adequate approximation to the y~. In order to make (1) applicable
it is only necessary to define

(5)
(6)
Then

(7) y;~ = ~ a~.,sm~ ̄
m=l

In the present context the s~ will be considered as derived parameters
of the transformed function. While they may be expressible in terms of more
primitive parameters, they do have the property of determining the particular
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function for each individual. The family of functions is defined by the a;m ̄
As a consequence of (7), observations of y;~ for several given x~. and individuals
i may be entered into a score matrix. Each x; might be used to produce one
statistical variable. Estimates of the a;m and sm~ then can be obtained by
factor analysis techniques.

In order to illustrate the foregoing, consider a learning task for which
the learning curve is a simple exponential function, such as

(8)

where y;~ is the performance of individual i on trial j, b~ is a parameter for
individual i, and t; is the number of trials j. t; replaces x; as the independent
variable in this context, and b~ replaces the parameters p~ . Equation (8)
may be transformed to

(9) y~,

Then

(10)

(11) s,, = FI(b,) = ~’.

In this case only one term of the sum of products indicated in (4) and (7)
exists. From (9), (10), and 

(12)

For this simple case, observations are made of the performances on the
learning task for each of a number of individuals at each of a selected number
of trials. These observations yield a matrix of y~ . A factor analysis will
involve a single factor and yield estimates of the a~l and sl~ .

The factor analysis problems of communalities and rotation of axes
remain to be discussed. In the present context it seems appropriate to assume
that each observed y~.~ may be in error, but the assumption of specific factors
seems inappropriate. As a consequence, reliability estimates should be placed
in the diagonals of the matrix of intercorrclations. The rotation of axes problem
remains unsolved in the present case. The solution is not unique, and the
axes may be rotated. It is doubtful, moreover, that the principle of simple
structure is applicable when the factor loadings are the various values of
the functions f,~(x~) for the selected" points. Some other principle, at present

unknown, is needed to fix the location of the axes.
An alternative interpretation of (7) corresponds to the obverse factor

procedures, where people ~re correlated over a population of measures. A
large number of values of x~. are selected, and the y~ are observed for a group
of individuals. Each of these individuals can be considered as a variable and
correlations of the y;~ can be obtained for pairs of individuals. The s~ are
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now the factor loadings, and the a;,~ are the factor scores. The communalities
and rotation of axes aspects of the analysis are quite similar to the corre-
sponding aspects of the first procedure already discussed. One important
difference between the present analysis by persons and the previous alterna-
tive stems from the more direct determination of the s=~ . An inspection of
the matrix of s=~ might reveal a curvilinear relation between the s=~ for
several m. Any such relation as the entries in one row being proportional to
the square of the entries in another row would indicate a relation to a common,
more primitive parameter. The entries iu one row being proportional to the
product of corresponding entries in two other rows would also be indicative
of more primitive parameters. Rotation of axes might be performed so as to
reveal such relations.

Iu any particular situation, the choice as to which variable is to be the
independent variable x and which variable is to be the dependent variable y
may be quite important. Ia a learning experiment for a list of paired associates,
each trial might be an x; , and the proportion of correct responses be the
observed y,.~ . However, selected proportions of correct responses might be
taken as the x;, and the numbers of trials necessary to reach these proportions
taken as the y~ . Consider a slightly more complex exponential learning
curve than that given in (8), such that

(13) P = (~’’+~’),

where P is the measure of performance. The parameter c: has been included
as a multiplier to t. This function does not separate in the manner that (8)
did unless an infinite series is used. In which case, if values of t~ are chosen
and values of P~, are observed, the factor analysis will not involve a definite
number of factors. Each successive factor will permit a closer approximation
of the series to the function. Some finite number of factors might be found to.
be adequate.

If logarithms are taken of both sides of (13), it is possible to solve for 
as a function of P:

(14) t = ~1 log P + b_~.

When values of P are selected as P~ and the corresponding t;~ are observed,
~hen

(1~

Define

(1~
(17)

(19)

log P~ + b__,.

log Pi ,

l/c, ,

1,

b,/c~ .
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Then

(20) ti, = a~,81, ÷ a~s~, ,

which is in the form of (7). Only two factors are involved.
Another extension from (8) is to introduce an additive constant’d~:

(21) P = d, -~ e(’ ÷b’~.

Individual parameters and the variable t may be separated for (21) in the
same manner as given for (8). There are now two factors.

If both of the foregoing extensions of (8) are incorporated into a single
extension, then

(22) P = d, -~ e(° ’t ÷~’~.

The individual parameters do not readily separate now from either variable
without employing an infinite series.

It is to be noted that (8) might be treated in the same manner as was
(13). The individual parameters might be separated from the variable y or 
rather than from t as given. Thus, the foregoing examples include (i) a func-
tion, equation (8), that may be treated either way; (ii) two functions, (13)
and (21), each of which may be treated in only one manner; and (iii) a func-
tion, (22), that cannot be separated. The two single treatment functions form
a contrast as to which variable, P or t, is taken as the independent variable.
In (13), P should be taken as the independent variable while in (21) t should
be taken as the independent variable. In any particular experimental case,
the decision as to which variable is to be treated as the independent variable
must rest on experience and the judgment of the experimenter. There are
cases where the number of factors is excessive whichever variable is taken as
the independent variable. The factorial approach may yield in some of these
cases an adequate approximation to the observations with a limited number of
factors.
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