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The model for three-mode factor analysis is discussed in terms of newer
applications of mathematical processes including a type of matrix process
termed the Kronecker product and the definition of combination variables.
Three methods of analysis to a type of extension of principal components
analysis are discussed. Methods II and III are applicable to analysis of data
collected for a large sample of individuals. An extension of the model is de-
scribed in which allowance is made for unique variance for each combination
variable when the data are collected for a large sample of individuals.

Extension of the two-mode factor analytic model to three or more modes
of data classification has been suggested by Tucker. Initial discussions of
this development appear in the monographs: Problems in Measuring Change
[8] and Contributions to Mathematical Psychology [9]. The latter of these two
monographs gives tile basic mathematical structure of the proposed model.
A further discussion of the mathematical structure was given by Levin in
his PhD dissertation Three-mode ]actor analysis [4]. Results of experimental
trials of the method were reviewed by Tucker in a paper read at the 1964
Invitational Conference on Testing Problems [10]. Since the Tucker and Levin
descriptions of the mathematical structure of the model and analysis pro-
cedures, there have been several mathematical developments which add
power and clarity to the structure of the model. The structure of the three-
mode factor analytic model is discussed here in terms of the newer mathe-
matical statements. A further refinement to be considered involves allowances
for a type of unique variance related to errors of measurement. A fictitious
body of data is used to illustrate several points.

Remarks on Notation

In the development of the three-mode factor analysis model it has been
found quite useful to adopt several rather unique features of notation. Some
of these notational items are at variance with common mathematical usage
but have been found helpful in consideration of some relatively complex
relations. Much of standard summational and matrix notation has been
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retained. Following is a summary of notational items relevant to the present
statement of the model.

A first item is the use of the word mode. Tucker introduced this term to
denote "a set of indices by which data might be classified" ([9], p. 112). For
example, the scores of a sample of individuals on a battery of tests could be
classified by the individuMs in the sample and cross-classified by the tests
in the battery. The individuals in the sample would be the elements of one
set of indices by which the scores are classified; thus, the sample of individuals
would constitute one mode of the data. A second mode of this data would be
the battery of tests. The test scores could be arranged in a rectangular table
with rows for individuals and columns for tests. Such an arrangement will
be termed, in the present context, a two-mode matrix. If the battery of tests
were administered to the sample of individuals on several occasions, the set
of occasions would be considered as a third mode. The data, now, could be
arranged in a rectangular prism or box with horizontal strata of cells for
individuals, vertical strata parallel to the end planes for tests, and vertical
strata parallel to the front plane for occasions. Such an arrangement will be
termed a three-mode matrix. In general, an n-mode matrix would involve
cross-classification of the data on n sets of indices, or modes. Each datum
would correspond to an element of the Cartesian product of the sets of classi-
fication indices or modes.

Each mode will be identified by a lower-case letter, for example, the letter
i may be used for the mode for individuals in a sample. It has proven con-
venient to use this lower case letter in several related, but distinct roles:
1) as a general identification of the mode, 2) as a subscript identifying the
mode to which an element belongs, and 3) as a variable identification symbol
for the elements in the mode. An example of the first usage is a statement
such as "mode i is for the individuals in the sample." An example of the
second usage is in the assignment of identification symbols 1~, 2~, 3~, . ¯ ¯ , N~,
to the individuals in the sample. The identification symbol for each element
of a mode is composed to two parts, one part being a number termed the
index value of the element, designated by v(i), and the other part being
the identification subscript for mode. It will be noted that the elements for
each mode constitute an ordered set. The index value will be utilized in any
calculations for identification of elements. The series of index values for the
elements in a mode shall consist of the integers from 1 to the number of ele-
ments in the mode. The number of elements in a mode will be designated by
the captial letter N with the subscript identifying the mode, that is, by N~
where m is used in the present context as a generalized mode identification;
thus, N~ is the number of elements in mode i. In the third role, the letter is
used as a general, unspecified identification symbol which may be partic-
ularized to the identification symbol of each of the elements in turn. For
example, x,, will be used as the generalized entry in the three-mode matrix
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X with the letters i, j, and k being used as generalized identification symbols
for the elements in the three modes. The index values for elements in a mode
are designated by v(m) -- 1, 2, 3, ... , Nm . The elements in a mode are
designated bym = 1~,2~,3~, ... ,N~.

A convenient notational step has been to define combination modes as con-
trasted to the elementary modes indicated in the preceding paragraph. A
second-order combination mode is defined as the Cartesian product of two
elementary modes and is denoted by the letters of the two elementary modes
enclosed in parentheses. Thus, (ij) is a combination mode formed by the
Cartesian product of the elementary modes i and j. Each element in the
combination mode corresponds to a pair of elements from the elementary
modes, one element of the pair from each of the two modes. Every such pair
of elements from the two elementary modes corresponds to a distinct element
in the combination mode. The index-value part of the identification symbol
for each element in a combination mode is computed over the index values
of the identification symbols of the con’esponding paired elements of the
elementary modes. The form of the equation is given below.

(1) v(ij) = iv(i) - 1]~; + v(j).
An illustration of this computation is given below for N~ = 2 and N; = 3.

Identification Symbols for

Elementary Modes Combination Mode
i j (ij)

1~ 1;
1~ 2; 2(.)
1~ 3; 3(,;)
2~ li 4(.)
2~ 2~ 5(.)
2~ 3; 6(.)

The order (ij) may be read as "i-outer loop, j-inner loop." This definition
is compatible with computer calculation of subscripts. It is to be noted that
(ij) and (ji) contain the same elements but with u change in order and corre-
sponding index values. The number of elements in a combination mode is
the product of the numbers of elements in the elementary modes:

(2) N<~;) ~- NiNi ¯

A matrix will be designated by a capital letter; an element in the matrix
will be designated by a lower-case letter, with subscripts indicating the loca-
tion of the element in the matrix. The first subscript will designate the row
mode of a two-mode matrix or the horizontal strata mode of a three-mode
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matrix. The second subscript will designate the column mode for a two-mode
matrix or the vertical strata mode parallel to the end planes of a three-mode
matrix. The third subscript for an element of a three-mode matrix will
designate the vertical strata mode parallel to the front plane of the matrix.

A notational device that has been found to be especially useful for two-
mode matrices is to pre-subscript the letter for the matrix with the letter
for the row mode and to post-subscript the matrix letter with the letter for
the column mode. Thus, ~A~ is the matrix having entries aim, such as entry

aT,~ in row 7~ and column 3m, with rows for mode i and columns for mode m.
It is to be noted that the matrix ~A~ with entries a~; is the transpose of
matrix ~A~. The entry in matrix mA~ for elements 3~ of mode m and element 7~
of mode i is aa~7, ; note that this entry is identical with entry a~,~, in matrix
,A,~ , the modes for rows and columns of the matrices having been inter-
changed as in transposing the matrix. Thus, for fixed values of i and m, a~
and a~ are two ways of denoting the same quantity, the first in matrix ~A~
and the second in the transposed matrix, ~A~ . This notational device will
be Utilized to designate the transpose of a matrix.

The use of subscripts here is at variance with common mathematical
practice. Commonly, a matrix such as A is defined to have rows for one mode
and columns for a second mode. The subscripts for the elements are used in
common mathematical n.otation solely as indices; thus, i could be used as a
row index to designate individual if the row mode were individuals and be
used as a column index to indicate factor if the column mode were factors.
In the first case i would be the first subscript and in the second case i would
be the second subscript. In contrast, in the present notation, any given letter
will designate a particular mode and the arrangement of the matrix will
change with a change in location of the subscript. This change in notation
permits the use of matrix letters to designate classes of matrices with the
particular matrix in the class being designated by the modes involved. For
example, A may be used to designate factor coefficients for individuals by
factors. If m designates one set of factors and m* designates another set of
factors, the matrix ~A~ will designate the coefficients for individuals i and
factors m while the matrix ~A~. will designate the coefficients for individuals
i and factors m*. As noted previously, the transpose of a matrix may be
designated by interchange of the pre-subscript and the post-subscript. The
letter A would still designate the class of matrix by the class of entries it
contains.

Another convenience offered by the notation is in the representation of
three-mode matrices. Let X be a three-mode matrix for modes i, j, and k
with elements x,-, . Consider use of the combination mode (ij). Then, the
three-mode matrix may be written as a two-mode matrix with rows for the
combination mode and columns for the third mode. This matrix could be
denoted as ,;~X~ . The same matrix can be written, also, as the two-mode
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matrix (taXi by use of the combination mode (i/~) for rows and mode j for
co]umms. When the order of the elementary modes is considered Mong with
the possible pairs of three things taken two at ~ time, that is, when the per-
mutations of three things taken two at a time are considered, and when the
possibility is considered that the combination variable can be used as the
row mode or the column mode, there exist twelve ways that the three-mode
matrix may be written as a two-mode matrix. The chosen notation is helpful
in dealing with these cases.

In a matrix product of two-mode matrices, the post-subscript of the
first matrix must conform with the pre-subscript of the second matrix.
This matrix multiplication follows the usual convention of an entry of the
product matrix equalling the sum of products between entries in a row of the
first matrix with entries in a cohinm of the second matrix. Consequently, the
common subscript for the two matrices will be written only once. For example,
the matrix product of matrices ~A; and ;B~ will be written as ~A~B~ . This
product yields the matrix ~C~ with row mode i and cohimn mode/~.

A matrix operation that has not been used extensively in psychometrics
but which has been found especially helpful in the present context is the
direct product or Kronecl~er product of two matrices. For a discussion of the
direct product or Kronecker product see MacDuffee ([6], pages 81 ft.) 
Bellman ([1], pages 226 ft.). Consider the two matrices ,A,~ and iB~ with
elements a,,~ ~nd b~.~. Let the entries of a matrix (~)H(~ be h(~(~ 
are defined in terms of the entries of ~A~ and ~B~ by

(3) h(.~(.,~ = a,,~b~ 

The matrix notation for this operation will be

(4) (.)H(,.~) = ,A= X ~B~ 

The Kronecker product matrix may be written as a supermatrix containing
submatrices proportional to the matrix ~B~, the second matrix of the product.
The constants of proportionality are the elements of the first matrix ~A~ .
Thus, rectangular representation of the Kronecker product matrix is given
below.

<;i)H(m~)
(a2i1= iBm)

(a~,~. iB,,)

(a~,~ ~B,)

(a~,~ ~B.)

It is to be noted that the modes of the Kronecker product matrix are com-
bination modes obtained from the modes of the matrices involved in the pro-
duct. The row mode of the I~ronecker product is ob?,ained from the row modes
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of the matrices involved, the outer loop mode of the combination being the
row mode for the first matrix and the inner loop being the row mode for the
second matrix. The column mode of the Kronecker product is similarly a
combination mode of the column modes of the matrices involved in the
product.

Several propositions concerning the Kronecker product are important
to the use of this operation in three-mode factor anMysis. These propositions
will be described here without proof. Bellman [1] discusses the less obvious
propositions.

a) The transpose of a Kronecker product matrix equals the Kronecker
product of the transposes of the original matrices in the same order as in
the original product. Compare (6) with (4).

(6) c,~)H(,j) = ,~A, × ~,Bj 

b) If the matrices ~A~ and ;B~ are square and symmetric, then their
Kronecker product (,)H(~) will be a square, symmetric matrix.

c) If the matrices ~A~ and ;B. are diagonal matrices, their Kronecker
product will be a diagonal matrix containing products of pairs of diagonal
elements, one member of the pair being a diagonal entry in ~A~ and the other
member of the pair being a diagonal entry in ~B~, for all possible such pairs.

d) The proposition of (7) is true for Kronecker products.

(7) (,A.,S.) × (~B~T~) = (,A.. X ~B~)(,.S. 

e) If matrices ~A~ and ;B~ possess left inverses, the left inverse of their
Kronecker product is the Kronecker product of their left inverses in the same
order; that is, if

,~A *~A~, = ~I,~ and ~B*jB~ = ~I~ ,

where ~A~ and ~B~ are the left inverses of ~A~ and ;B~ and where ~I~ and
are identity matrices, then

(8) (~A~ X ~B’~)(,A., X ~B~) = ,~,t,~, 

where (~)I(~,) is an identity marrY. Note that the left inverse m~trix 
denoted by a dagger and that the subscripts indicate row and column modes

of this matrix.
f) If the matrices ~A~ and ~B~ are colu~-wise sectio~ of orthonormM

matrices, their ~onecker product will be a column-wise section of an o~ho-
normal matrix. This proposition is a speciM case of the preceding proposition
and occurs when ~A~ is the transpose of ~A~ und ,B~ is the transpose of ~B~.

g) The relation of the characteristic roots and vectol~ of two squure,
symmetric m~trices to the roots ~nd vectors of the~ ~onecker product is
of considerable importance. ~t the two matrices be ~Pi ~nd ~Q~ und let their
~onecker product be (i~)S(i~) as given in 
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(9) ;Pi X ~Q~ = ,~)S,~) 

Let the matrices ~P~ and ~Q~ be resolved into their characteristic roots and
vectors as in (10).

(10) ie~ -- ~B~B~ and ~Q~ = ~C,Q~C~,

where the matrices ~P~ and ~Q~ are di~gonM matrices containing the charac-
teristic roots of ~P~ and ~Q~, respectively, and the matrices ~B~ and ~C~ con-
tain, as column vectors, the characteristic vectors of ~P~ and ~Q~, respectively.
The characteristic vectors are unit vectors so that

(11) ~B~ = ~I~ and ~C~C, = ~I~.

~t the matrix (~)S(~) be resolved into its characteristic roots and vectors
as in (12).

(12) (i~)S(~ = "(i~) V(~)S(~) 

where (~.)S(~ is a diagonal matrix contMning the characte~stic roots 
(~)V(~,) contains, as column vectom, the characteristic vectom of (~)S(~ 
The churucSeristic vectors ~re unit vectors so that

(13) (~,)V(~)V(~ = (~,)I(~) 

The interesting relations are given by (14) and (15).

(15) (~) V(~,) = ~B~ X ~ff~ 

These relations are developed from substitution from (10) into 0) and 
of propositions (c) ~nd (f). Thus, the matrix of characteristic roots of 
~onecker product matrix is the ~onecker product of the matrices of char-
acteristic roots of the two matrices intoned in the product; and the matrix
of characteristic vectors of the ~onecker product m~tr~ is the ~onecker
product of the matrices of characteristic vectors of the matrices that enter
into the product.

Fundamental Model Jot Three-Mode Factor Analysis

A body of dut~ to which t~ee-mode factor ~nalysis would be ~ppSed
can be recorded in a t~ee-mode matrix X which has cell entries x~ . One
example of such a body of data was used as an illustration in the section
Remarks on Notati~ and consisted of scores of ~ s~mple of individuu~ on ~
b~t~ry of tests on severM occasions. A second example could be the r~tings
of a sample of ~dividuals on & selection of traits by several raters. A thud
example could be ratings by a sample of individuals on a selection of bipolar
adjective scales of ~ selection of concepts as is done in studies using the
semantic ~erential developed by Osgood, Suci, and Ta~enba~ [7]. In each
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of these cases, the data consist of numerical values which are identified by
three modes of classification. These modes are directly related to the observa-
tion of the data and may be termed observational modes. These observationM
modes will be designated as mode i, mode j, and mode k.

A conveni.ent form in which to list the data is as a two-mode matrix
with elementary mode i for rows and combination mode (j/~) for columns.
This is matrix ~X(~) . Table 1 gives observed scores in a matrix ~X(;~) for 
fictitious example that will be used to illustrate these notes.

Since, in practice, an allowance should be made for discrepancies in
fitting a model to observed data, such an allowance is symbohzed in the
present context by letting 2~;~ be the value obtained from the model and
e,-i~ be the value of the discrepancy. Then

)(16) :~,i~ = 2,~ + e,~ .

It is desirable, of course, that the discrepancies should be very small. In the
present conception, a maior contribution to ~,~ will be made by a component
labeled ~;~ to be discussed in this section. Other components of limited scope
and having very limiting definition may be added to the g~ to produce the
~;~ . Such a component will be introduced in the last section of this paper.
For theoretical purposes in the present section, the conceptual measures
will treated as if known. Later sections will treat problems of fitting the
model to data.

The model for ~,.~, written in summational notation, is

(17) --

In this model, three derivational modes, m, p, and q, are defined as con-
ceptually more basic than the modes employed in making the observations.
Each of these derivational modes corresponds to one of the observational
modes: m corresponding to i, p corresponding to j, and q corresponding to
Each of these derivational modes can be thought of as a set of factors in the
domain of the corresponding observational mode. An alternate interpretation
is to think of each derivational mode as consisting of conceptual, or idealized
categories corresponding to the observational mode. Thus, if the observationM
mode i is used to designate individuals in a sample, the derivational mode m
can be thought of consisting of factors among individuMs or of conceptual,
or idealized individuals. It is hoped that the number of elements in each
derivationM mode will be markedly less than the number of elements in the
corresponding observational mode. This hope is prefaced by the condition
that a sufficiently large number of elements are included in each observational
mode from the domain of elements that might be included.

The coefficients a,~ , hi, , and c~ are entries in two-mode matrices
~A~, ~B,, and ~C~ . These coefficients describe the elements in the observa-
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tional modes in terms of the elements in the derivationM modes. The coeffi-
cients g.~ are entries in the three-mode matrix G which is termed the "core
matrix." Just as in the original three-mode matrix, X, in which each cell
represents a particular combination of categories from the observational
modes and the entry is a measm’e of a phenomenon whose value depends on
the combination of categories, in the same way each cell in the core matrix,
G, represents a unique combination of categories from the derivational modes
and the entry is a measure of the phenomenon for this combination of cate-
gories. The core matrix can be thought of as describing the basic relations
existent in the measures of the phenomenon being observed. The two-mode
matrices ~A., ;B~, and ~C, transform the statements of these relations from
applying to the more basic tier(rational modes to applying to the observational
modes. The interrelations among elements of one of the observational modes
depend, in part, on the similarity of their relations to the derivational modes,
and, in part, to the relations in the core matrix.

The fundamental model given in (17) can be written in terms of two-
mode matrices by use of combination vm-iables and Kroneeker products.
Three such interpretations are

(lSa) ,X,~) = ,A..G(,~)(,Bi X ,C~),

(18b) ~X(,~) = ~B~G(.~)(.~A, X 

These three forms involve using each of the observationM modes as the row
mode for the matrix ~ and the other two observational modes as a combina-
tion mode of the two-mode matrix. The core matrix G is correspondingly
arranged to the matrix ~ in each of these equations, taking into account the
correspondence of observational modes to derivational modes. In each of
~hese equations, the elementary derivationM mode used as the row mode for
the matrix G is transformed by the appropriate two-mode matrix to the
observational mode used as the row mode of matrix ~7. For example, in
(18a), the two-mode matrix ~A~ transforms the row mode m of matrix 
to the row mode i of matrix ~7.

An interesting point in (18) is the natural way the use of combination
modes in writing three-mode matrices as two-mode matrices is eonformal
with the use of the Kroneeker product. The development of these equations
will be illustrated with the developmen$ of (18a) from (17) which can 
rewritten as

When the portion of the right term of (19) involving the double summation
over p and q is written as a two-mode matrix with rows for mode ra and
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columns for the combination mode (jk), the sum of products over mode 
with a~ can be written as the first matrix multiplication on the right side of
(18a). It is to be noted that the product (bi,c~q) is an element of the Kronecker
product (~B; X ~C~) as per (3) and (4) with appropriate arrangement 
subscripts. The matrix multiplication .~G(,~)(~Bj X ~C~) accomplishes the
double summation over p and q. Equations (18b) and (18c) are similarly
developed.

Some matrix rank restrictions are convenient for the present discussions.
These restrictions may be relaxed in some restricted senses in future develop-
ments; however, they will be assumed to be satisfied for the present.

(20a) Rank (~)~,.~)) = Rank (,A,,) = Rank (~G~(~B~ X ~C~)) = 

(20b) Rank (~(,~)) --- Rank (~B~) = (~G(,~,)(.,A, × oC,))= N~.

(20c) Rank (~(,;)) = Rank (~C,) = (~G(, ~)(,~A, X ~B, ))

For iustification of these restrictions, consider the first equation, (20a). 
possibility exists that the rank of ~A~ is less than its column order. In this
case ~A~ could be post-multiplied by a nonsingular transformation matrix
coupled with pre-multiplication of ~G(~,) by the inverse of the transformation
matrix. Such a transformation will not alter the product ~A,~G(,,) This
transformation may be selected so that one or more columns of the trans-
formed ~A~ contain all zero entries. The number of columns containing non-
zero entries in the transformed ~A, could equM the rank of ,A,~ , but not
be less than the rank of ~A~ . Those columns of the transformed ~A~ con-
raining all zero entries can be discarded along with the corresponding rows.
of the transformed ~G(~,) , thus reducing the column order of ~A, and row
order of ~G(~) to the rank of ~.A~. It is assumed in the specification in (20a)
that any such order reduction possibilities have been accomplished and the
possibility of the rank of ~A~ being less than N~ is discarded. A corresponding
argument applies to the case for which the rank of [~G(~ (~B; X ~C~)] 
less than the number of rows, N~ . Note that, if the ranks of ~A, and
[,~G(~)(~B~ X ,C~)] are N~ , then the rank of ,~,~) is N~ also. Thus, all
possibilities violating the restrictions are discarded.

The three ranks given for the matrix 2~ when written in three differen~
ways are not necessarily equM. They are connected by the interesting group
of inequalities that state that no one of the three ranks can be greater than
the product of the other two ranks. This statement results from considering
the matrix G written in each of the three ways included in (18) and (20).
Note that the number of rows of G when written in each way equals the rank
of 2~ written in the corresponding way. The number of columns of G is the
product of the ranks of the matrix X written in the two non-corresponding
ways. For example, the number of rows of ~G(~) is N~ which is the rank 
~(~,) and the number of columns is the product of N, and N~ which are the
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ranks of the matrices ~-~,k) and k~(,) . If the number of rows of G written
in any of the three ways were greater than the number of columns, then the
rank of that way of writing G would be equal to or less than the number of
columns and would surely be less than the number of rows. However, the
rank of G written in any of the three ways must equal the number of rows of
that way of writing G. Therefore, no one of the three values N~, N,, and Nq
can be greater than the product of the other two.

An interesting group of relations may be developed from the products
defined by

Substitution from (18) into (21) yields

the use of the transpose of a Kronecker product as indicated ~ (6).

(22a)

(2 b)
(22c)

Note

(23a)

(23b)

(23c)

Then

(24a)
(24b)

(24c)

from (22) and (23)

~ = ,A,~M.~A, ,

The form of (24) suggests that the m~trices ~A~, ~B~, ~nd ,C~ could 
determined as factor matrices of the product matrices with the matrices
~M~, ~P~, and ,Q~ being analogous to covariance matrices among the factors.
This is, in fact, a legitimate interpretation. Any method of factoring that
produces factor matrices in which the number of columns is equal to the rank
of the matrix being factored may be used. Application of principal axes
factoring will be discussed in a subsequent section. Before discussing this
topic further, it ~ necessary to consider possible transformatio~ of the deriva-
tional modes.

Let the matrices ~T~., ~T~., and ~T~. be square, nonsingular matrices
and let
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(25a) ~A~,T.,. = ,A,~. ,

(255) ,B,T~. = ~B..,
(25c) ~C~T,. = ~C~..

The m*, p*, and q* are transformed derivational modes and the matrices
;A~. , iB,. , and ,C,. contain coefficients describing the observational mode
elements in terms of the transformed derivational modes. The inverse trans-
formations are

(26a)

(265)

(26c)

,A,~.(.,T,~.)-1 =

,C,.(~T~.) -I = ,C~.

It is to be noted the row modes and column modes must be interchanged
when inverting a m~trix. Substitution from (26) into (18a) yields

Use of the proposition of (7) concerning Kronecker products yields

(28a)
Let

(29a)

(29b)

(29c)

..G,~.~.) = (~,T,~.)-’~,G,~[(~.T~)-~ X (~.T~)-’],

~.G<,~oo., --- (~T=.)-’~G(~,,[(:.T.)-~ X (~.T~)-*],

~.G,~.~.) = (~T,.)-~,G(~[(~.T~)-~ X (~.T~)-~].

Substitution of (29a) into (28a) yields

Equation (29a) gives the transformed G mutrk that is developed in steps
involving (27~), (28a), and similar statements may be made for the other
two modes. Equation (30a) indicates that the use of the transformed two-
mode coefficient m~trices ~nd transformed core matrk G reproduces the
model in the form of (18a). The other two equations of group (30) would
demonstrate the s~me point.

Equations (29) yield the same transformed G matrk written in the
three ways as two-dimensional matrices. Once the transformation m~trices
are determined by some rotation of ~xes procedure, the transformed G matrix
can be determined by some one of the set (29).

Tracing through the effects of the transformations on the matrices
~M~, ~P~, ~nd ~Q, produces the following transformed m~trices to maintain
the form of (23) and (24) for the transformed coefficient m~trices and 
matrk.
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(31a) ~,M~, = (,~T.,,)-~,,M,,(.,,T,,)-~.

(31b) ,.P~, = (,,T~,)-’~P~(,,,T~)-~.

(31c) ~,Q,, = (~T,,)-~Q~(~.T~)-1.

The existence of the flexibility ~orded by the freedom of transformation
permitted by the model is both important and the source of m~y problems.
There is ~ l~ck of uniqueness. This gives rise to m~ny problems yet to be
solved. It is important to recognize ~nd to remember this l~ck of uniqueness
and the resultant freedom of transformation.

One example of the utilization of the freedom of transformation is in
choice of factoring methods to be applied to the product matrices ~, ~P~,
and ~. For example, let the transformations be so chosen that ~,M~. is an
identity matrix. Then the transformed (24a) would 

,~ = ,A~.A,.

This is in standard form for many of the methods of factor analysis, such as
principal axes, centroid, and square-root. Each method implies ~ d~erent
transformation.

Determination of the matrices ,T,. and ,T~, by rotation of matrices
~B~ and ~C~ to simple structure has seemed to be successful for several studies.
In these stu~es, the mode i has been used to represent in~viduals. Either
the matrk ~A~ was not determinate as discussed ia a subsequen~ section or
the rotation to simple structure was not markedly successful. An ~Itemute
method of rotation for determining the ~T~. m~trix was to rotate the core
m~trix to simple structure. This met with moderate success. While the formal
aspects of the transformation of derivational modes are indicated in the
preceding’discussion, the practical problems of determination of these trans-
formations are yet to be solved.

Up to this point, the discussion has involved the relation of t~ee-mode
matrix ~ to the core matrix G. The inverse relation will be discussed ia this
paragraph. In this discussion, the left inverses of the m~trices ~A,, ~B~, and
~C, will be used. These left inverses ~re defined by

(32a) ~A~ = (~A,A2-~A, 

(32c) .el = (,C,C,)-’~C,.

The existence of these inverses is assured by the conditions placed on the
ranks of the matrices in (20). Proposition (e) as to Kronecker products ~elds
left inverses of the Kronecker products of the coefficient matrices. Use of
these inverses in (18) yields
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(33b)

Equations (33) reinforce the idea that the matrices ~ and G are rdated 
linear transformation by two-mode matrices of coefficients for each of the
three corresponding paim of modes, i with m, j with p, and k with q. It appears
reasonable to say that the core matrix G is
The reverse statement is proper also.

The following inverse relations may be noted for the product matrices

,~, , iP~ , and ~.

(34a) =A~,A~

(34b) ~B~ = ~,

(34c)
These equations are obtained from (24).

A group of important structural relations occur when the coefficient
matrices are colu~-wise sections of orthonormM matrices; that is, when

(35) ~A,A~

Then the left inverses defined in (32) are the transposes of the coefficient
matrices. Then, the Kronecker product of pairs of these coefficient matrices
are also colu~-wise sections of orthonormM matrices, as per proposition (f)
concerning Kronecker products.

Refer to (23). The products of Kronecker products on the right-hand
side of these equations are identity matrices for this case and can be deleted
so that these equations become

(36a) ~M~ = ~G(,,)G~ 

It is interesting to note that the matrices ~M~ , ,P~, and ,Q, ~re product
matrices of the core matrix G written in the three ways. Thus, (24) and (34)
give tr~nsform~tlons between corresponding product matrices for X and G.

Due to the rank statements of (20) and to the coefficient m~trices being
colu~-wise sections of orthonorm~l matrices, the traces of corresponding
p~irs of these product matrices are equal.

(37a)

(37b) tr

(37c) tr (~) = 
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where, for example, tr (~2~) denotes the trace of matrix ~ , which is the
sum of the diagonal entries of this matrix. Note that the diagonal entries
in each product matrix are the sum of squares of the entries in the correspond-
ing rows of the matrix forming the product in (21) or (36). Therefore, 
trace of each product matrix equals the sum of squares of the entries in the
entire matrix forming that product matrix. A consequence of these relations
is that the sum of squares of the entries in the matrix ~ equals the sum of
squares of the entries in the core matrix G.

This is a most interesting relation between these two m~trices.
Some further important relations for the case when the coefficient

matrices are colum-wise sections of orthonormal matrices occur when the
transformations from matr~ X to matrix G are taken in steps. Let

(39) .2(m = .A,X~) = ~G(~.)(~ 

where the second equation is obtained from (18a). A rewritten form of (39)
follows where there is a change in the formation of the combination variables
used as colu~ modes for the two-mode matrices.

(40) ~(.,) ~X(,~)(,A. X ~I~) = ~B~G(.,)(~I. X

Note that

When it is noted that the Kronecker product on the right-hand side is a section
of an orthonormul matrix so that the product of Kronecker products produces
an identity matrix which m~y be deleted, then

(41) ~.~)~ = ~(,,)~ = ~P~.

Thus, £he product matrk ~P~ defined in (21b) is no~ affected by an ortho-
normal transformation applied to the mode i. The s~me conclusion could be
obtained by un orthonormul transformation on mode k. A more generM form
of this relation is obtained by defining matrices of ~he form

It can be shown by steps like those between (40) and (41) 

The genera] proposition is that the product mat~x for any one mode is
wriant over orthonormal transformations applied to other modes of a three-
mode matrix. Use of this proposition will be indicated in the nex~ section oa
factoring a ~hree-mode matrix by aa extension of the me~hod of principal axes.
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Factoring by Characteristic Roots and Vectors

The preceding section has treated the fundamental structure of the model
employed in three-mode factor analysis. In this section and the next, the
focus of attention will be on operational matters of procedures for fitting the
model to observations. The particular procedures to be described will be
based on determination of characteristic roots and vectors of various
product matrices. These procedures are an outgrowth of the principal com-
ponents and principal axes factoring procedures commonly applied in two-
mode factor analysis. They are based also on the development by Eckart
and Young [3] on the approximation of one matrix by another of lower rank.
In the present section, the 2~;~ will constitute the 2~;~ of (16).

One matter considered as external to three-mode factor analysis, but of
considerable importance to the analysis for each body of data is the scaling
of those data. The model is written in terms of sums of squares and sums of
products of the observations. If a reasonable origin of measurement exists
for a particular body of data, the experimenter may find it preferable not
to use deviation scores but to use the original measures. In this case, the
model would be approximating the original observations and not just the
deviations from some mean. In another case, it may be reasonable to consider
that all measures for one of the variables in a mode such as j involve a single
scale of measurement irrespective of the elements of the other modes. How-
ever, this scale may involve an arbitrary origin and unit of measure. Then,
the measures for this variable might be transformed to standard scores over
all measures for this variable. For example, suppose that the data consisted
of scores of a sample of individuals, mode i, on tests in a battery, mode
given on several occasions, mode/c. A distribution of scores could be tabulated
on each test in which the score of each individual on each occasion was
entered separately from his score on each other occasion. Thus, each individual
would be represented by N~ scores on this distribution. All scores on the
distribution could be transformed to deviation scores with unit variance.

A third alternative exists when the measurement for each variable in
mode j is considered to be on a different scale for each occasion or situation
in mode k. Then the scores for combination variables (j/c) could be separately
standardized. In general, decisions on scaling of each particular body of
data should be considered in terms of characteristics of the data. The model
is not particularized to a single type of scaling of the data.

For many applications of three-mode factor analysis, one mode of the
data will consist of individuals in a sample. In these cases mode i may be
used to represent the sample with N~ being the number of individuals in the
sample. It appears to be desirable to consider all scores divided by ~
before entering it into the three-mode factor analysis. Suppose that
represents the data appropriately scaled, for example, as standard scores
for each variable. Then, let
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1

This is done so that matrices such as ;P; contain mean squares and mean
products in the sense given below.

1 ~ Y(m Y~ (45) ~P~ = ~X(,~)X~ = N--~

If product matrices are computed for the scores y,~, these product matrices
should be divided by N, to produce the product matrices for scores x,;~ .

The general strategy of the procedures to be discussed is to develop
transformations on the observed data so that the following properties hold.

1) The transformations are of the form of the three-mode factor analysis
model.

2) These transformations are column-wise sections of orthonormal
matrices.

3) The contribution of successive elements of the derivational modes
to the total sum of squares is in decreasing order.

4) The coefficient matrices along with the core matrix account in full
for the observed data.

Then, the approximation is developed by truncation of each derivational
mode in such a way as to retain only those elements that make nontrivial
contributions to the sum of squares of the observed data. The foregoing
statement is not as strong as corresponding statements for principal com-
ponent factoring of two-mode matrices. Even though the computations in
the following procedures involve steps analogous to steps in principal com-
ponents analysis, these procedures do not produce a least-squares approxima-
tion to the data. Investigations of the mathematics of a least-squares fit for
three-mode factor analysis indicate a need for an involved series of successive
approximations. The strict least-squares fit to the data will not be considered
in this report.

In order to specify the strategy in more detail, the following observed
product matrices are defined.

(46a)

(465)

(46e)

~M, = ~X(~a)X, 

Consider the characteristic roots and vectors of these observed product
matrices and let the modes for these dimensions be m2 , p2 , and q~ with
N~. , N~, , and N~. as the number of nonzero roots. Note that all roots of
product matrices will be diagonal entries in the diagonal matrices ~,M,. ,
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~,P~,, and ,iQq, ¯ Also, let the roots for each matrix be arranged in descending
order. Further, let the vectors corresponding to the roots be entered as
columns in the matrices ~A~,, ;B~,, and ~C,, . Then

(47a) ,M, =

(47b) ~P~ = ~B~.P~,B~,

(47c) ~Q~ = ~C~.Q~.C~.
The core mutrix may be obtained by a formul~ analogous to (33a), remem-
bering that the coefficient matrices ure colu~-wise sections of orthonormal
mutrices so that their lef~ inverses are their transposes.

(48)

Since all nonzero roots are retained, a precise fit to the observed data matrix
~X(~) is obtained by aa extension of (18~).

(49)

The foregoing unMyds could be termed the complete model for the observed
data and all of the propositions developed in the preceding section could be
applied.

According to (36a) each root in matrix ~.M~. is a sum of squares 
entries in u horizontul plane in the core matr~ G. Si~lafly by (36b) and (36c),
each root in mutrix ,.P~, is the sum of squares of entries in u vertical plane
of G purullel to the end plunes und ouch root ia ~.Q,. is the sum of squares of
entries ~ u vertical pl~e p~rallel to the front plane of G. Since the roots ure
arranged in descending order in each matrix, the lower planes, the right
planes, and the rear planes should contain small entries. Consequently, some
of these planes could be deleted without markedly reducing the total sum of
squares of the entries in the m~trix G. It was sho~ in the discussion asso-
ciated with (37) thut the sum of squares of the X matrix for uny given 
mutrix equalled the sum of squ~res of the G m~trix provided, us in the present
case, thut the coefficient matrices were column-wise sections of orthonormM
matrices. It is proposed to define the approximation model by truncating
the modes m~ ~ p~ ~ and q~ by deleting dements corresponding to small roots.
The modes for the approximation, then, will contain the first N~, N~, and
elements ~rom the modes from the complete model. No precise way has been
developed for the decision us to what elements should be retained in the
upproxim~tioa model. This is the s~me problem as the number of factors
problem in two-mode factor analysis.

A major problem in the foregoing determination of the approximation
model stems from the fact that each entry in the G matrix is in three planes.
Thus, ~a entry may contribute to the sum of squares for one, two, or three
small roots, one root being from each of the modes. This fuct makes the sum



of squares of the entries dropped by the truncation procedure applied to the
three modes less than the sum of the roots dropped. A further problem gen-
erated by these interdependencies between the modes is that the deletion of
elements for one mode results in the product matrices for the other modes
for the reduced G matrix no longer to be diagonal, and thus not be associated
with characteristic roots and vectors solutions for the )~ matrix. It is for
this reason that the proposed procedure does not yield, necessarily, a least-
squares approximation to the observed data.

A point that will not be considered here is the transformation of the
derivational modes. This topic, which is analogous to the rotation of axes
problem in two-mode factor analysis, was discussed in association with (25)
through (31). Such transformations should be considered in the analysis 
each body of data.

Following are notes on three operational procedures utilizing the strategy
discussed in the foregoing paragraphs.

Method I

This method, which follows directly from the preceding discussion, is of
limited application since it involves all three observed product matrices
directly. When one of the observational modes is relatively large, the corre-
sponding product matrix is large also and may exceed computer capacity.
For example, if the data were collected on a sample of 300 subjects, the
product matrix ~M; would be 300 X 300. The solution for characteristic
roots and vectors for this matrix would not be feasible. However, this method
has been used on smaller bodies of data and is outlined here.

1) Compute the product matrices ~M~, ~P~ , and ~Q~ from the observed
data matrix X as per (46).

2) Compute the characteristic roots and vectors of these product
matrices.

3) Retain only the roots considered to be significant in some sense and
form the diagonal matrices ~M~, ~P~, and ~Q~ containing the retained roots
in descending order. As indicated in the general discussion, the problem of
how to arrive at the decisions as to which roots to retain has not been solved.
The best procedure available may be to make the plot between root number
and root size for each of the product matrices and to inspect the resulting
series of points for a break from a steep slope to a more gentle slope and to
retain all roots preceding this break. In any case, small roots should be
discarded.

4) Form the coefficient matrices ~A~, ;B~, and ~C~ containing as columns
the unit-length characteristic vectors corresponding to the roots retained.

5) Compute the core matrix G by one of the equations like

(50) ,~A,X(~)(~B~ X ~C~) = ,~G(,,,) 
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(~1)

(52)

(53)

Method II

which is obtained from (48). An alternate procedure is to make a series 
computations such as listed below. Note that the output three-mode matrix
from each step is rewritten for the next step as to row and column modes.

,,A,X,k~ = ,~X(i~) 

~BiX~,~) = ,,X(,,~) 

The problem of one of the product matrices being too large for feasible
computation by Method I may be solved by use of Method II. In describing
this method it is assumed that the large mode is mode i for individuals.
Following is an outline of the steps in this method.

1) Compute the product matrix ;P; for the observed matrix X as per
(46b).

2) Determine the characteristic roots and vectors of iP~ and form the
diagonal matrix ,.P,, containing all nonzero roots, or non-almost-zero roots,
and the matrix iB,~ containing the corresponding unit length characteristic
vectors. A truncation of the characteristic roots and vector mode is envisaged
with the number of roots retained in this step N,, , between the number of
all nonzero roots, N~., and the number of roots retained in the final approxi-
mation, N,. It is important to discard only the very small roots at this time
in addition to the zero roots. Elimination of very small roots, however, does
aid in reduction of computations in subsequent steps and should not ma-
teriMly affect the results of these steps which assume that all nonzero roots
are retained at this point.

3) Compute the matrix

(54) ,,X(,~) = ,,,BiX(,~, 

4) Compute the product matrix kQ, by (46c) or 

This latter procedure yields an approximation when almost-zero roots are
¯ discarded in the preceding step.

5) Determine the characteristic roots and vectors of ~Q~ and form the
~diagonal matrix ,,Q~, containing all nonzero, or non-almost-zero roots and
the matrix kC~, containing the corresponding unit-length characteristic
vectors. As before, a truncation of the roots is envisaged between all nonzero
roots retained at this stage and the roots retained for the final approximation.

6) Compute the matrix

(56) o,X .,,,, = ., C~X ( ,..) .
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(57)

Note that

(SS)
then

(59)
since

7) Rewrite ,,X(~,) as ~X( ) and compute the matrix

is defined as a colu~-wise section of an orthonorm~l matrix. A
consequence of (59) is that ~,.,.)G~. is a factor matrix of (,.~.)S~.,.~ 
~,.,.)S~ .... ~ computed in (57) is taken as a section of ¢ .... )S(~.,.~ obtained 
deletion of rows and colu~s containing almosVzero entries.

8) Compute the characteristic roots ~nd vectors of (~...)S(,~..) ~d 
the diagonal matrix ~.S~ containing the nonzero or non-almost-zero roots
and the matrix (~.~.)V~ containing the corresponding ~it4ength vectors.

9) Compute the matrices

Note that steps (8) and (9) utilize the Eckart and Young development 
for approximation of the matHx ~X(~.~,) by the product of the matrices
~A~, and ~,G( .... ). This development permits the anMysis of a matrix utilizing
u product m~trix of order of the sm~ller mode of ~ two-mode m~trix. This
is the particular feature of Method II that permits analysis of data involving
a large mode i.

10) Reduce the number of elements in each derivational mode to those
elements that will be used in the approximation. Comments on this reduction
are made in step (3) for Method 

Method III

This method, like Method II, solves the problem of computations when
the mode i for individuals in the sample is very large. Method III has some
very interesting relations to the multitrait-multimethod matrix of Campbell
and Fiske [2]. Furthermore, it is basic to the analysis allowing for measure-
ment error type of uniqueness described in the next section of the report.

A matrix similar ~ the C~mpbell and Fiske multitr~it-multimethod
matrix may be defined as ~)R~) . It could contain the correlations ~mong
the combination variables, but it is not restricted in this fashion. Whether
the entries are correlations or not depends on the scaling of the entries in
the matrix X. If the scaling for e~ch combination variable is to standard
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scores divided by the square root of the number of individuals, this matrix
would contain correlations; otherwise the entries would not be correlations.
The definition of this matrix is

(62)

It is u product matrix of the observed data matrix X and has rows and
columns for the combination variables. The relation to the multitrait-
multimethod matrix is more apparent if submatrices are defined of the form
~R~ . These are correlations among elements of mode ]~ for specific v~lues of
mode ~. Remember that mode j formed the outer loop for the combination
mode (jk) and that mode k formed the inner loop for the combination mode
(~). The sectioned matrix m~y be represented
Table 2.

~~.~R~,~ ~.~R~.~ ~,~R~,s~ "’"

¯ he generM form of ~he sections is ~,~R~ a, where ~ is used as a variable index
for ~he elemengs in mode ~ and ~’ is used as an alternate variable index for
~he elements in mode ~. ~he engries in ~he matrix (~R(~ are given 

(63) r~,~, = ~ x.~x.,~, .

The entries in sectio~ ~.~R~.~, are for the specified wlues of ~ ~nd ~’ for the
specified section.

The entries in the product m~trices ~P~ ~ad ~Q~ h~ve simple relations to
the entries in the m~trix ¢~R.~ . From (46b)

Substitution from (63) yields

(65) p.. = ~ r~,~ .
k

Note that the entries r~,~ for specific wlues of ~ und ~’ are diagonal entries
in section ~.~R~.~, . Thus, the wlue of p~, is the sum of these diagonal entries
which is the tr~ce of this section.

(66) p., = tr b,~R~,~,).
The diagonal entries ia the m~trix ~P~ are the tr~ces of the corresponding
diagonal sections in the matrix .~R(~ and the off-di~gon~l entries in ~P~
~re traces of corresponding off-diagon~l sections of ¢~)R(~) 
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The entries in the matrix ~Q~ are, according to (46@

(67) q.~, = ~ ~ x,,~x.~. .

Substitution from (63) yields

(68) q~’ -- E r,~i~, .
i

Note that the entries r;~;~, occur only in the diagonal section of ~R.~ and
that ~he summation ia (68) for specific wlues of k ~nd k’ is over entries 
corresponding locations in the diagonal sections of (~)R(~) . Thus, the m~trix
~Q~ can be expressed as the sum of the diagonal sections of the matrix .a)R.~).

=
i

Method III uses the foregoing relations to develop the matrices ~P~ and
~Q~. Following are the steps of Method III.

1) Compute the matrix .~)R(~) by (62).
2) Compute the product matrices ~P~ and ~Q~ by (66) and (69).
3) Determine the characteristic roots and vectors of these product

matrices and form the diagonal matrices of roots ~.P~. and ..Q.. and matrices
of vectors ~B~. and ~C~, . All nonzero, or non-almost-zero roots are retained
as in steps (2) and (5) for Method 

4) Compute the m~tr~ (~,~,)S(,,.~) , defined by (57), 

(70) (~,)S(~,~.) = (~.B~ X .,C~).~)R.~)(~B~. 

5) Determine the characteristic roots and vectors of (.~)S(~,~) 
form the diagonal matrix ~.S.~ containing the nonzero~ or non-almost-zero
roots and the matrix (~,.,)V~, containing the corresponding unit-length
vectors.

6) Compute the core matrix G by (60), repeated here for the renders’
convenience.

7) Compute the matrix ~A~ by

(71) ,A.. = ,X,~.)(~B.. X ,C.,), .... ,V~,S:i/~.

8) Reduce ~he number of elements in euch deriwtionul mode ~ those
elements that will be used in the approximation. Comments on this reduction
are made in step (3) for Method 

Model and Analysis with Unique Variance ]or Combination Variables

In the preceding section, the three-mode model has been used as a direct
approximation to the observed dat~. This is more anulogous ~ principal
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components analysis than to multiple-factor analysis which includes the
concept of unique factors. A complete analogy to multiple-factor analysis
has not been achieved for the three-mode model. However, a step in this
direction has been made by the development to be described in this section
in which the scores on combination variables are conceived of as arising from
two sources, one being the scores generated by the three-mode model and
the second being scores on variables unique to each of the combination
variables. This revised model is described more precisely in the following
paragraphs.

An assumption made in the revised model is that the sample of individuals
is very large. This sample of individuals will be taken as mode i of the data.
For defined conditions to be described in (73) and (74), following, to 
precisely, the sample size has to be unrestrictedly large. These relations
probably will be adequately approximated with large-sample data.

Consider

(72) :~,~ = g~;~ + :~,~, ,

where ~,;~ is the approximation in (16) to the observed measures x~;~ 
is that portion of the approximation defined by (17) and involves the three-
mode model, and $~;, is that portion of the approximation that is unique to
each combination variable. Let the three types of entries indicated above be
entries in three-mode matrices ~, X, and X. Important properties of the
unique portion for combination variables are defined in (73) and (74).

(73) ,~,.~,~(~, = 0,

(74) ,;,)X,~7(~,, 

where ¢i,)U~;,) is a diagonal matrix containing entries u~;,) in the diagonal
ceils.

Tables 3 and 4 give the unique scores matrix ~(~,~ and the common
score matrix ~X(;,~ for the observed scores given in Table 1 for a fictitious
body of data to be used to illustrate the relations discussed in this section.
These data are set up so that there are no errors of approximation e~i, of (16);
and thus, the observed scores x~,., in Table 1 equal the approximation scores
2,, which are obtained by adding the unique scores ~;, in Table 3 to the
common scores g,~ in Table 4. Each column of scores in matrix
Table 3 is orthogonal to every other column of scores in this matrix, thus
satisfying (74). Further, every column in ~J~(;,~ is orthogonal to every column
in matrix ,X(;,) of Table 4, thus, satisfying (73). The sums of squares of 
entries in the columns of ~J~(;,) , after being divided by N~ to convert them
to mean squares, are listed in Table 2 in the row labeled u~;,) which is the
next to last row of this table.

The matrix (;,)R(~) has been defined in (62). Correspondingly, 
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TABLE 1

Observed Score Matrix~ I’X~jk" for Fictitious Problem

303

11 46 33 7 10 9

Z1
-24 -25 - 9 -26 - 9

3i
10 - 9 1 18 - 9

4i
-22 1 1 - 2 9

51 26 33 7 -1O 9

6i
-14 -25 - 9 - 6 - 9

7t
-10 - 9 1 - 2 - 9

8i
- 2 1 1 1B 9

9l
46 15 7 10 - 9

10i
-34 - 7 - 9 -26 9

11i
l0 9 1 12 9

12i
-22 -17 1 - 2 - 9

131
26 15 7 -i0 - 9

14i
-14 - 7 - 9 - 6 9

15l
-10 9 1 - 2 9

16i
- 2 -17 1 18 - 9

17i
46 32 - 7 -I0 - 9

181 -34 -25 -23 - 6 9

191 10 - 9 15 - 2 9

20i
-22 1 15 18 - 9

21i
26 33 - 7 10 - 9

221
-14 -25 -23 -26 9

231 -10 - 9 15 12 9

241
- 2 1 15 - 2 - 9

26i
-34 - 7 -23 - 6 - 9

271 I0 9 15 - 2 - 9

28i
-22 -17 15 18 9

29| 26 15 - 7 10 9

301 -14 - 7 -23 -26 - 9

311 -10 9 15 18 - 9

32i
- 2 -17 15 - 2 9

2~ 3j 4.

6(jk) 7~jk) 8(jk), 9(jk) ) 11(]k) 120"k) 130k) ~4~k) 150k) 160k) 170k) 18(j k) 19(j k) 20(j

35 27 17 12 13 43 36 28 15 20 35 37 26 20 26

-17 5 - 1 -12 17 1 0 12 7 12 1 11 48 4 22

-17 -15 1 - 8 -13 -25 -12 -24 -11 - 4 -19 -37 -36 - 4 -26

- 1 -17 -17 8 -17 -19 -24 -16 -11 -28 -17 -11 -48 -20 -22

12 7 13 O - 9 31 8 20 23 -12 17 - 7 12 32 -14

- 7 -15 - 5 8 - 5 -II - 4 4 15 12 -17 7 24 16 14

5 5 5 4 9 -13 - 8 -16 -19 - 4 - I 7 -12 -16 14

-ll 3 -13 -12 5 - 7 4, - 8 -19 4 1 - 7 -24 -32 -14

35 15 17 12 - 1 29 24 28 1 4 19 17 36 4 10

-17 - 7 - 1 -12 3 -13 12 12 - 7 28 17 31 48 20 38

-17 - 3 I - 8 1 -11 -24 -24 3 -20 -35 -17 -36 -20 -I0

- 1 - 5 -17 8 - 3 - 5 -12 -16 3 -12 - 1 -31 -48 - 4

13 19 13 0 5 17 20 20 9 4 1 13 12 16 2

- 7 - 3 - 5 8 9 -25 -16 4 1

5 - 7 5 4" - ~ 1 4 -16

-11 - 9 -13 -12 - 9 7 - 8 - 8 - 5 -12 17 13 -24 -16 2

35 27 3 - 4 - I 43 36 12 I ~ 35 37 24 4 I0

-17 5 13 4 ,3 1 0 22 - 7 $8 1 11 36 20 38

-17 -15 -13 8 1 -25 -IZ - 2 3 -20

- i -17 - 3 - 8 - 3 -19 -24 -22 3 -12 -17 -11 -36 - 4 -38

13 7 - 1 16 5 31 8 4 9 4 17 - 7 24 16 2

- 7 -15 9 - 8 9 -1~ - 4 20 1 - 4 -17 7 36 32 - 2

5 5 - 9 -12 - 5 -13 - 8 0 - 5 12 - 1 7 -24 -32 - 2

-11 3 i 4 - 9 - 7 4 -24 - 5 -12 1 - 7 -36 -16 2

35 15 3 - 4 13 29 24 12 I~ 20 19 17 24 20 26

-17 - 7 13 4 17 -13 12 28

-17 - 3 -13 8 -13 -11 -24 - 8 -II - 4 -35 -17 -24 - 4 -26

- 1 - 5 - 3 - 8 -17 - 5 -12 -22 -11 -28 - 1 -21 -36 -ZO -22

13 19 - 1 16 - 9 17 20 4 23 -12 1 13 24 32 -14

- 7 - 3 9 - 8 - 5 -25 -16 20 15 12 - 1 -13 36 16 14

5 - 7 - 9 -12 9 1 4 0 -19 - 4 -17 -13 -24 -16 14

-11 - 9 1 4 5 7 - 8 -24 -19 4 17 13 -36 -22 -14

and

I~ c~n be shown by substitution of a matrL~ form of (72) into (75) and alge-
braic simplification involving the definitions in (73), (74), and (76) 
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TABLE 2*

Matrix 0k)R0k)

lj 2j 3j 4j

Ik 2k 3k 4k 5k 1 k 2 k 3k 4k 5k 1 k 2 k 3 k 4 k 6k
1 k 2 k 3 k 4 k 5k

10k)604
336,3 ~ 0 306 504 ,2 ~ 0 360 240 108 106 0 ~ ~0~ ~0~ ~0~

3~)
72 48 145 96 0 24 - 4 - 40 0 - 40 12 - 32 -128 - 48 - 80 - 36 - 84 -264 -1~ -120

40k)
72 48 96 196 0 24 - 4 - 40 0 - 40 12 - 32 -128 - 48 - 80 - 36 - 84 -264 -1~ -120

50M
0 0 0 0 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

%k)
306 204 24 24 0 2~1 142 60 42 18 261 192 108 72 36 162 135 1~ 90

?0k)
2~ 136- 4- 4 0 147 149 56 26 30 192 158 114 54 60 135 135 174 ~

80k)
~2 48 - 40 - 40 0 60 56 93 12 32 84 88 108 ~ 64 72 96 192 ~

9Ok)
72 48 0 0 0 42 26 12 80- 4 48 28 24 32- 8 18 6 36 48-

100k)
0 0 - 40 - 40 0 18 30 32 - 4 85 36 60 84 12 ~2 54 90 156 48

11~)
360 240 12 12 0 261 192 84 48 36 391 264 162 90 72 243 216 234 1~

120k)
240 160 - 32 - 32 0 192 158 88 28 60 264 272 192 72 ~0 216 234 312 132

13Ok)
108 72-128-128 0 108 114 108 24 84 162 192 344 112 168 162 2~ 516 264

l~k}
108 ~2 - 48 - 48 0 72 54 ~ 32 12 90 72 112 137 24 54 54 2~ 168

150k)
0 0 - 80 - 80 0 36 60 ~ - 8 72 72 120 168 24 208 108 180 312 ~

l%k)
162 108 - 36 - 36 0 162 135 72 18 54 243 216 162 54 108 307 243 270 1~

17~)
108 72- 84- 84 0 135 135 96 6 90 216 234 234 54 180 243 397 414 1~ ~?0

180k)
108 72-264-264 0 1~ 174 192 36 156 234 312 516 204 312 270 414 1008 5~

190k)
108 72-1~-1~ 0 90 84 96 48 48 126 132 264 168 96 108 144 5~ ~4"

2%k ) 0 0-120-120 0 5~ 90 96- 12 108 108 180 252 36 216 162 270 468 1~ 388

Unique Mean Squares U20k)

100 81 49 100 81 64 36 49 64 49 49 36 64 49 64 64 100 36 64 ~4

Common Portion Mean Squares r0k) Ok)

504 224 96 96 0 207 113 44 16 66 342 236 280 88 144 243 297 972 660 324

*The entries in this table are mean products, the sums.of products having been divided by Ni .

Since (~,)U~;,~ is a diagonal matrix by definition, only the diagonal entries
of ~;,~/~;,~ are affected in obtaining the matrix ~;,~/~;,~ . This is analogous
to insertion of communalities in the diagonal cells of correlation matrices
in two-mode factor analysis.

Table 2 gives the matrix ,,~R,,~ for the illustrative example. The
entries in this matrix have been scaled to mean products which implies that
the entries in the data matrix had been divided by the square root of the
number of individuals in the sample. Such rescaling by a constant of pro-
portionality has trivial effects on the model and the analysis, but should be
remembered when relations with scores of individuals are considered. The
rescaling to mean products was performed in order to obtain coefficients
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TABLE 3

Unique Scor~ Matrix iX (]k)

~k

1i
i0 9 7 i0 9

~i -I0 - 9 7 -i0 - 9

$1
10 - 9 - 7 10 - 9

t
-10 9 - ~ -10 9

51
-10 9 7 -10 9

6i
I0 - 9 7 i0 - 9

?i -10 - 9 - ? -10 - 9

8i
10 9 - 7 10 9

9i
I0 - 9 ~ I0 - 9

I0i
-i0 9 7 -10 9

11!
10 9 - ~ 10 9

12i
-i0 - 9 - 7 -10 - 9

131 -10 - 9 7 -10 - 9

141 i0 9 7 I0 9

15i
-10 9 - ’7 -10 9

16t
10 - 9 - 7 10 - 9

1¥i
10 9 - 7 -10 - 9

18~ -10

19i
10 - 9 7 -10 9

ZOi
-i0 9 7 10 - 9

~Ii
-10 9 - ~ 10 - 9

~’i
10 - 9 - ~ -10 9

~31
-10 - 9 7 10 9

¯ 4i
10 9 ~ -10 - 9

25i
10 - 9 - 7 -10 9

~6i
-10 9 - 7 10 - 9

~Yl
10 9 7 -10 - 9

28i
-10 - 9 7 10 9

Z9i
-10 - 9 - ~ 10 9

30i
10 9 - 7 -10 - 9

$1i
-10 9 ’/ 10 - 9

~i
10 - 9 7 -10 9

8 6 7 8 7 7 6 8 7 8 8 10 6 8 8

-8 6 -7 -8 7 7 -6 -8 7 -8 -8 -10 6 -8 -8

-8 -6 7 -8 -7 -7 6 -8 -7 8 8 -10 -8 8 -8

8 -6 -7 8 -7 -7 -6 8 -7 -8 -8 10 -6 -8 8

-8 -6 7 -8 -7 7 -6 8 7 8 8 -10 -6 8 -8

8 -6 -7 8 -7 7 6 -8 7 8 -8 10 -6 -8 8

8 6 7 8 7 -7 -6 -8 -7 -8 8 10 6 8 8

-8 6 -7 -8 7 -7 6 8 -7 8 -8 -10 6 -8 -8

8 -6 7 8 -7 -7 -6 8 -V -8 -8 -10 6 -8 -8

-8 -6 -7 -8 -7 -7 6 -8 -7 8 8 I0 6 8 8

-8 6 7 -8 7 "/ -6 -8 7 -8 -8 10 -6 -8 8

8 6 - 7 8 7 7 6 8 7 8 8 -10 - 6 8 - 8

-8 6 7 -8 ? -’/ 6 8 -7 8 -8 10 -6 -8 8

8 6 -7 8 V -V -6 -8 -7 -8 8 -10 -6 8 -8

8 -6 7 8 -7 V 6 -8 7 8 -8 -I0 6 -8 -8

-8 -6 -7 -8 -7 7 -6 8 7 -8 8 i0 6 8 8

8 6 -7 -8 -7 7 6 -8 -7 -8 8 10 -6 ~8 -8

- 8 6 7 8 - ’/ ’/ - 6 8 - 7 8 - 8 -10 - 6 8 8

-8 -6 -7 8 7 -7 6 8 7 -8 8 -10 6 -8 8

8 -6 ’/ -8 7 -7 -6 -8 7 8 -8 10 6 8 -8

-8 -6 -7 8 7 7 -6 -8 -7 8 8 -10 6 -8 8

8 -6 7 -8 7 V 6 8 -~ -8 -8 i0 6 8 -8

8 6 -7 -8 -V -7 -6 8 7 8 8 10 -6 -8 -8

-8 6 7 8 -7 -7 6 -8 7 -8 -8 -10 -6 8 8

8 -6 -V -8 7 -V -6 -8 7 8 -8 -10 -6 8 8

-8 -6 7 8 7 -7 6 8 7 -8 8 I0 -6 -8 -8

-8 6 -7 8 -7 ’/ -6 8 -7 8 -8 10 6 8 -8

8 6 V - 8 - 7 T 6 - 8 - 7 - 8 8 -10 6. - 8 8

-8 6 -7 8 -7 -T 6 -8 7 -8 -8 10 6 8 -8

8 6 7 - 8 - 7 - ’/ - 6 8 7 8 8 -10 6" - 8 8

8 -6 -7 -8 7 7 6 8 -7 -8 -8 -10 -8 8 8

-8 -6 V 8 7 7 -6 -8 -7 8 8 10 -6 -8 -8

unbiased by sample size. Due to the equivalence of the matrix X and matrix
~ for the example, the matrix in Table 2 can be considered also to be ~;~/~c;~) 
As noted previously, the next to last row of Table 2 gives the diagonal entries
u~;~) of matrix <;~ U~i~) . The last row of Table 2 gives the diagonal entries
~;~c;~ for the matrix <;~/~;~ . The entries in the row ~<;~,~ were obtained
by subtracting the u~;~) from the diagonal entries in the body of Table 2.
This operation is in accord with (77). Further, according to (77), if the entries
in the row ~;~<;~ were substituted for the diagonal entries in the body of
the table, the result would be the matrix ~;~/~;~ .
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TABLE 4

Common Score Matrix iX(jk}

i k 2 k 3k 4k 51~ I k 2k 3 k 4k 5k ik 2k 3k 4k 5k Ik 2k 3k 4k

Ii
3~ 24 0 0 0 2~ 21 i0 4 6 3~ ~0 20 8 12 27 27 30 I~ 18

2~ -24 -16 -16 -16 0 - 9 - 1 6 - 4 I0 - 6 6 20 0 2~ 9 21 42 12

3i
0 0 8 8 O - 3 - 3 - 6 0 - 6 -18 -18 -I6 - 4 -lZ -2’/ -27 -30 -12 -18

5i
36 24 0 0 0 21 13 6 8 - 2 24 14 12 16 - 4 9 3 18 24 - 6

6~
-24 -16 -16 -16 0 -15 - 9 2 0 2 -18 -I0 12 8 4 - 9 - 3 30 24

7f 0 0 8 8 0 - 3 - 1 - 2 - 4 2 - 6 - 2 - 8 -12 4 - 9 - 3 -18 -24

8i
-12 - 8 8 8 0 - 3 - 3 - 6 - 4 - 2 0 - 2 -16 -12 - 4 9 3 -30 -24 - 6

9~
36 24 0 0 0 27 21 I0 4 6 36 30 20 8 12 27 27 30 12 18

I0i
-24 -16 -16 -16 0 - 9 - 1 6 - 4 I0 - 6 6 20 0 20 9 21 42 12

13i
36 24 0 0 0 21 13 6 8 - 2 24 14 12 16 - 4 3 3 18 24

14~ -24 -16 -16 -16 0 -15 - 9 2 0 2 -18 -I0 12 8 4 - 9 - 3 30 24

15i
0 3 8 8 . 0 - 3 - 1 - 2 - 4 2 - 6 - 2 - 8 -12 4 - 9 - 3 -18 -24

161 -12 - 3 ,8 3 3 - 3 - 3 - 6 - 4, - 2 0 - 2 -16 -12 - 4 9 3 -30 -24 -

17i
~6 24 0 0 0 27 21 i0 4 6 ~6 30 20 8 1~- 27 27 ~0 12 18

18~ -24 -16 -16 -16 0 - 9 - 1 6 - 4 10 - 6 6 20 0 20 9 21 42 12 30

19i
0 0 8 8 0 - 9 - 9 - 6 0 - 6 -18 -18 -16 - 4 -12 -27 -27 -30 -12 -18

21! 36 24 0 0 0 21 18 6 8 - 2 24 14 12 16 - 4 9 ~ 18 24 -

221 -24 -16 -16 -16 0 -15 - 9 2 0 2 -18 -10 12 8 4 - 9 - 3 ~0 24 6

231 0 0 8 8 0 - 3 - 1 - 2 - 4 2 - 6 - 2 - 8 -12 4 - 9 - 3 -18 -24

241 -12, - 8 8 8 0 - 3 - 3 - 6 - 4 - 2 0 - 2 -13 -12 - 4 9 3 -30 -24 - 6

251 36 24 0 0 0 27 21 i0 4 6 36 30 20 8 12 27 27 30 12 18

261 -24 -16 -16 -16 0 - 9 - 1 6 - 4 10 - 6 6 20 0 23 9 21 42 12 30

27i
0 0 8 8 0 - 9 - 9 - 6 0 - 6 -18 -18 -16 - 4 -12 -27 -27 -30 -12 -18

29f 36 24 0 0 0 21 13 6 8 - 2 24 14 12 16 - 4 9 3 18 24 - 6

301 -24 -16 -16 -16 0 -IB - 9 2 0 2 -18 -I0 12 8 4 - 9 - 3 80 24 6

31i
0 0 8 8 0 - 3 - 1 - 2 - 4 2 - 6 - 2 - 8 -12 4 - 9 - 3 -18 -24 6

821 -12 - 3 8 8 0 - 3 - 3 - 6 - 4 - 2 0 - 2 -16 -12 - 4 9 8 -30 -24 - 6

A relation of the matrix ~;~)/~(;~> is important relative to the estimation
of the entries u~;~) . These entries are analogous to the unique factor variances
in two-mode factor analysis. By the relation to be developed below, these
two problems can be brought together. By (76) and (18a)

(78) .~)/~(;~) = (~B~ X ~C~)(~)G,.A,A,~G(~)(~B~ X 

Let the factors among individuals be orthogonal so that the matrix ;A~ is
a column-wise section of an orthonormal matrix. This is the equivalent for
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the present case to the definition of uncorrelated factors in two-mode factor
analysis. :Equation (79) states this definition. Also, let the matrix (;~)F, 
defined as in equation (80).

(79) ~,A,A,~ = ,~I,~ .

(so)
Substitution from (79) and (80) ~to (78) 

This is the familiar factor equution for two-mode factor analysis, here applied
to the analysis of combinatioa variables (~). As a coasequeace, the diagonal
entries ~(~(~) are the communalities in this two-mode factor unulysis 
combination variubles. The same problems and methods of estimation of
communalities exist here ~s for two-mode factor analysis.

The f~ctor matrix .~)F~ for the illustratNe example is given in Table 5.
This is a principal-~es factor matrix obtained from the characteristic roots
and vectors of the matrix .~)~.~ obtained by substitution of the entries
~(~)(~ into the diagonal cells of the matr~ .~)~(~) in Table 

TABLE 5

1~otor Matrix (jR)Fro of Matrix (~k)R(jk)

TABLE 6

Mode J Product Matrix ]Pj and Charactortst2c Roots and Vectors

~ 20~ 7.3814
12.51~ -2.6730 -2.3988 1j 920 402 ~44-174

~ 40~- 5.8294
7.5341 2.0812 - .9612 aj ~44 ca1 1090 1377

~k ~0~ 0
0 0 0 4j -174 645 1377 2196

% 90k) 1.8598 2,2414 - 2.~086 .4247

~ ll0k ) 13.7308 11.9766 2.0022 2.4528

~ 140~ 6.6343
.7158. - 6.4579 1.3300

~k l~ok) 9.3971
- ~.0226 4.8309 - 2.6700 Matr~ kQk

~ 160k) 12.2921 3.8860 6.0104 6.3779 lk 2k 3k 4k 5k

~ 17~k) 15,24~9 - 1.1763 7.6392 2.2494

Roots of {P{ ~atr~x jDp

1 2
P p

lp ~404o067o lj .0697 .8613

2p 1217.9328 2j .2933 .3168

31
.6527 .2030

41
.7769 -,3416

TABLE 7

Mode k Product Matrix K’~k and Characteristic Roots and Vectors

Roots of, k~k Matrix kCq

1 2 3
q q q

Ik
1296 890 564 312 252 lq 31~5.0782 1k

.5132 .6530 .1852

2k
990 870 ~10 290 420

20.
1039.8484 2k

.4852 .3131 -.2142

3k
564 710 1392 724 668 3q 397,0731 3k

.5780 -,6615 °0097

4k
312 290 724 560 164

4~ .2919 -.3170 .6810

5k
252 420 668 164 604 5k

.2861 -.2443 -°6753
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In case the matrices ;B~ and kC~ are columu-wise sections of ortho-
normal matrices, (80) may be solved for the core matrix 

(82)

If communality estimates can be obtained that are appropriate for two-
mode factor analysis of the combination variables as indicated in (81), these
estimates may be substituted in the diagonal cells of matrix (~)R(i~) to obtain
an estimate of the matrix ,~)/~(;~) . Then, this matrix may be used in Method
III of analysis described in the preceding section. This analysis would start
at step (2).

Table 6 presents the matrix iP~ obtained by (66) and Table 7 presents
the matrix ~Qk obtained by (69) for the illustrative example. The character-
istic roots and vectors for these two matrices are given also in Tables 6 and 7.
All nonzero roots, and only nonzero roots, have been dropped. Since there
were two nonzero roots for matrix ;P~, there are two elements in the deriva-
tional mode p and N~ is 2. There are three nonzero roots for matrix ~Q~, thus
there are three elements in derivational mode q and N. is 3. The matrices of

TABLE 8

1 2p P

1~1 2q 3 1 2 3
q q q q

3 4 5 6
9’I l~q Pq Pq

~: ~k) .o~s
.0~55 .oz2~ .4~0 .5624

2k 2~k) ,0338 .0218 -.0149 .4179 .2697 -.1845

lj 3k 50k) .0403 -.0391 .0004 .4978 -.4836 .0049

4k 40k) .0203 -.0221 .0475 .2514 -.2730 .5865

5k 5~k) .0199 -.0170 -.0471 .2461 -.2106 -.~816

Ik 5~k) .1508 .1919 ,0,544 .1626 .2069 .0587

2k 7~k) .1426 ,0920 -.0629 .1~37 .0992 -.0679

z~ Vk ~k) .~eg~ -.~eSO.00~ .~ -.17~ .O0~S
4k 9~k) .0858 -.0931 .200~ ,0925 -,1004 .2157

5k 100k) ,0841 -.0718 -.1984 ,0906 -.0775 -.2139

1k llGk) .2836 ,3609 ,1024 ,1042 .132~ .0376

2k ~2~k) .~6S2
.~73~ -.~4 .09~ .0636

3j 3k 13~k) ,3195 -.3103 .0032 .1173 -.1140 .0012

4k ~4~k ) .~ -.1~52 .37e4 .0593 -.0044 .1~2

5k ~5~k) .15S~ -.~35~ -.3732 .05~ -.0496 -.~37~

1k 16Gk) .3987 .5073 .1439 -.1753 -.2230 -.0632

2k 17~k) ,3769 .2432 -.1664 -.1657 -.1069 .0731

5k 20~k) .2222 -.1899 -.5246 -. 0977 .0835 .2305



characteristic vectors are the coefficient matrices ~B~ and ~Cs ̄  These matrices
are given to the right of Tables 6 and 7.

The Kronecker product (~B~ X ~C~) is given in Table 8. It is to be noted
that since the matrices ~B~ had ~Co were column-wise sections of orthonormal
matrices, this Kronecker product matrix is also a column-wise section of an
orthonormal matrix.

Table 9 gives the matrix ¢~>S~> for the example computed according
to (70) from the estimate of ~;~>/~i~> obtained by substitution of estimated
communalities into the diagonal cells of the observed ~;~R¢;~ . This change
from (70) as stated is to be noted. Table 9 also presents the characteristic
roots and vectors of the matrix ~S~ . There are four nonzero roots so
that N~ is 4. The characteristic vectors form the matrix ¢~,~ V~. When columns
of ~¢~V~ are multiplied by the square roots of the corresponding charac-
teristic roots, as indicated in (60), the core matrix ~G~ is obtained. This
matrix is given on the right of Table 9.

The core matrix could be obtained from (82) also, in case the matrix
~;~>1~;~ had been factored to the matrix ~F~ . It is to be noted that the
roots given for this factoring in Table 5 are equal to the roots obtained for
the matrix t~St~ and given in Table 9.

Another analogy with two-mode factor analysis shows up at this point.

TABLE 9Matrix (pq)S(pq), Characteristic Roots mSm, Characteristic Vectors (pq)Vm, and Core Matrix {pq}Gm

P q
3

q

~atr~

1 2
p p

1 2 3 1 2 3q q q q q q

(pq) 2489.31 -236.90 -163.4~ 17.42 640.82 -190.07

(pq)
-288.90 683.43 22.30 461.70 -17.28 173.08

3(p~) -163.40 22.30 331.31 170.32 108.39 -.14

(pq)
17.42 461.70 170.32 695.7~ 288.91 163.47

(pq)
840.82 -17.28 108.39 288.91 456.41 -22.30

(pq) -190,07 173.08 -.14 163.47 -22.30 65.76

Characteristic Vectors (!xl)Vm

lm 2m ~m 4m

Cha~ctsrtstt:o Roots

mSm

i m 2848.~265

m
1240.9651

3m

421.7384
4m

111.2651

lq l(pq) .9320 -.0085 .1605 .2062

lp 2q 2(pq)-.1242 .5666 .5000 .5677

~q ~-.0~4 .~6~0-.~2~ .6~0~

~ 4~> .0~ .7~44-.~003-.~00
~ ~q .(~> .3200 .~692-.3391-.2942

q 6(pq}-.0731 .1818 .1328 -o1364

Core Ma~ (pq)Gm

1m 2m 3m 4m
49.738 -.299 3.296 2.164
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The matrix ,A,~ is not determinate. This is precisely the same problem as
indicated by considering (71) in step (7) of Method III factoring. The appro-
priate X matrix to use is an estimate of ~. However, an estimate of neither

X nor J~ is available. The definitions of (73) and (74) force the combination
variables scores in these two matrices to be located in a space of higher
dimensionality than the space for the original combination variable score.
Thus, the column vectors of matrix ,A,~ are in this higher dimensional space
and are not determinate from the data in matrix X for observed scores.

While the factor coefficients for individuals in matrix ~A~ are not deter-
minate, (71) may be used with the observed score matrix X to obtain a type
of estimate of these factor coefficients. The properties of these estimates
have not been explored. Consequently, these estimates should be used with
considerable caution.

Once the coefficient matrices ;B~ and ~Cq and the core matrix (~o)Gm have
been determined, the problem of transformation of derivational modes should
be considered. Comments on this problem are given in association with (25)
through (31). It is to be noted that no restrictions were made that the trans-
formation matrices had to be orthonormal. It is not at all clear what this
restriction would mean for modes p and q. For mode m, the meaning involves
restrictions whether elements of this mode should be orthogonal in the
matrix ~A. or ~A~.. The orthogonal restriction for this matrix is equivalent
to the restriction to uncorrelated factors in two-mode factor analysis. Trans-
formations on modes p and q in coefficient matrices iB~ and ~Co result in
inverse transformation on the core matrix G but do not affect the matrix
~Am. As previously indicated, attempted transformations on modes p and q

TABLE 10

’I’ra~sformations of Derivational M__~des

pTp, qTq, mTm,

lp, 2p, lq, 2q, 3q,

lm* 2m* 3m* 4m*

lp .986 3.729 lq 2.510 1.740 2.214

1m

.906 .228 .128 .332
2.242 - .302 2 2.585 -1.757 -1.2992p q

2m

-.259 .958 .707 ~.015

q .127 1.373 -1.554

3m

-.$12 -.147 °043 .938

m .117 -.702 ,895 -.103

lp, 2p, lq, 2q, 3(t* lm, 2m, 3m, 4m,

1~ 2 0
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to matrices ;By. and ~C~. to simple structure for experimental studies have
led to considerable success. These transformations have not been limited to
orthonormal matrices but have involved oblique transformations. Trans-
formation on the mode m have been problematic due to the indeterminancy
of the matrix tAm for the case with unique variance for the combination
variables. Some success has been obtained by inverse transformations on the
core matrix G to a simple structure.

Examples of the transformation of derivational modes for the illustrative
problem are given in Table 10. In this case, the transformations were to
obtain the matrices that were used to produce the example rather than to
obtain a simple structure. The matrices ~B~. , ~C~. , and (~.~.)Gm. given 
Table 10 are the matrices used in setting up the example. The matrices
mTm., ~T~., and ,T~. transform the matrices ;By, ~C~, and (,~)G~ to the input
matrices by (25b), (25c), and (29a).
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