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A quantitative system is presented to permit the determination of
separate multidimensional perceptual spaces for individuals h~ving different
viewpoints about stimulus interrelationships. The structure of individual
differences in the perception of stimulus relationships is also determined to
provide a framework for ascertaining the varieties of consistent individual
viewpoints and their relutionships with other variables.

The present paper attempts to develop a quantitative system to provide
for differential representations of perceptual structures for individuals h~ving
different viewpoints about stimulus interrelationships. In past attempts ~t
stimulus scaling, two major approaches have been employed in dealing with
data obtained from groups of individuals. One approach has been to ascertain
group averages and then to generMize findings to the "average person" in

each group; the other procedure has been to work with each person separately
and to enumerate the results individual by individual. The first method,
which is the more usual in practice, may lead to a straightforward but pos-
sibly f~lse interpretation, in that the results for the average person may not
describe very accurately the consistent responses of each individual in the
sample [16~]. The second method of working with each individual separately
also possesses several drawbacks, among which are the extensiveness of
experimental observations required to obtain stable results for each indi-
vidual and the difficulties involved both in describing the results .for groups
of individuals and in comparing the results for several individuals and groups.

The intention in the present paper is to develop a system which will
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provide not only multidimensional descriptions of individual perceptual
structures and a basis for comparisons between individuals and groups, but
also a superstructure to represent the varieties or types of consistent individ-
ual perceptions. The present model is thus concerned both with the multi-
dimensional scaling of stimuli and with the structure of consistent individual
differences in perception and judgment.

Many of the multidimensional scaling methods based upon an averaging
of responses over all individuals in a sample, either in terms of simple averages
as in the method of equal-appearing intervals or in terms of more complicated
scaling functions as in the methods of successive intervals and of complete
triads, have been reviewed by Messick [25] and Torgerson [45]. The application
of this multidimensional scaling of the "average individual" in a group pre-
sents certain difficulties, however, when comparisons are attempted between
perceptual structures obtained from diverse groups that presumably have
different orientations to the stimuli. A common finding has been that only
subtle differences appear in these structures and that the main attributes of
the perceived spaces are essentially identical (Abelson [1], Messick [24, 28]).
It may be that in these studies all individuals perceived the stimulus inter-
relations in more or less the same manner, thus yielding the obtained observa-
tions of only minor differences between groups. On the other hand, it may be
that extensive differences existed in individual perceptual spaces, but the
scaling method blended them together in deriving the average structure for
each group. We might not have discovered yet how to sort individuals into
contrasting groups that would have different perceptual structures for their
average persons. The variables employed so far for establishing such com-
parison groups may be only slightly related to individual differences in percep-
tual structures.

It would be desirable, then, to develop a procedure for uncovering
differential perceptual spaces that does not require prior sorting of individ-
uals into subgroups on the basis of variables presumed to differentiate between
perceptual structures, but one that would instead indicate the variety of indi-
vidual perceptual structures ,represented in the total group. A technique is
thereby required that would first isolate empirically any consistent individual
viewpoints about stimulus differences and would then provide for the deriva-
tion of separate multidimensional spaces for each viewpoint.

In the present discussion, the muItidimensional scaling model developed
by Richardson [36], using the Young and Householder [49] theorems, and
extended by Torgerson [44], Messick and Abelson [29], and Shepard [40, 41]
will form the basis for description of the perceptual structure for each individ-
ual. In this model, each stimulus is represented by a point in a Euclidean
space, with the perceived difference or dissimilarity between two stimuli
represented by the distance between the two stimulus points. Measures
of perceived dissimilarity among stimuli may be obtained by several experi-
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mental procedures (cf. Shepard [39]), such as iudging which of two stimuli
is more similar to a third stimulus (Richardson [36], Torgerson [43]), rating
the dissimilarity between members of pairs of stimuli on some rating scale
(Attneave [4], Abelson [1], Ekman [10], Messick [26], Jackson, Messick, and
Solley [22], Coombs [7], Reeb [35], Abelson and Sermat [2]), ranking the
similarity of the remaining stimuli to each stimulus in turn (Klingberg [23],
Morton [32]), using intrusion errors in identification learning as measures of
proximity (Shepard [38]), and estimating interstimulus distance directly on 
ratio scale (Helm [15], Indow and K~nazawa [19], Indow and Uchizono [20]).
Various refinements in analysis are possible, including the application of
scaling techniques to recover interval properties for the dissimilarity or
distance scale (cf. Adams and Messick [3], Torgerson [45]) and solution for
an additive constant to establish an advantageous scale origin to yield the
simplest multidimensional representation (Messick and Abelson [29],
Torgerson [45]). The multidimensional perceptual space can then be derived
by factor analyzing scalar products between stimulus vectors computed from
the distance estimates (Young and Householder [49], Torgerson [45]) 
by applying Shepard’s [40] computer model for constructing a Euclidean
metric configuration directly from nonmetric proximity information.

The problem of uncovering and representing consistent individual
viewpoints about stimulus properties has been addressed for the case of
unidimensional scales by Tucker [46, 47]. Tucker [46] developed a vector
model for paired comparisons that permits judges, when evaluating stimuli
with respect to some unidimensional attribute or in terms of preference, to
differ among themselves in their perceived ordering and spacing of the stimuli.
Each individual viewpoint is represented as a vector in a multidimensional
space of stimulus objects, with stimulus projections on each vector represent-
ing scale values for that viewpoint. The number of dimensions required to
span the space of individual viewpoint vectors is determined by factor analy-
sis, and the resulting rotated factor loadings represent stimulus scale values
for the various viewpoints. Slater [41a] also suggested the use of principal
components to analyze covariation in preferences, and a similar rationale
underlies the factor analysis of category ratings (Morris and Jones [31],
Messick [27]). Bock [5a] employed the closely related procedures of dis-
criminant analysis to select iudges reflecting the same dimension of preference;
he also suggested the use of subsequent canonical vectors to estimate ad-
ditional significant preference dimensions if any were found.

The dimensions isolated in these vector models summarize consistencies
in ratings of separate stimuh with respect to some specified attribute, and
they represent consistent individual viewpoints about that stimulus property.
The dimensions in the distance model of multidimensional scaling, on the
other hand, are derived from judgments about pairs of stimuli with respect to
similarity, and they represent differentiM attributes of perceived stimulus
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variation. In the vector model, then, the multidimensional space represents
the different viewpoints of the judges, each viewpoint being a one-dimensional
scale of the specified stimulus attribute. In the distance model, the multi-
dimensional space represents the different ways in which the stimuli are
perceived to vary, each judge perceiving the space in essentially the same
manner. The present paper attempts to combine these two approaches by
applying the vector model of stimulus scaling to measures of similarity be-
tween pairs of stimuli, thereby isolating dimensions of individual viewpoints
about stimulus similarity or proximity. Stimulus proiections (in this case
for pairs of stimuli) on each rotated dimension of viewpoint will then provide
measures of similarity to be analyzed according to the distance model of
multidimensional scaling (Messick and Abelson [29], Torgerson [45], Shepard
[40]). A separate multidimensional representation of the perceived stimulus
space is thus provided for each consistent viewpoint about stimulus similarity.

A nontechnical discussion of these methods and their development was
presented in the context of social perception by Jackson and Messick [21],
and some recent applications were described by Gulliksen [11, 12] and Tucker
[48]. Helm and Tucker [16] applied these methods to color perception.

Analysis o] Consistent Individual Viewpoints
in Multidimensional Scaling

The present model assumes that estimates of interstimulus distances
are available for each individual. As indicated previously, these estimates
may be obtained experimentally by several procedures, such as rating the
dissimilarity between stimuli on a rating scale or constructing the inter-
stimulus distances directly by ratio iudgments.

Let x~jk~ = an estimate of dissimilarity or interpoint distance between
stimuli j and k by individual i;

i, h = individuals 1, 2, --. , N;
j, k = stimuli 1, 2, --. , n;
(j/~) = stimulus-pairs 12, 13, 23, etc.;/~ > j; number of stimulus-

pairs = n(n - 1)/2.

There is one such distance measure for each pair of stimuli and each
individual, so that these measures may be arrayed in a rectangular table
with a row for each pair of stimuli and a column for each individual. All
cells in this table (designated matrix X) should be filled; i.e., there should
be no missing data.

X = matrix of xc;~, having n(n - i)/2 rows for the stimulus-pairs
and N columns for the individuals.

The typical multidimensional scaling analysis (cf. Torgerson [45])
involves an averaging, frequently weighted in terms of a scaling function,
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of the z(~)~ values over the individuals to obtain a single number or scale
value to represent the dissimilarity or distance between each pair of stimuli
j and/~. These averaged or scaled distance values are then usually analyzed
according to the Young-Householder theorems to obtain a multidimensional
representation (Messick and Abelson [29]; Torgerson [45]). This procedure
assumes that these distance measures adequately summarize the information
in the distribution of x(~.k)~ values over the i individuals and that the variation
in these values is due to random dispersion or error of measurement. The
present analysis, on the other hand, first asks whether there is consistent
covariation among individuals in these x(ik)~ estimates by factoring X into
its principal components. If only one factor is found to account for the consist-
ent variance in X, then the appropriate factor ]oadings, or other types of
average distance values, may be analyzed as usual to obtain a single represent-
ative mnltidimensional space. If, on the other hand, more than one factor
is necessary to account for the variance in X, then more than one set of dis-
tance values will be obtained from the factor loadings to be subsequently
analyzed by multidimensional scaling procedures. Several multidimensional
spaces would thereby be derived representing different points of view about
the perceived stimulus arrangements. This analysis of dissimilarity estimates
parallels the general argument outlined by Holzinger [16a] for the complete
factor analysis of scores as an alternative to the incomplete summarization
of data provided by a single average when the rank of the score matrix
exceeds unity.

In this procedure, dimensions of viewpoint are obtained for consistent
individual differences in the dissimilarity or distance estimates. Since there
will presumably be fewer consistent viewpoints than there are individuals,
the technique appears more efficient than analyzing each individual’s distance
estimates separately. Also, as will be seen below, the present method provides
a framework for comparing the various viewpoints and for relating them
to outside variables.

The central point in the above discussion was the statement that con-
sistent covariation in the x(;~)~ estimates is evaluated by factoring X into
its principal components. Since X is an asymmetric, rectangular matrix,
however, the usual direct factoring equations are not appropriate (e.g.,
Harman [13]). This problem has been solved by factoring X according to 
theorem of Eckart and Young [9].

Determining Dimensions o] Individual Differences

Since the number of stimulus-pairs is related to the square of the number
of stimuli, the number of rows in matrix X is likely to be relatively large. If
20 stimuli were used, for example, the number of stimulus-pairs would be
190; for 25 stimuli there would be 300 pairs. Consequently, it is advantageous
to use ~ moderately small sample of individuals and to perform a type of
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obverse analysis in which relationships are computed between individuals
rather than variables. The basic matrix in this analysis, designated matrix P,
is composed of sums of squares of measures for the individuals in the main
diagonal and sums of cross products of measures between pairs of individuals
off diagonal, all sums being taken over the pairs of stimuli. Thus, in terms
of matrix algebra,

(1) P -- X’X,

an N X N matrix of sums of cross products between columns of X.
The analysis next follows the procedure developed by Eckart and Young

[9] to obtain a matrix ~ of lower rank than matrix X that approximates X in a
least-squares sense. This analysis parallels Horst’s development [17, pp. 364-
382]. Essentially, the matrix ~ is constructed to the desired degree of ap-
proximation from the r largest characteristic roots and vectors of matrix X.

(2) 2r = V, rrW,,

a matrix of rank r that approximates matrix X in a least-squares sense [9],
where

Ur = n(n - 1)/2 X section of an ort hogonal matrix (U~ U, =I),
r r = r X r diagonal matrix of latent roots,

W, = r X N section of an orthogonal matrix (W, W~ = I).

This analysis is similar to the principal-components method developed
by Hotelling [18], but differs in that the components are derived from the
matrix of sums of squares and cross products of raw measures instead of
from a matrix of intercovariances as in the Hotelling procedure (cf. Nunnally
[34]). The components U, , F,, and W, in the basic Eckart-Young theorem
(2) are determined from the characteristic roots and vectors of the cross-
products matrix P. Since P, unlike X, is a square, symmetric matrix, it
may be analyzed directly into principal components by standard procedures
[13].

(3) P, = 2’~, = w’~r~w,,

where 1~ is a diagonal matrix composed of the r largest characteristic roots
of P, and W, contains, as row vectors, the corresponding characteristic
vectors of P. Note that the characteristic roots of P are the squares of the
diagonal entries in matrix rr , so that the diagonal matrix r~ in (2) must
be constructed from the square roots of the values in 1~ from (3).

The matrix Ur may now be computed by

(4) u, = xw’~r:1,

since W~W’~ = U’rU~ = I.
If in some experiments the number of individuals is greater than the
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number of stimulus-pairs, the cross-products matrix of (1) should instead
be computed between stimulus-pairs, summing over individuals. The cross-
products matrix in the present analysis should always be computed between
the variables on the shorter side of X, summing over the variables on the
longer side. Thus, if N > n(n - 1)/2,

(la) P = ZX’,

an n(n - 1)/2 by n(n -- 1)/2 matrix of sums of cross products between
rows of X. The remainder of the analysis follows by symmetry:

(2a) 2r =

(3a) P~ = 2,2’, = U,r~u’~,

(4a) W, = r71U’~X.
The elements in Wf represent projections of points corresponding to

individuals on unit-length principal vectors of X (and P). The elements 
U, represent projections of points corresponding to stimulus-pairs on unit-
length principal vectors of X. These stimulus-pair projections, when ap-
propriately weighted, scaled, and rotated to orientations possibly more
appropriate psychologically than the principal-axes position, will constitute
measures of distance between pairs of stimuh. There will be at least as many
sets of distance measures as there are columns in the U~ matrix, each set
being subsequently analyzed by multidimensional scaling procedures.

Scaling ]or Differences in Sample Size

The above analysis produces coefficients for stimulus-pairs and for
individuals that are scaled so that W, W’~ = I. Since Wr is a matrix of order
r by N, the resulting coefficients are a function of the number N of individuals
in the sample. Thus, even if two multidimensional scaling studies differed
only in sample size, i.e., if the same stimuli were involved and the judges
consisted of two random samples of different size from the same population
of individuals, the resulting numbers would not be comparable. It is desirable,
then, to rescale Wr into a matrix V:

(5) V = KWr ,

so that the coefficients in V are independent of sample size; i.e.,

1 VV’ = I,
(6)

~

where K and 1IN are scalar matrices with diagonal elements K and l/N,
respectively. Substituting (5) into (6) and solving,

(7) K = N~/~,
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(8) V = N1/~Wr .

To maintain the basic relationship of (2), Ur must then be rescaled 

(O) Y : UrN--I/2o

Thus, from (2)

(10) J~r = YFrV : UrN-1/~F,NI/2Wr = UrFrWr,

since N~/~ and N-~/~ are scalar matrices.
The matrix Y now contains scaled stimulus-pair projections on the

principal vectors, and the matrix V contains, as row vectors, scaled individual
projections on the principal vectors. From (4),

(11) Y = XV’I’7’N-~.

The V matrix of scaled projections of individuals on principal vectors may
be converted into a factor matrix A of scaled projections of individuals on
principal factors by weighting each vector by the square root of the corres-
ponding characteristic root:

(12) A = F,V = N~/~FrWr .

Then, from (10),

(13) )~r = YA.

Rotation to Structure in the Space o] Individuals

Since the principal-axes location may not be the most appropriate orienta-
tion for dimensions of viewpoint about stimulus similarity, a rotation of
the obtained A and Y matrices might be considered. This possibility is
analogous to the rotation of axes in factor analysis. One criterion for such
a rotation would be a search for simple structure, by either graphical or
analytical procedures [13], in the factor space of the individuals.

An r by r nonsingular transformation matrix T is sought to rotate these
principal factors to simple structure or some other criterion:

(14) B = TA.

A matrix Z of scaled stimulus-pair projections on these rotated axes is ob-
tained by

(15) Z = YT~.

It should be noted that the basic condition of the Eckart-Young theorem in
(2) is still satisfied under these transformations:

(16) ~ = ZB = YT-~TA = UrN-I/~T-~TN~/~F~W~ = U~F~W~.

The matrix Z contains scaled stimulus-pair projections on the rotated
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axes. Each column of Z thus provides a set of measures representing distances
between pairs of stimuli in terms of a rotated dimension of viewpoint about
stimulus similarity. The n(n - 1)/2 coefficients in each of the r columns of 
constitute measures of distance between the n(n - 1)/2 possible pairs of 
stimuli, which may then be arrayed in r separate n by n distance matrices.
Each distance matrix is then analyzed by the methods of multidimensional
scaling to obtain r separate multidimensional spaces (Messick and Abelson
[29], Torgerson [45], Shepard [40]).

The matrix B contains, as row vectors, scaled individual projections
on the rotated axes. The coe~cients in the r rows o] B may be considered scores
for the individuals on r viewpoint variables. The size of each coefficient in a
row indicates the extent to which that individual’s point of view about
stimulus similarity corresponds to the particular rotated dimension of view-
point represented by the row. Since each individual receives a score on all r
viewpoint dimensions, correlations may be computed between these viewpoint
variables and scores on other outside measures--perhaps of personality,
cognitive, or social variables--to ascertain properties and correlates of the
viewpoint dimensions. Scores for the individuals on outside measures may
also be used in a kind of multiple-correlation procedure to orient viewpoint
dimensions in the factor space of individuals (matrix B) so that they correlate
as highly as possible with particular outside measures (Mosier [33], Cliff, [6]).
In multiple-correlation terms, if the proiection of an outside measure into the
individual factor space of B is found to account for most of the measure’s
variance (high multiple correlation), then a viewpoint can be located (using 
weights as direction numbers) and the attendant multidimensional space de-
rived to represent high scorers on the outside measure, whether they were
actually present in the sample or not.

Idealized Individuals

Since the entries in matrix B represent coordinates of points for indi-
viduals on rotated axes, this space may be readily plotted graphically. The
factor space of individuals would also usually be plotted prior to rotation
from the entries in matrix A. If certain individuals are of particular interest,
perhaps because of their scores on other variables or because of their deviant
or central location in the factor space, it may be desirable to derive separate
multidimensional spaces for each of these persons. This may be accomplished
by estimating distance measures 2~;k)~ for each of these i individuals by
postmultiplying matrix Z by those column vectors of B corresponding to the
selected individuals. If the selected column vectors of B are referred to as B~,
then from (16)

(17) ~, = zB,,
where ~ is an n(n -- 1)/2 by i matrix of estimated distance measures for 
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selected individuals, and B~ is an r by i matrix of selected individual coef-
ficients on rotated viewpoint dimensions. The i sets of distance measures
in 2~ are estimated only from the factor variance in the r-dimensional view-
point space. Since much of the error variance in the original x(;~)~ measures
has thereby been eliminated, the reproduced distance measures 2(,.~)~ should
be more stable than the raw ratings for subsequent analysis. Each of the i
columns of 2~, then, contains n(n - 1)/2 measures of distance between pairs
of stimuli. These can then be analyzed separately by multidimensional scaling
methods to produce i separate spaces, one for each of the selected individuals.

It is also possible to insert onto the plots of the factor space of individuals
additional points at any desired location. These points may be interpreted
as "idealized individuals." Their location may be determined from any
desired criterion, such as placing an idealized individual near or within
clusterings of points for real individuals, or at the extremities of the array of
real points, or at positions determined by outside measures. Any desired
number of idealized individuals may be inserted into the factor space.

Separate multidimensional spaces may be derived for each idealized
individual as follows. First, read the coordinates of each idealized point
from the factor plots of matrix. B, and record the r coordinates of each point
in a column vector. Assemble these column vectors for g idealized individuals
into a matrix G. Analogously to (16) and (17), compute

(18) 2g = ZG,

where 2g is an n(n - 1)/2 by g matrix of estimated distance measures for
g idealized individuals, and G is an r by G matrix of idealized individual
coordinates on the rotated axes. The elements in each column of 2g represent
estimates of distance among the possible pairs of n stimuli for each idealized
individual. These distances can then be analyzed separately by multidimen-
sional scaling methods to produce g separate spaces, one for each idealized
individual.

If the idealized individual points are inserted into the factor plots prior
to rotation, then the coordinates would be read from the reference frame
of matrix A, and

(19) 2, = YG.~,

where G~ is an r by g matrix of idealized individual coordinates on the un-
rotated factors of matrix A.

The extent to which each real individual’s point of view about stimulus
similarity is related to each of r selected idealized viewpoints may be deter-
mined by rotating the dimensions of the factor space of individuals to posi-
tions defined by idealized individuals. That is, a dimension is located for
each selected idealized individual on which that idealized individual has
a loading of unity and the other idealized individuals have Ioadings of zero.
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Then the projections of the real individuals on each dimension will indicate
the extent of relation between the real individuals and the selected idealized
viewpoint. For this purpose, G can be considered to be an extension of the B
matrix. G~ can be defined’ as an r by r square section of G. Thus, an r by r
nonsingular transformation matrix A is sought that will rotate the idealized
individual vectors of G, into new positions such that each transformed vector
has one unit loading with the remaining entries zero loadings:

(20) Aa~ = ~.

Although any number of idealized individuals may be defined and their
corresponding distance measures derived by (18), (20) can be solved 
if G is a square matrix, possessing an inverse. The coefficients relating real
individual viewpoints to idealized viewpoints can be computed in stages
for various square sections of G.

(21) a = G;’,
(22) H = AB = G:IB,

where H is an r by N matrix of projections of real individuals on r selected
idealized individual dimensions. The size of these coefficients indicates the
extent of relationship between each real individual viewpoint and the ideal-
ized individual viewpoints.

Thus, the computation of distance measures for idealized individuals
is seen to be the result of another rotation on the factor space, since

(23) 2r = ZB = ZG, G[IB = 2,,H.

Each column of a Z matrix of rotated stimulus-pair coefficients, then, may
be interpreted as measures of dissimilarity or distance between pairs of
stimuli for an idealized individual. Each row of the corresponding B matrix
of rotated individual coefficients relates each real individual to a particular
idealized viewpoint. The resultant perceptual spaces for the idealized individ-
uals are indicative of the variety of spaces existent for the real individuals in
the sample.

If all subjects in the sample happen to have similar perceptual spaces
for the selected set of stimuli, there will be only one column in matrix Z,
and the perceptual space for the single idealized individual will represent
the space for all real individuals in the sample. At the opposite extreme, the
perceptual space for each subject might be unrelated to the spaces of every
other subject. In this case, there would be as many idealized individuals as
real individuals, and each subject could be considered his own idealized
individual. Between these two extremes there are many possible degrees of
complexity in the structure of individual differences in perceptual spaces
which may be investigated experimentaily.
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The Perceptual Space for the Group Average

Since cross products are analyzed in the present procedure rather than
intercovariances, the information contained in the means of the dissimilarity
ratings or distance scores x(~.~)~ is retained in the analysis. Consequently, the
first characteristic root of the cross-products matrix P is very large relative
to the subsequent roots, since the corresponding first principal vector in Ur
essentially recovers these mean scores. Indeed, the first characteristic root
is often so large relative to the remainder that some rules-of-thumb carried
over from factor analyses of covariances and correlation matrices would
usually indicate the presence of only one consistent factor in P. Therefore,
to avoid giving undue weight to the consistently large first root of a cross-
products matrix, criteria for deciding the number of factors should include,
in addition to relative variance accounted for, the search for patterns in the
distribution of roots and for sudden breaks in the distribution of successive
differences in roots.

Although the coefficients in the first unrotated principal vector in U.
are not precisely proportional to the average x(~-,1,, values (since the first
principal component accounts for somewhat more variance than would the
unweighted mean dissimilarity ratings), the loadings on this first vector
will be very highly correlated with the mean x(i,)~ values and may be inter-
preted as distance measures for the "average person" in the group. An average
perceptual space may then be derived by treating the n(n - 1)/2 loadings
on the first unrotated principal vector in U. as measures of distance among
the n stimuli and applying the standard procedures of multidimensional
scaling analysis [29, 40, 45]. In this analysis of the average perceptual space,
the first unrotated U. vector may be scaled, if desired, by N-t as in (9)
or weighted by the corresponding latent root, since the distances and the
associated perceptual space are determined only to within multiplication
by positive constants [45].

Thus, a perceptual space obtained by treating the coefficients on the
first principal vector in U. as distance measures would be roughly equivalent
to a multidimensional scaling of the average x,,), values. However, only
in the case where a single viewpoint dimension is found to be necessary in
the principal-components analysis of P would these average distance values
adequately represent the individual spaces.

An Illustrative Analysis of Political Judgment Data

An analysis of judgments of dissimilarity among certain political leaders
with respect to their political thinking was performed according to the present
model to illustrate the procedure. Data were selected from a larger set pre-
viously analyzed by Messick [28] by traditional multidimensional scaling
methods. Messick [28] asked 574 male and 262 female undergraduates to
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rate on a nine-point scale the similarity of all possible pairs of 20 political
leaders with respect to their political thinking. The multidimensional method
of successive intervals (Messick [26], Diederich, Messick, and Tucker [8])
was then applied to two separate subsamples of 267 students who endorsed
the Democratic Party and 464 subjects who aligned themselves with the
Republicans. The two resulting perceptual spaces each consisted of seven
dimensions with essentially identical arrangements of stimulus points.

For the present purpose, a smaller sample of 39 students was selected
in terms of their answers to the four questionnaire items listed in Table 1.
To illustrate the advantages of the present method, an attempt was made
to insure consistent individual variation in judgments of similarity by includ-
ing in the analysis four groups of individuals representing four different
patterns of response to those items: liberal Democrats in favor of labor,
conservative Democrats in favor of management, liberal Republicans in
favor of labor, and conservative Republicans in favor of management. Ten
subjects were selected for each of these groups except the conservative
Democrats in favor of management; it was not possible to find ten students
with this latter combination of responses. Even when the selection criterion
was relaxed to include conservative Democrats who did not indicate a sym-

TABLE 1

Selection of Individuals for Political Judg~neut Study

Responses of Selected Individuals

Liberal Conservative Liberal Conservative
Question Democrat Democrat Republican Republican

In general, which political
party do you support in
most political matters ? Democratic

On the whole, which party
do you think best repre-
sents the interests of the
American people ? Democratic

How would you classify
your own political position
as to "liberalism" or
"conser-gatism" ? Liberal

Democratic Republican Republican

Democratic Republican Republican

Conservative Liberal Conservative

In strikes and other dis- With
putes between management management
and labor, where do your Both
shm~pathies usually lie ? Neither With

With labor Not sure With labor management
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TAB LE 2

Cross-Products Matrix P

Individual I 2 3 4 5 6 7 8 9 10

I 4894
2 5322 7786

3 5440 7451 8210
Liberal 4 5154 6689 6989 6962
Democrats 5 5373 7088 7395 6773 780i
for Labor 6 5485 7484 7537 6770 7215 8~55

7 5604 7203 7648 7174 7539 7325 8499
8 5631 7506 7692 7144 7596 7558 7901 8287
9 4937 6730 7006 6369 6723 6832 7094 7079 6999

10 5397 7i61 7400 6596 7130 7388 7224 7415 6733 7758

li 4565 6409 6575 5735 6151 6548 6378 6541 6099 6319
12 4775 6488 6788 5903 6394 6597 6493 6603 5971 6501
i3 5618 71i9 7237 6808 7171 75i3 7435 7567 6655 7379

Conservative 14 5469 7444 7565 6801 7303 7655 7374 7607 6795 7348
Democrats 15 6294 8443 8474 7786 8213 8573 8519 8793 7662 8384
Non-Labor 16 " 5474 7584 7931 7256 7458 7785 7793 7830 730t 7560

17 57t4 7868 8053 7265 7707 7914 7961 813t 7393 7772
i8 5567 7330 7598 6942 7389 764i 7625 7870 6794 7325
i9 4699 6432 6628 5977. 63i9 6462 6562 6628 6085 6391

20 5476 75i0 7750 6747 7268 7615 7432 7645 6963 7388
21 4758 6080 6368 5872 6189 6227 6500 6537 5645 6360
22 4377 5982 6i38 5452 5803 6194 5836 6034 5592 6106

Liberal 23 3966 5378 5484 4820 5228 5526 5300 5477 5038 5411
Republicans 24 4660 6349 6572 5777 6240 652i 6228 6461 5853 6295
for Labor 25 5024 6450 6850 6i72 6527 6908 6772 6828 6350 6771

26 4688 6439 665i 5895 6274 6573 6403 6541 5946 6398
27 5043 6753 7026 6486 6749 6807 7064 7042 6345 685i
28 4301 5901 5966 5318 5721 6t60 5803 5955 5543 5979
29 4099 5329 550i 5062 5333 5598 5468 5578 5084 5437

30 4695 6628 6654 5655 6332 6679 6255 6632 5934 643i

31 5i63 7003 7347 6720 7073 7i38 7552 7433 7082 7064

32 5655 7q44 79i3 7i61 7555 791i 7739 7884 7i82 7587

Conservative 33 5727 7678 7878 7129 77i9 7890 7869 7944 7214 7648

Republicans 34 6107 7870 8123 7542 7849 8264 8181 8246 7408 8190

for 35 5044 6561 6758 6213 6571 6823 6811 6859 6163 6695

Management 36 5098 7037 7207 6489 6925 7205 7114 7304 661i 6943
37 5i37 7185 7143 6445 68i2 7373 6949 7337 6514 7047
38 4729 6459 6617 5866 6i30 6616 6310 6562 5896 646i
39 4639 6267 6454 5896 6267 6364 6460 6507 5918 6445
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TABLE 2 (Cont’d.)

Cross-Products Matrix P

Intlividual ii 12 13 14 15 16 17 i8 19 20

1
2
3

4
5
6
7

8
9

i0

li 6299
t2 5821 6388
13 6264 6451 8215

Conservative 14 6545 6720 7339 7999
Democrats i5 7175 7368 85i9 8434 10544
Non-Labor 16 6727 6765 7426 7790 8682 8905

17 6924 7017 7712 7951 8925 8200 8820
18 6477 6494 7514 76ii ~727 7736 7886 8497
19 5721 5867 6333 6537 7270 6750 6993 6446 6t42

20 6724 6860 7382 7699 8535 7762 8103 7550 6630 826t
21 5408 5673 6555 6353 7417 6371 6586 6473 5580 6473
22 537i 5486 6024 6140 6884 6256 6349 6051 5338 6287

Liberal 23 4760 4923 5312 5515 6033 5498 5747 5354 48ii 5535
Republicans 24 5608 5852 6430 65i7 7254 6514 6842 6495 5717 6658
for Labor 25 5833 6002 6903 6750 7728 7032 7170 6838 5875 6974

26 5654 5918 6443 6612 7262 6651 6991 6497 5729 6734
27 5858 6043 7002 6797 7830 7i96 7313 6873 6065 6924
28 5255 5279 5867 5994 6740 6i28 6399 5937 5258 6095
29 4739 4855 5481 5590 6332 5549 5868 5499 4848 5640

30 5800 5970 6261 6687 7405 6600 7107 6485 5757 6840
31 6324 63t3 7i00 7169 8129 7628 7781 7177 6366 7309
32 6752 6787 7669 7859 8913 8103 8363 7819 6717 7900

Conservative 33 6814 7025 7779 7765 8912 8075 8230 7826 6829 7996
Republicans $4 7004 7131 8458 8133 9415 8435 8592 83t2 7057 8266
for 35 5674 5874 6796 6758 7742 7033 7102 6787 5861 68t2
Management 36 6240 63i5 7102 7114 8181 7413 7628 7228 6227 7253

37 6239 6227 6997 725i 8228 747i 7626 7249 6i31 7204
38 5713 5839 6308 6567 7338 6646 6973 6507 5775 6734
39 5471 5654 6524 6349 7414 6723 6754 6440 5621 6468
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TABLE 2 (Cont’d.)

Cross-Products Matrix P

Individual 21 22 23 24 25 26 27 28 29 30

i
2

3
4

5
6

7
8
9

I0

li
12
13
14
15
16
17
18
19

20

21 6874
22 5260 5763

Liberal 23 4579 4549 4559
Republicans 24 5528 5311 4878 6735

for Labor 25 5937 5744 4937 5907 7425
26 5612 5358 4850 5914 5985 6257

27 6047 5530 4891 5844 6412 6024 7273
28 5056 5017 4495 5386 5522 5289 5338 5567

29 4810 4623 4041 4944 5230 4822 5045 4600 5~65

30 5424 5372 4942 5972 5854 5850 5833 5440 4899 6645

31 6131 5806 5225 6164 6775 6302 6876 5830 5416 6210

32 6545 6339 5656 6985 7210 7052 7212 6212 5827 6918

Conservative 33 6659 6385 5701 6836 7182 6820 7297 6331 5729 6882

Republicans 34 7i58 6756 5828 6999 783i 7032 7718 6508 6166 6950

for 35 5824 5602 4934 5790 6276 5821 6228 5454 5114 5845

~Ianagement 36 6072 5745 5152 63i3 6618 63i5 6730 5752 5219 6300

37 5994 5898 5296 6165 6449 6251 6330 5838 5398 6484

38 5612 5370 4812 5852 5914 5869 5959 5385 4912 5987

39 5820 5246 4633 5480 5867 5571 62i4 5i36 4707 5524
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TABLE 2 (Cont’d.)

Cross-Products Matrix P

Individual 31 32 33 34 35 36 37 38 39

2
3
4
5
6
7

8
9

I0

11
12
13
14
15
i6
17
18
19

2O
2t
22
23
24
25
26
27
28
29

30
31 769i
32 7592 9510

Consewative 33 7649 8085 9067
Republicans 34 7922 8553 8537 9809
for 35 6511 7044 7006 7577 6903
Management 36 6990 7671 7624 7846 6392 7482

37 6787 7643 7390 7801 6542 6788 7708
38 6260 6965 6817 7062 5867 6194 6380 6379
39 6377 6724 6815 7276 5925 6203 6119 5624 6373
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pathy toward labor, only ~fine such subjects could be found from the larger
sample of over 800.

Dimensions o] Viewpoint

The 39 individual ratings of dissimilarity for the 190 possibIe pairs
of 20 political leaders were arrayed in the matrix X, which in this case had
190 rows for the stimulus-pairs and 39 columns for the individual raters.
Each cell entry x~k)~ was an integer from 1 to 9, representing the category
of dissimilarity into which individual i placed stimulus-pair (jk). The 
political leaders used as stimuli are listed in Table 8.

The matrix P of sums of cross products between columns of X was
computed by (1) and is presented in Table 2. P was next analyzed by the
method of principal components as in (3). The diagonal matrix of character-
istic roots F2 contained one very large root as expected (258,784.74), then two
smaller roots (3381.42 and 2524.55) that appeared in terms of the total
pattern to be somewhat larger than the subsequent roots, which trailed off
in fairly regular steps to near zero asfollows.

1908.95 877.35 578.95 370.90

1734.56 865.00 540.14 333.48

1568.78 794.64 519.69 326.63

1407.16 758.09 486.41 307.15

1271.57 695.86 453.25 291.44

1110.60 680.20 439.73 283.05

1085.22 653.22 422.72 252.96

948.28 589.55 389.77 230.03

217.90

200.29

180.94

140.96

Consequently, it was decided to characterize the structure of individual
differences in terms of three dimensions. The square roots of the three largest
characteristic roots of P were used to construct the diagonal matrix Fr (having
diagonal elements 508.71, 58.15, and 50.24), and the three corresponding
characteristic vectors of P comprised the matrix W~ (Table 3).

At this point, W~ would ordinarily be rescaled to form the matrix V
by multiplying each element by ~/~ as in (8). Since only one sample was
involved in the present example, this step ~vas left out of the computations
for the sake of simplicity. Each row of W~ was weighted by the corresponding
l~r value to produce the corresponding row of matrix A, as in (12) (see Table

3). The entries in the first row of the A matrix (or the first column of A’ as in
Table 3) were fairly uniform large positive values for all the individuals. As
expected, however, these first factor loadings were very highly correlated
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TABLE 3

Individual Coefficients on Principal Vectors W" and on Principal Factors A"
r

Matrix W~ (or ~) Matrix A"

Individual I II I]:I I II HI

Liberal
Democrats
for Labor

Conservative
Democrats
Non-Labor

Liberal
Republicans
for Labor

Conservative
Republicans
for
Management

1
2
3
4
5
6
7

8
9

10

II
12
13
14

15
16
17
18
19

20
21
22
23
24
25
26

27
28
29

30
31
32
33
34
35
36
37
38
39

. i242 -. 1433 -. 1266 63. t8 -8.33 -6. 36

. 1668 . 1374 . 1205 84.87 7. 99 6, 05

.1717 .0302 .1968 87.36 1.75 9,89

.1555 -.2426 . 1588 79.09 -14.11 7,98
¯ 1651 -. 1374 . 1597 83.97 -7.99 8,03
. 1710 . 1215 -. 0676 86. 97 7.06 -3,40
¯ 1702 -.3355 . 2658 86.58 -19.51 13. 36

.173i -.1371 .1479 88.08 -7.97 7.43

.1565 -.0462 .2890 79.60 -2.68 14.52

.1671 -.0084 -.1299 85.00 -0.49 -6.52

i471 .1614 .1288 74.82 9,38 6.47
1501 . 1416 .0017 76. 35 8,23 0.09
1684 -,1985 -. 2975 85. 66 -11.55 -14. 95
i704 , 1131 .0228 86.67 6,57 I. 15
1933 -, I159 -. 1364 98.33 -6,74 -6.85
1756 -.0599 .2796 89. 32 -3.48 14.05
1802 ,0659 . 1693 9t. 67 3.83 8.51
1711 -.1061 -.0210 87.04 -6.17 -1.06
1482 .0433 .0972 75.41 2.52 4.89

1725 .1553 ¯0004 87.76 9.03 0.02
1457 -.2091 -.3643 74.10 -12.16 -18.30
1388 .1220 -. 1732 70. 61 7. 10 -8. 70
1236 . 1694 -, 0209 62.90 9.85 -i. 05
1478 .2638 -. 1204 75. 16 15.34 -6.05
1560 -.0830 -. 2341 79. 35 -4.82 -11. 76
1487 .1526 -.0222 75.64 8.87 -Lli
1574 -,2348 .0249 80¯05 -13,65 1,25
1365 .i886 -. 0794 69.45 i0.97 -3. 99
1264 .0538 -.t852 64.31 3. 13 -9. 30

1493 .3538 .0160 75,93 20¯57 0.81
1651 -. 1267 . 2186 83, 99 -7.37 10. 99
1786 .li94 .0446 90, 85 6.94 2. 24
1784 -.0096 ¯ 0396 90. 76 -0.56 1. 99
1866 -. 1859 -. 2828 94. 94 -10.81 -14. 21
1540 -.0836 -.1332 78.33 -4.86 -6.69
1631 ,0117 ,0479 82,95 0,68 2,41
1629 . 1739 -.0307 82.85 10. it -1.54
1487 .2094 -.0617 75. 65 12. 18 -3. 10
1470 -.i573 -. i048 74.77 -9.15 -5. 26
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(Spearman rank r of .97) with the average ratings made by these individuals
to all 190 stimulus-pairs.

The matrix U~ of stimulus-pair proiections on the unrotated principal
vectors was computed by (4) (Table 4). Since the scaling factor for sample
size was not included in the present example, this step also corresponds to the
computation of the matrix Y by (11).

Variation in Individual Additive Constants

The present model assumes that the input data or x(ik)~ values represent
estimates of distance between stimuli j and /o for each individual i. Thus,
in the case of one average dimension of viewpoint the elements of the matrices
in (16) could be represented 

(24) ~(~k), = z(~)b, 

where z(;~) is a loading for the (jk)th st~ulus-pair on the single dimension,
and b~ is a weight for the ith individual. For r dimensions of viewpoint,

where z(~,)~ is a loading for the stimulus-pair on the mth dimension of view-
point, and b~ is a weight for the individual on the ruth dimension.

In terms of the model, these distances should be measured on a ratio
scale and ff they are not, certain variations in individual scale prope~ies
might be mistaken for individual d~erences in viewpoint. For example,
even though interval properties may be reflected in a distance scale based
upon category ratings of stimulus dissi~arity, such as the procedure used
in the present study, the zero points of the scales for individuals might not
be comparable. Thus, for the case of one underlying viewpoint dimension,
(24) would become

(26) ~,~), = z,~)b, + c, 

where c~ is an additive constunt to translate each individual’s scale to a ratio
scale with a fixed zero point (cf. Messick and Abe]son [29]). For r dimensions
of ~iewpoint,

(27)- ~(~)~ = ~ z(~)~b~ + 

The right side of (26) can be represented ia m~tr~ terms ~s ~ Z matr~
(comprised of a colu~ vector of z(~) loudings on the single viewpoint dimen-
sion and a column vector of unities) times a B matrix (composed of a row
vector of b~ weights and ~ row vector of individual additive constants c~).
The X ma~ix of (26) is thus seen to be of ra~ 2 even though only one under-
lying viewpoint dimension was postulated. Similarly, the right side of (27)
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TABLE 4Stimulus-Pair Projections on Principal Vectors Matrix Ur (or Y)

Stimulus-Pairs I II III Stimulus-Pairs I II III

l
2

3
4
5
6
7
8

9
10

ll
12
13

14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29

30

31
32
33
34
35
36
37
38
39
40

0736 .0207 .0172
0485 .0496 -. 1295

0765 -. I392 -.0468
0664 .0374 -.0234
0752 .0249 .0366
0942 .0659 -.0490
0691 .0088 -.1396
0857 .1054 -.0373

0428 .0369 -.0086
0870 -.0t70 -.0160

0779 -.1356 .0793
0573 .0893 -.0943

0564 ¯ 0454 .0507
0750 -.0240 -.0402
0656 .0392 .0633
0659 -.0605 .0646
0502 .0482 -.0570
0723 -.0465 -.0184
0894 .0472 .0273

.0783 .04i4 .0386

.0671 .0165 -.1056

.0946 .0571 -.0033

.0548 .0888 -.0269

.0673 .0291 -.0617

.0675 -.0399 .0083

.0599 .0774 -.0269

.0459 .0056 -.0926

.0699 -.0550 -.0111

.0936 .0389 .0562

.0708 -.1067 -.0656

.0982 .0116 .0086
0618 -.0201 -.0306
0648 -. i465 .0582
0822 .0031 -.0083
0533 . 0135 .0105
0646 -. i282 .0076
0693 -.0139 -.0629
0550 .0i66 .0272
092i .0038 .0446
0488 .0467 -.1238

41 .0493 .0080
42 .0906 .0527
43 .0720 -.0672

44 .0797 -.1286
45 .0714 .0036

46 .0603 -.0630
47 .0623 -.1077
48 .0680 -.0752

49 .0800 -.1174
50 ,0715 -.0182

51
52
53
54

55
56

57
58
59

60

61
62
63
64
65
66
67
68
69

70

71
72

73
74
75
76
77
78

79
80

.0610 -.0846

.0516 .0062
0701 -.0065
0995 .0482
1000 .0785
0856 .2322
0790 .1291
0770 -.0638
1017 .0667
0896 .0793

0756

0994
0433

0574
0372
0962
0857
0707
0713
0740

.0758

.0380

.0515

.0786

.0687

.0432

.0675

.0650

.0562

.0658

.1862

.0701

.0116
-. 1003

.0089
.0968

-.0658
-.0923
-.0029

.0202

-.0358
.0673
.0656

-.0249
-.0866
-.0262
-.1301
-.0488

.0321
.0124

-. 0931
0484
1348
0656
0156

0288
0326

-. 0901
.0783
.0359

.048i
-. 0974

.0694

.036i
¯ 0295
.06t6
.0998

-.0t93
.0t31
.0560

.0502

.0624
-.1634

.0404
-.0459

.0243
-.0756
-.0360
-.0321
-.0080

-.0884
-.1082
-.0947
-.0097

.0939
-.0356

.0159

-.0272
.0579

-.0977
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TABLE 4 (Cont’d.)Stimulus-Pair Projections on Principal Vectors Matrix Ur (or Y)

Stimulus-Pairs I II III Stimulus-Pairs I I III

81
82

83
84
85
86
87
88
89

9O

91
92

93
94
95
96

97
98
99

100

101
102
103

104
105
106
107
108
109
110

112

li3
il4
115
116
117
li8
119
120

0888 -.0062 -.0026
0974 .0867 .0355

0409 .0112 -.1776
0934 .0438 .0227

0861 .0074 .0204
0710 -.0141 -.0124
0722 -.1096 -.0575

.0645 -.0818 .0445

.0787 .0046 .0132

.049i -.0792 -.1036

.0622 ,1536 .0632

.0844 .0254 .0076

.i02I .0574 .0400

.I029 .0743 -.0i07

.0734 -.0795 .0565

.0730 -.0844 .0428

.0659 -.0892 .0347

.0647 -.1298 .0163

.0901 .0394

.0673 -.0491 -.0172

.i037 .09i9 -.0039

.0994 .0662 .0503

.1008 .1038 -.0222
¯ 0759 . 0057 -. 0242

.0614 .0058 -.0872

.0890 .0767 .1453

.0420 .0072 -,0549

.0674 -.0346 ,0972

.0506 .0131 -.1498

.0997 .0668 .0252

0633 -.1446 .0305
0728 -.0188 -.0795
0760 -.0570 .0248

0769 -.0692 .0652
0740 -.0915 .0555
0371 -.0188 -.1751
0719 -.0850 -.0256
0951 .0355 .0564
0966 .0690 .0147
0939 .0993 .1064

121 .0488 -.0351 -. 1233
122 .0976 .0924 .0129

123 .0822 ¯0540 . 1195
124 .0568 -.0644 -.1068
125 .0750 -.0295 .0299
126 .0742 -.1109 -.0367
127 .0307 -.0334 -.0440
128 .0716 .-.1162 .08t9
129 .0675 -.0484 -.0219

130 ,0566 -.0435 -.0800

i31 .i021 .0818 .0467
132 .0846 .1381 .0224

133 .0668 -.0704 -.0336
134 .0721 -.0933 ,0775

135 .0685 -.0071 -.0622
136 .0647 .0268 -.0742
137 .0675 -.06i2 .0017

138 .0914 .0575 .0680
139 .0659 -.1005 ,0910
t40 .0803 -,0616 .0362

141 .0589
142 .0345
143 .0666
144 .0649
145 .0571
146 0961
147 .0671

i48 1022

i49 .0673

150 0943

151 0669
152 ,0569
i53 0531

154 .0652

155 0636

156 .0821
157 .0706
158 .0706
159 .0624
160 .0747

.0238 -.0698
-.0195 -. 1535
-. 1292 .0164
-.0026 .0285
-.0330 -.1518

.0382 .0700
-,1552 .0936

.0585 -.0033

-.0923 ,0156

.0504 .0439

-.0661
-.0304

.0351

.0142
-.0412

.2234
-.0743

-.0367
-,0790
-. 0334

.0482
-.1791
-. 1875
-.0940
-.0926

¯ 0518
.0946

¯0076
.0516
.0368
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TABLE 4 (Cont’d. Stimulus-Pair Projections on PrincipM Vectors Matrix Ur (or Y)

355

Stimulus-Pairs I II III Stimulus-Pairs I II III

161 .0504 .0237 -.1404
162 .0996 .0787 .0871
163 .0457 .0383 -.i582
164 .0464 .0134 -.1650

165 .0524 -.0230 -.0021
166 .0433 -.0i85 -.1012
167 .0582 -.0613 .0604
i68 .0678 -.0775 .0173
169 .1020 .0580 -.006~
170 .0436 -.0253 -.1663

171 .0625 -.0416 -.0321
172 .0873 . 1479 .0402
t73 .0699 -.0785 -.0075
174 .0677 -.0436 -.0149
t75 .0288 -.0196 -.0737
t76 .0542 -.1371 .0526

t77 .0570 -. 1t35 .0332
178 .0716 .0463 .0750
179 .0464 -:0012 -.0552
180 .0744 -. 1009 .0120

182
183
184

185
186
187
i88
i89
190

0966 .0497 .0131
0776 -.0326 .1007
0695 -.0601 -.0393
0526 .0098 -.0306

0998 .1019 .0408
0399 -.0113 -,1420
0601 -.0176 -.0569
056i -.0227 -.1357
0398 .0306 -.1480
0596 .0062 .0203

can be represented as a Z matrix with r columns of z(~) values and a column
of unities times a B matrix with r rows of b~ ~veights and a row of c, values.
The corresponding X matrix is thus seen to be of rank r + 1 even though
only r viewpoint dimensions were postulated.

Thus, the possibility that one of r dimensions obtained with the present
procedure represents variations in individual scale constants and not a dimen-
sion of viewpoint should be carefully evaluated, particularly if interval
scaling or rating procedures had been used to estimate the distances origin-
ally. This evaluation can be achieved by determining an r by r transformation
matrix L that will rotate Z (or Ur) as closely as possible in a least-squares
sense to a matrix Q that contains a column of unities (or, because of free trans-
formation with a scale factor, a column of constants):

(2S) VrL =
where Q is a least-squares estimate of the criterion matrix Q. If ~) is found
to contain a column of unities or constants, within some acceptable range
of variation, then one of the r dimensions of X is interpretable in terms of
individual variations in scale constants, with the remaining r - 1 dimensions
representing different viewpoints about stinmlus similarity. The inverse
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transformation L-’ applied to the appropriate matrix of individual weights
will then provide the corresponding c~ values.

A least-squares solution to (28) has been outlined by Cliff [6] in which

(29) L = (U~U,)-IU’~Q(I 

and

(a0) (1 - ~,~) = Q,,U~(U~U,) UrQ,,QmQ~
where Q~ is the ruth column of Q. In the present case, since U~ U, = I, these
formulas simplify to

(1 - ~) (Q~ r) (Q~U~)(Q’~QI) (31)

where

(32)

where

Q~ is the column of Q containing the unities,
(Q; U,) is a row vector of column sums of Ur 
(Q~ Q,) is the number of stimulus-pairs = n(n - 1)/2.

~1 ~--~ U~L, = U,(U;Q1)(1- ~1)-1,

~1 is a least-squares estimate of the column of unities,
L~ is the column of L that transforms U, into ~)~ 
(U’~ Q~) = (Q~’ U~)’ is a column vector of column sums of 

If it is desired to maintain Q~ as a unit-length vector, then the transformation
simply entails postmultiplying U, by a column vector containing the r column
sums of U~, this column vector being normalized to unit length (i.e., scaled
so that the sums of squares of the r column sums becomes unity).

The Q~ vector was computed from the U~ matrix in the present example,
and instead of containing relatively constant values, its entries varied widely
between .0389 and .1002. (If all of the entries were equal, each of the 190 
values would have been approximately .0726 in the unit-length vector form.)
Since it was thus not possible to determine a direction in the obtained three-
dimensional factor space that would clearly correspond to variation in indi-
vidual scale constants, it was concluded that all three dimensions should be
interpreted in terms of differential viewpoints about stimulus similarity.

Idealized Individual Dimensions

Graphs were plotted for the three dimensions of the factor space of
individuals by taking the entries in each column of matrix A (each row of ~

in Table 3) to represent the coordinates of a point in three-dimensional space,
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d: Democrat, Liberal
D: Democrat, Conservative
r: Republican, Liberal
R: Republican, Conservative

:FIGURE 1

Factor Structure of Individuals,
Politics Interpoint Distance Data*

there being one point for each of the 39 individuals. The first factor in matrix
A generated plots in which all individuals had large positive coordinates.
The plot for the second and third factors is presented in Fig. 1.

At this point, matrix A could be rotated to simple structure as in (14)
to produce matrix B of individual coefficients on r rotated axes. The inverse
transformation applied to matrix Y as in (15) would then produce matrix 
of stimulus-pair projections on the rotated axes. Each column of Z would
provide a set of distance measures to be analyzed by standard multidimen-
sional scaling methods to obtain three separate perceptual spaces. Points
representing idealized individuals could also be inserted into the factor

*All individuals had approximately equal large positive coefficients on the principal
factor I. The graph gives the plot between coefficients on principal factors Ii and III.
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space of matrix B, and their projections used to construct matrix G. Inter-
stimulus distance estimates for each idealized individual would then be
computed by (18), each set of distances being subsequently analyzed 
multidimensional scaling methods to produce a perceptual space for each
idealized individual.

In the present example, however, the factor space of matrix A (see Fig. 1)
was simple enough to permit location of some idealized individual points
directly, without requiring a prior rotation. An examination of Fig. 1 reveals
a concentration of individuals with positive coefficients on dimension II
and small or near-zero coefficients on dimension III. Many of these indi-
viduals were Republican students (as indicated by the r and R notation on
the figure). The points toward the left in Fig. 1, corresponding to negative
coefficients on dimension II, were more spread out on dimension III than
the points on the right, giving the appearance of a triangle to the entire
group of points. Two lines were drawn near the boundaries of this triangle,
intersecting at the point A. Points B and C were chosen near the extreme
real individual points at the left on the two lines. These three points were
taken to represent three idealized individuals, chosen to span the boundaries
of the real points. Their projections on dimensions II and III were obtained
from Fig. 1 and used to construct the matrix G (Table 5); the projections 
these idealized individuals on dimension I were taken as the mean of the
coefficients for nearby real individuals on dimension I.

TABLE 5

Matrix GA of Idealized Individual Projections on Reference Factors of Matrix A

Idealized Individuals

Factor A B C

I 80.0 87.0 86.0
n 14.0 -20.0 -I2. 0
III -I. 0 13.0 -14. 0

It is of interest to note the progression in Fig. 1 from liberal Republicans
below the AC line through a group of conservatives above this line to a
concentration of liberal Democrats toward the point B. Such an arrange-
ment suggests that this direction may be related to individual differences on
some measure of political ideology.

Since the coordinates in the matrix G were based upon the reference
axes of matrix A rather than the rotated axes of matrix B, the matrix 2~o of
interstimulus distance estimates for the three idealized individuals was
computed by (19) (Table 6). The coefficients in each of the three columns 
~o represent measures for each of the three idealized individuals of the 190
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Matrix :~
g

TABLE 6

of Stimulus-Pair Projections on Idealized Individual Dimensions

Stimulus-
Pairs

I
2
3
4
5
6
7
8
9

i0

13
14
15
I6
17

19
2O

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40

Idealized Individual Dimensions

A B C

6. 158 6. 2!0 5.839
4.707 1.546 5.392
4.218 8.832 8.905
5.858 4. 724 5.588
6.328 6.522 5.656
8.508 6.239 7.996
5.792 4.023 7.792
8.370 4.864 6.628
3.953 2.877 3.36i
6.741 7.704 7.914

4.253 10.518 7.214
5.927 1.973 5.176
5.095 4.654 3.593
5.705 6.483 7.302
5.73I 5.744 4.284
4.36t 7.783 5.489
4.75i 2.667 4.540
5. 149 6.979 7.030
7.789 7.19i 6.742
6.807 6.488 5.699

Idealized Individual Dimensions
Stimulus -

Pairs A B C

41 4. i49 2.9i9 5.448
42 7.939 7.458 6.484
43 4.688 9.364 5.114
44 4.507 I0.354 7.474
45 5.745 6.341 5.877

46 3.912 6.880 5.537
47 3.446 8.000 6.196
48 4.481 6.252 8.015
49 4.677 i0.324 7. i92
50 5.430 7.050 5.865

51 3.644 7.621 5.585
52 4.310 3.096 5.724
53 5.446 7.128 5.131
54 8.596 8.158 7.469

55 9.073 7.518 7.249
56 10.040 3.606 3.716

57 8.026 5.588 3.847
58 5.283 7.720 7.654
59 9.058 7.684 7.763
60 8.221 6. 937 5.970

5.703 4.133 7.048
8.374 7.049 7.501
5.653 2.64i 4.024
5. 856 4.475 6.307
4.833 6.778 6.166
5.904 3.316 4.601
3.839 2.675 5.174
4.833 7.038 6. 827
7.978 8. 100 6.799
4.238 7.443 8.289

8.010 8.422 8. i85
4.693 5.380 5.985
3.077 9.327 6.518
6.628 6.980 7.148
4.443 4.506 4.276
3.369 8.287 6.991
5.410 5.488 7.006
4.606 4.806 4. 151
7.373 8.514 7.248
4.683 1.702 5,371

6i 8.602 3.505 3.562
62 8.868 8. 054 6.832
63 3.792 i. 412 5.874
64 3. 146 7. 522 5. 573
65 3.148 2.464 3.738
66 9.029 6.754 6.774
67 6.009 7.788 9.218
68 4.397 7.525 7.687
69 5. 693 5. 84i 6. 613
70 6.211 5.930 6.234

7i 5.651 6. i62 8. t87
72 4.094 0.558 3.980
73 5.132 L934 4.965
74 5,947 7. 206 7. 192
75 4. 189 8.927 5.632
76 3. 125 3.820 4.529
77 3.560 8.678 7.141
78 4.543 6.277 6.555
79 4.885 4. 997 3.635
80 5.533 4.205 6.875
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Matrix :~
g

TABLE 6 (Cont’d.)

of Stimulus-Pair Projections on Idealized Individual Dimensions: (Xg = Y CA)

Stimulus-
Pairs

8i
82

83
84
85
86
87

88
89
90

9i
92
93
94

95
96
97
98
99

100

t02
103
t04
105
t06
107
108
i09

111
112
113
1t4

115
116
117
118
119
120

Idealized Individual Dimensions

A B C

7. 019 7. 817 7. 749
8.971 7.202 6.839
3.605 1.023 5.867
8.063 7.546 7.191
6.968 7.603 7.027
5.493 6.297 6.447
4.298 7.724 8.328
3.970 7.825 5.905
6.349 6.929 6.532

2.919 4.506 6.620

7.064 3. 163 2.623
7. i01 6.936 6.849

8.927 8.25I 7.529

9.283 7. 330 8.109

4.702 8.709 6.475

4.615 8.595 6.690

3.988 7. 968 6.252
3.341 8.433 6.891

7.792 6. 661 7. 699
4.715 6.613 6.6t9

9.582 7. i79 7.820
8.828 7.975 7.049
9.538 6.404 7.732

6. 176 6.175 6.798

5.083 4.096 6.436

8,045 8.095 4.696
3,519 2.800 4.298
4.814 7.822 4. 852
4.379 2. 192 6. 290
8.886 7.666 7.420

3.008 8.793 6.750

5.640 5.674 7.598

5.259 8.076 6.674

5. 115 8. 919 6.528
4.585 8.990 6.687

2.88i 1.328 5.869

4.588 7. 623 7.563 "

8.046 8.295 6.961
8.682 7.218 7.277
8.797 7.569 5.396

Idealized Individual Dimensions
Stimulus-

Pairs A B C

12t 3.539 3.347 6.346

122 9.086 6.808 7. 101

123 7. 210 7.623 4. 745

124 3. 752 4. 845 7. t56

125 5.560 7.509 6.389

126 4.417 8. 193 8.222
127 2.029 2.763 3.652

I28 4.018 9.616 6.403

129 4.740 6.552 6.689

130 3.995 4.752 6.507

13i 9. 270 7.856 7. 148

132 8.683 4.893 5.308

133 4. 396 6.786 7.063

134 4.387 9. 150 6.238

135 5.444 5.296 6.850
136 5.625 4. 128 6.282

137 4.538 7. t16 6.512

138 8.049 7.684 6.217

139 3.773 8. 925 5.599

140 5. 525 8. 690 7. 139

14I 5. 117 3.744 5.76i
142 2,639 1.396 5.350
143 3.505 8.595 7.051

144 5. i26 6.068 5. 212

145 4.258 3.655 7.432

146 8,152 8.505 6.823

147 3.104 10.160 6.324
148 8.995 7. 674 8. 129
149 4.076 7.905 6.677

150 8.209 7.771 6.894

151 4.382 7.771 5.875

152 4.306 3.230 7.766

153 4.924 1.475 6.767

154 5.511 4.167 6.755

155 4.603 5.152 7.258

156 9. 645 3. 350 3.657
157 4.515 8.860 5.641

158 5, 129 6.979 6.409
159 3. 838 7.683 5.595

160 5.468 7.642 6.306
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TABLE 6 (Cont’d.)

Matrix ~ of Stimulus-Pair Projections on Idealized Individual Dimensions
g

361

(xg = ¥

Idealized Individual Dimensions
Stimulus -

Pairs A B C

161 4.507 2.089 6.019
i62 8.982 8.222 6.400

163 4.353 1.155 5.688
I64 4.068 1.626 6. 144
165 3.873 4.994 4.812
166 3.302 2.819 5.360

167 3.735 7.070 4.892
168 4.320 7. 673 6.518
169 8. 981 7.635 8. 166
170 3.297 2.134 6.378

171 4.448 5.851 6.322
172 9.013 5.160 5. i70
173 4.500 7.554 7.058
174 4.823 6.573 6.559
175 2.108 i. 943 3.747
176 2.365 8.143 5.571
177 2.937 7.659 5.797
i78 6. 299 6.274 4.549
179 3. 755 3.346 4.782

180 4.523 8.643 7.437

Idealized Individual Dimeusions
Stimulus-

Pairs A B C

181 8.414 7.584 7.532
182 5.650 8.712 5.654
183 4. 762 6. 741 7.252
184 4.377 3. 984 4.837
185 9.368 7. 174 6.787
186 3. 177 1.854 5.558
187 4.620 4,844 6.178
188 4.305 3.571 6. 996
189 3.757 0.924 5. 126
190 4.833 5.324 4.766

interpoint distances sparming the 20 stimulus points. The relatior~ of each
real individual to these three idealized viewpoints can now be computed
by (22).

Multidimensional Perceptual Spaces

The distance measures in each column of )~g were sorted into the ap-
propriate order and arrayed in a separate distance matrix D. These three
distance matrices were then separately analyzed by the multidimensional
scaling procedures outlined by Messick and Abelson [29] and by Torgerson
[45]. Even though insufficient variation was found above in individual ad-
ditive constants to generate a dimension in the factor space of individuals,
each of the present distance matrices might still require the determination
of an additive constant, presumably of roughly comparable size for the
three matrices, for an optimal dimensional resolution. In the present example,
however, after one cycle of the iterative solution with an initial constant
of zero (Messick and Abelson [29]), the additive constants were judged 
be negligible for these three distance matrices. (Incidentally, the size
of the distance estimates and the presence or absence of negative
distances can be manipulated by moving the location of the idealized indi-
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vidual point in the factor space, particularly in relation to the large "average"
first factor. Thus, it is possible to recast the additive constant problem as a
problem of rotatiomul placement of the idealized individual dimension with
respect to the large average dimension.)

Three scalar-products matrices, computed from the distances in each
of the three D .matrices, were then analyzed separately by the method of
characteristic roots and vectors. The three sets of characteristic roots are
given in Table 7. An examination of these roots suggests that the perceptual
space for idealized individual A is strongly unidimensional, that the space
for idealized individual B has two large dimensions followed by a possible
third small dimension, and that the space for idealized individual C is some-
what more complex, involving possibly five or six dimensions.

TABLE 7

Characteristic Roots of Scalar Products Matrices for Distance Measures

Obtained from Three Idealized Viewpoints

Idealized Viewpoint

Characteristic Root A B C

1 157.0i8 221,035 i17.456

2 37.7i3 i09,349 62.848

3 32.057 47.996 51.192

4 26.210 32.437 42. i26

5 22.45t 27.973 38.397

6 19.465 20. 218 34.966

7 t7.16i i6.258 26.722

8 13.911 14. 148 19.424

9 t3.542 i0,737 i6.229

10 10.775 I0.221 i3.231

li 9.132 4. 170 9.878

12 7.389 2.762 5.398

13 4,076 0,000 3,597

14 0,000 -3.446 0.673

15 -0. 692 -8, t31 0.000

16 -1.662 -ll. 6it -4.020

17 -5.758 -13,476 -7,347

18 -6.557 -17. 715 -9.976

19 -11.583 -23. 869 -15.303

20 -i4.802 -32. i59 -18.698
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Stimulus projections on these large dimensions for each of the three
idealized spaces are presented in Table 8. These stimulus values are deter-
mined within a rotation, translation, and multiplication by positive con-
stants. The large single dimension in perceptual space A appears to reflect
an evaluative distinction among the stimuli. One of the two large dimensions
in space B contrasts Republicans and Democrats, and the other dimension
appears to be evaluative in nature. The five or six dimensions of space C
present no immediate clear distinctions of the relatively simple type that
emerged in the other two spaces. This suggests that a more elaborate rotation
of space C is required before interpreting the dimensions. 2kn analysis of
the perceptual space for the group average, as determined from the totM
sample, produced seven dimensions, which are described in detail by Messick
[2S].

In addition to the possibility mentioned above of relating variation
in the factor space of individuals to personality and cognitive variables, it
is also of interest to inquire about possible correlates of the shift in complexity
of perceptual structures, from simple spaces for individuals on the AB line
to the complex space for idealized individual C. Perhaps this dimension of
individual differences contrasts persons that m~ght be termed "abstract"
with others that require considerable concrete and specific detail for their
decisions (cf. Harvey, Hunt, and Schroder [14]). Perhaps it is related 
individual differences in "cognitive complexity" (Bieri and Blacker [5],
Scott [37]) or is a consequence of consistencies in preferred category widths or
equivalence ranges (Messick and Kogan [30], Sloane, Jackson, and Gorlow
[42]).

In conclusion, the present analysis illustrates the power ofthe proposed
method to yield a multidimensional description of the perception of relations
between stimuli by various individuals, in a framework that permits the
varieties of consistent individual perceptions to be ascertained and related
to other personality and cognitive variables.

Summary o] the Procedure ]or Determining
Dimensions of Individual Differences in Multidimensional Sealing

1. Obtain estimates of distance or dissimilarity between all possible pairs
of n stimuli for each of N individuals. Array these distance estimates x(;~ in 
matrix X, having n(n -- 1)/2 rows for the stimulus-pairs and N columns for
the individuals.

2. Compute an N by N matrix of cross products P = X’X. If N >
n(n -- 1)/2, compute the cross-products matrix summing over the variables
on the longer side of X. In this case, P = XX’, and a symmetric analysis is
used in place of the following steps. See equations (la)-(4a).

3. Factor P by the method of principal components and construct the
diagonM matrix F~ from the r largest characteristic roots of P and the matrix
Wr from the corresponding characteristic vectors. Pr = W~ r~ Wr ̄



TABLE 8

Stimulus Projections on Dimensions of Three Perceptual Spaces, One for Each Idealized Viewpoint

Perceptual Spaces for Idealized Viewpoints

A B

Stimulus I I II

i, ChiangKai-shek -0,599 0.239 i, 530 -2.643 -0,285 2,4i3 0,764 -i, 852 0.63t
2, Thomas Dewey 1,615 3,823 0.781 -2.027 -1.597 0.756 0.550 2.84i -0.776

3, Senator E, Dirksen 1.643 3.988 i, 0i7 0,272 -0,563 -2.278 -0.866 0,023 -0,359
4, Senator P, Douglas 1,78i -4,384 0.356 0. 397 3.390 -0. 303 -0. 77i 1,048 3.022

5, DwightD. Eisenhower i. 966 2.405 2,524 -3.302 -0,447 -0,182 0,.285 -0,382 0.652

6, Senator George of Ga, 0. Sil -2.7i2 t, 95i -0.328 i, 014 -i. 397 -0.02i 2,064 i. 813
7, Alger Hiss -5,562 -0,441 -3,766 3.014 -t, 617 0.82i i. 367 0, i24 1. i35
8. Adolph Hitler -6, 702 i. 506 -4, 33I 3, 689 -0, 824 i, i74 -0, 3i4 0, 519 -i, 802

9, Senator E, Kefauver i, 824 -4, 060 0. 868 -0. 739 1. 178 -2. 729 -0. 657 -1. 247 -0, 909

i0. General D, MacArthur i. 759 2. 852 2. 344 -2. 766 -i, 17t 0, 479 -2, 737 -0. 3i9 0. 027
ii, Senator J, McCarthy 2. t75 3.823 -2,667 2,984 -0,199 -t, 585 -2,682 -0,117 -1,178

t2, Jawaharlal Nehru -0. 94t -0, 675 i. 326 -2. 265 -0. 967 1. 326 -0. 013 -2.65i 0.079

t3, RichardNixon 1.395 4.086 2,635 -2. I8i -2,518 -i, 744 i. 880 0,863 -2.012

i4, Franklin D. RooseveIt 0,184 -4,662 0,935 -0.442 3,278 3,133 -0.574 -0,545 -1.482
i5, Joseph Stalin -6,78i i. 179 -4,776 4. 048 -0,010 2.037 -i, 023 0.5i7 -0,599

t6, Adlai Stevenson t, 839 -4, 257 0, 554 -i, 999 3. 150 0, 183 0. 647 t. 851 -1, 513
17, Senator R, Taft i. 793 5, 3i9 i, 605 -2. 782 -L 042 -0, 536 -0. 598 -0. 059 1. t32

t8. Governor TalmadgeofGa. 0,379 -3, i68 0.648 2.789 0,2t4 -i. 955 0.135 -2.48i 0.474
I9, Harry Truman 0.885 -4.414 0.079 1.833 L9t0 -0.88I 4,09i -0,96i -0.272
20. Henry Wallace 0, 535 -0, 447 -3. 6i3 2. 448 -2, 893 1. 266 0. 536 0, 766 1. 938
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4. Scale Wr for differences in sample size to produce the matrix V =
N~ Wr ̄

5. Compute the matrix Y = UrN-~ either by first obtaining Ur =
X W’~ F: I or directly from Y = X V’ r71 N-1.

6. Compute the factor matrix of individuals A = I’, V = Nt l~r Wr.
7. Plot the r factors of A graphically to determine (i) rotation to struc-

ture in the factor space of individuals and (ii) locations for idealized indi-
viduals.

8. Determine, either graphically or analytically (Harman [13]), 
r by r nonsingular transformation matrix T to rotate the principal factors
of A to a desired structure, denoted matrix B = TA.

9. Compute matrix Z = YT-~.

10. Each column of Z contains scaled stimulus-pair projections on
rotated axes. These entries represent distances between pairs of stimuli ac-
cording to r rotated dimensions of vie~’point. Next, r distance matrices are
constructed, one from each column of Z. These distance matrices are analyzed
separately by standard multidimensional scaling procedures to obtain r
perceptual .spaces (Messick and Abe]son [29]; Torgerson [45]; Shepard [40]).

11. If desired, the entries in the first unrotated principal factor of Y
(or of UT) may be similarly used to construct a distance matrix. Multidimen-
sional scaling of this distance matrix produces a perceptual space for the
group average.

12. If desired, locate points to represent g idealized individuals in the
factor space of matrix B. Read the coordinates of each idealized point directly
from the factor plots and record the r coordinates of each point in a column
vector. Assemble these column vectors for g idealized individuals into an
r by g matrix G.

13. Compute f~o = ZG, an n(n - 1)/’2 by g matrix of estimated distance
measures for g idealized individuals. (If the coordinates of the idealized
points are determined from the unrotated axes of matrix A to form Ga ,
compute :~ = YGa .)

14. Construct a distance matrix from each of the g columns of :~ and
analyze them separately by multidimensional scaling methods to obtain g
perceptual spaces, one for each idealized individual.

15. If desired, for r by r square sections of G, compute H -- G71B to
obtain a matrix H of projections of real individuals on r selected idealized
individual dimensions.
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