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Theoretical Note

A Note on the Exact Number of Two- and Three-Way Tables
Satisfying Conjoint Measurement and Additivity Axioms*

James R, ULLRICH AND RonaLn E. WiLsoN

The University of Montana

A lechnique for enumerating and counting the number of two- and three-way tables which
satisfy polynomial conjoint measurement test and additivity tests is presented. The counting
technique reveals thal the number of tables which satisfy all the constraints is very small
relative lo the number of possible tables. % 1993 Academic Press, Ine.

Arbuckle and Larimer {1976) presented techniques for estimating the number of
two-way tables that satisfy the conjoint measurement axioms presented by Krantz
and Tversky (1971} and derived the formula for the exact number of regular rx ¢
tables

Noeglr. (-}z,-c!/]’[ [T retedti+j—1)
i=2 f=2

A (wo-way table is regular' il it satisfies Krantz and Tversky's independence
conddition and if the entries in the rows always increase from left to right and
mercase in the columns from top o bottom. Arbuckle and Larimer performed their
estimates by using a monte carlo procedare that gencrated regular tables that were
subsequently tested for double cancellation and additivity.

McCelland (1977) was able to determine the exact number of 3x3, 3 x4, 3 x5,
and 4 x4 {wo-way tables that satisfied the constraints of double cancellation and
additivity. McCelland’s technique was to enumerate all possible regular matrices of
each of the above sizes followed by testing for double cancellation and additivity,

This paper presents the results for a larger set of two-way tables and for the
Ix3x2, 3x4x2, and 3 x 3 %3 three-way tables that satisfy the conjoint measure-
ment axioms. The exact number of 3 x 3 x 2 tables is of particular interest because
this is the smallest number of three dimensional data matrices for which it may be
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possible to distinguish between the additive law A+ P+ U/, and the distributive
law, (A+ P)U.

A three-way regular a x p x u table consists of a three dimensional array of the
integers 1, 2, ..., apu in which the integers are always increasing from right to left,
from top to bottom, and from front to rear. The computer program used to
enumerate the number of three-way tables starts with an empty three dimensional
array, then places the digit 1 in the uppermost, leftmost, frontmost corner. This is
the root node at the top level of a tree (Knuth, 1973). The three nodes of the
second level of the tree are formed by placing the digit 2 immediately to the left of,
to the right of, or to the rear of the 1. The nodes at the third level of the tree are
formed by placing the digit 3 to the left of, to the right of, and/or to the rear of
either the 1 or the 2 in the level two nodes, subject to the restriction that there must
not be an empty cell to the left of, above, or in front of the 3. This technique is
continued until all empty cells are filled in, at which time the Ulirich and Wilson
(1990) programs are applied. These programs test the conjoint measurement test
from the Krantz and Tversky paper and the additivity test from the Sherman
(1977) algorithm. To save computational time, the tree may be pruned by
performing tests of double cancellation or joint independence before the three
dimensional array is completely filled. A test of the axioms is considered successful
if it satisfies the antecedent and the consequent conditions or if it fails to satisfy the
antecedent conditions of the Krantz and Tversky tests. The number of two-way
tables may be calculated using this same program with the number of levels of the
third dimension equal to one.

The computers currently available are much faster than those available to
McCelland a decade ago. Accordingly, his results were extended to a larger set. The
results? for the two-way tables are presented in Table 1. Examination of this table
clearly reveals that the proportion of additive matrices dramatically decreases with
increasing size as measured by r x ¢ or by the number of regular tables.

When the enumeration program® was used to calculate the number of three-way
tables, it was found that there were 4,877,756 regular 3 x 3 x 2 tables. All of these,
by definition, satisfy the single cancellation test in all three dimensions. A total of
3,509,856 of these satisfy all the double cancellation tests in the 4 x P planes for the
two levels of U. All tests mentioned subsequently in this paragraph pass these
double cancellation and independence tests. When the joint independence tests are
applied, 2,737,620 of these fail in all three dimensions (Ax P:U, Ax U P, and
Px U:A). None of these tables satisfy the axioms for the additive, distributive, or
dual distributive laws. A total of 767,344 tables satisfied the joint independence tests
in exactly one or exactly two dimensions; these are candidates for the distributive
or dual distributive laws, Only 4,796 satisfied the joint independence tests in all

2 McCelland's entry for the 4 x 4 table contains an error in that his number 7840 should be the sum
of 932 and 6660, or 7592.

* Two completely separate programs, one in the C programming language and one in the PROLOG
programming language, were used to verify correctness of the 4,877,756 number.



626 ULLRICH AND WILSON

TABLE 1

The Number of Two-Way Tables of Different Sizes Satisfying
the Cenjoint Measurement and Additivity Tests

3 4 5
Legend
3 362,880 P
42 R & ~DC
6 R&DC& ~J1
0 R&DC&IT& ~4
36 R&EDC&N& A
4 479,001,600 200E+13
462 24,024
159 16,432
8 932
295 6,660
5 131E+12 243E+18 1.55E 425
6,006 1,662,804 701,149,020
3,233 1,459,657 ?
190 50,213 6,747,173
2,583 152,934 84,499,471
6 6.40E + 15 6.20E+ 23 ?
87,516 140,229,804 ?
60,784 ? ?
3,152 2,110,631 ?
23,580 3,533,829 ?

Note. The legend contains mnemonics for the table entries:
P represents possible, R regular, DC double cancellation, JI joint
independence, and A additive. Entries with a guestion mark were not
calculated.

three dimensions and of these 3,792 satisfied the strict test of additivity. Because so
few matrices satisfied this condition, it is apparent that the constraints imposed by
additivity are extremely strong. It should be noted that some of these data matrices
may in fact be generated by distributive or dual-distributive laws (Emery and
Barron, 1979; Nygren, 1985). A copy of the 3,792 additive data matrices may be
obtained from the authors.

There does not appear to be any simple equation for calculating the exact
number of regular three-way tables insofar as the prime factors of 4,877,756 are 2,
2, 13, 19, and 4937. The 4937 factor seems particularly intractable.

With respect to three-way tables larger than 3 x 3 x 2, it was necessary to prune
the tree as it was being created for failures of joint independence or of double
cancellation in any of the A4 x P planes. This prevents the algorithm from counting
the number of regular matrices. For the 3 x 3 x 3 case there were 1,865,778 tables
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TABLE 2

The Number of Three-Way Tables Satisfying the Conjoint Measurement
and Additivity Tests

Ix3x2 Ixdx2 Ix3x3
P 640 E15 620 E23 108 E28
R 4,877,756 ? ?
R & DC3 3,509,856 ? ?
R&DC3 & JIO 2,737,620 ? ?
R & DC3 & (JI1|JI2}) 761, 344 ? ?
R&DCI&I3 4,796 273,860 1,865,778
R&DCI&IZ& A 3,792 141,344 566,616

MNote. The mnemonics are the same as those for Table ]l with the
addition of a digit indicating the number of test passed.

which satisfied ail the joint independence and double cancellation tests. Of these,
566,616 were additive. In the 3 x 4 x 2 case there were 273,860 tables which satisfied
the joint independence and doublie cancellation tests. Of these, 141,344 tables were
additive. Table 2 contains a summary of the tests for the 3x3x2, 3 x4x2, and
3 x3 %3 cases.

Judging from the relatively small number of tables which are_ additive, it is
apparent that additivity is an extremely strong constraint. The ability to enumerate
each and every additive matrix could be useful in specifying an attempt to construct
an error theory for conjoint measurement. For example, the number of data trans-
formations necessary to make a data table containing errors into an additive table
could be determined. Both Coombs and Huang (1970) and Ullrich and Painter
(1974} have used this technique. An unsoclved probiem, of course, remains as to the
number of tables satisfying the distributive and dual-distributive laws. The solution
to this problem is considerably more difficult because of the non-linear form of the
constraints. Since the number of 3 x 3 x 2 tables which satisfied joint independence
in all three dimensions was 4,796 (a necessary condition for the additive law),
and since there were 767,344 which satisfied joint independence in one or two
dimensions (a necessary condition for distributive and dual-distributive laws), there
is a strong suggestion that the distributive and duai-distributive laws are much
weaker. Equivalently, there is the suggestion that there are far more distributive and
dual-distributive tables than additive tables.
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