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An integrated online multivariate statistical process monitoring (MSPM), quality prediction,
and fault diagnosis framework is developed for batch processes. Batch data from I batches, with
J process variables measured at K time points generate a three-way array of size I × K × J.
Unfolding this three-way array into a two-way matrix of size IK × J by preserving the variable
direction is advantageous for developing online MSPM methods because it does not require
estimation of future portions of new batches. Two different multiway partial least squares (MPLS)
models are developed. The first model (MPLSV) is developed between the data matrix (IK × J)
and the local batch time (or an indicator variable) for online MSPM. The second model (MPLSB)
is developed between the rearranged data matrix in the batch direction (I × KJ) and the final
quality matrix for online prediction of end-of-batch quality. The problem of discontinuity in
process variable measurements due to operation switching (or moving to a different phase) that
causes problems in alignment and modeling is addressed. Control limits on variable contribution
plots are used to improve fault diagnosis capabilities of the MSPM framework. Case studies
from a simulated fed-batch penicillin fermentation illustrate the implementation of the
methodology.

1. Introduction

Online process performance monitoring and product
quality prediction in real time are important in batch
and fed-batch process operations. Many high-value
specialty chemicals in pharmaceutical, biotechnology,
polymer, and semiconductor manufacturing industries
are manufactured using batch processes. Early detection
of excursions from normal operation (NO) that might
lead to deteriorated product, diagnosis of the source
cause(s) of the deviation, and prediction of product
quality in real time ensure safe and profitable operation
and provide the opportunity to take corrective action(s)
before the effects of disturbance(s) ruin the batch.

Process variable measurements such as reactant feed
rates, aeration rate, and temperatures are frequently
recorded in a typical batch process run, resulting in a
data set containing time-varying trajectories. These
trajectories contain valuable information for monitoring
the performance of the process and can also be related
to product quality measurements that usually become
available at the end of the batch. Multivariate statistical
projection methods such as principal component analy-
sis (PCA) and partial least squares (PLS) have been
used to develop multivariate statistical process monitor-
ing (MSPM) techniques.1,2 These techniques have be-
come an effective alternative to conventional univariate
statistical process control (SPC) and statistical quality
control (SQC). PCA and PLS techniques have been
extended to multiway PCA (MPCA) and multiway PLS
(MPLS) to account for three-way data array decomposi-
tion of batch processes.3,4 Illustrative applications in
batch/semibatch polymerization have been reported.4,5

MSPM frameworks including multivariate charts for
both end-of-batch and online monitoring have been
proposed.6,7 MSPM techniques based on trilinear de-
compositions of three-way data array such as parallel
factor analysis (PARAFAC) and Tucker models have
also been suggested to monitor batch processes.8-12

Online monitoring of batch processes was challenging
because the first generation of batch MSPM techniques
required complete variable trajectories to the end of a
run. Because the future portions of the process variable
trajectories are not available during the progress of the
batch, different assumptions are made to estimate the
unmeasured parts of these trajectories including the use
of missing value prediction capabilities of PCA and
PLS.4 These estimation approaches have been incorpo-
rated in MPCA for online SPM and used with MPLS
and multiway covariates regression models for predict-
ing the values of end-of-batch quality variables on-
line.5,12 Techniques that do not require future value
estimation have also been suggested. Adaptive hierar-
chical PCA (AHPCA) develops recursive local PCA
models relating previous observations in an exponen-
tially weighted moving average manner.13 Another
technique uses dynamic PCA and PLS for online batch
monitoring without future value estimation.14 Orthogo-
nal function approximation theory with PCA was also
proposed for online batch MSPM.15,16 Developing local
MPCA, PARAFAC, and Tucker models by partitioning
the total run time of a batch with respect to some
scheduling points has been suggested as well.17 Com-
parative studies on the performance of these techniques
are available.18,19

In addition to missing values and outliers, batch
process data analysis has additional challenges such as
unequal lengths of historical data sets and unsynchro-
nized batch trajectories. A variety of techniques has
been suggested for addressing the problem of unequal
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and unsynchronized trajectories. A relatively simple
approach is to use an indicator variable and resample
the process variables with respect to this variable
instead of time.20 Illustrative examples have been
reported for batch/semibatch industrial polymeriza-
tion20,21 and fermentations.22,23 Another alignment
method is the dynamic time-warping technique devel-
oped in the speech recognition community.24,25 It has
been applied to synchronization of batch trajectories22,26

and detection of process phases in bioprocesses.27 Re-
cently, the curve registration technique was suggested
to align batch trajectories and detect process landmarks;
illustrative results were given for fed-batch fermenta-
tions.22

Most MSPM techniques for batch processes rely on
unfolding the three-way data array by preserving the
batch direction. A different online MSPM framework
can be established by unfolding the three-way data
array by preserving the variable direction.28-30 In this
MSPM framework, it is not necessary to estimate the
future portions of variable trajectories. MPCA or MPLS
models can be developed and used for online monitoring.
Wold et al.29 have proposed a methodology by developing
an MPLS model between the process variable matrix
that is unfolded in the variable direction and the local
time stamp to use in the alignment of trajectories.

Enhancements to this MSPM framework with online
quality prediction and variable-contribution analysis are
reported in this study. Trajectory alignment and model-
ing problems caused by the discontinuity problem due
to batch/fed-batch switching are addressed. Mean cen-
tering of nonlinear score trajectories is performed as an
additional step to construct control limits resulting in
better fault detection performance. Control limits on
variable contributions to various MSPM statistics (scores,
T 2, SPE, and average deviations) are constructed and
adapted to provide improved fault diagnosis insight. A
quality prediction methodology is also incorporated
based on data partitioning with respect to progress of
the batch. Simulated data from fed-batch penicillin
fermentation are used to illustrate the method.

The paper is organized as follows. Batch data chal-
lenges are summarized in section 2. Alignment-related
issues and different techniques for trajectory alignment
are discussed and compared in section 2.1, followed by
the discussion of unfolding methods and their effect on
online SPM in section 2.2. Steps involved in the devel-
opment of online and end-of-batch SPM frameworks are
presented in section 3. Section 4 contains illustrative
examples for monitoring a fed-batch penicillin fermen-
tation process.

2. Batch Data Challenges and Remedies

Analysis of batch process data offers a variety of
challenges. It is common in batch process operation that
the total duration of the batches and/or the duration of
individual phases within a batch run are not the same.
These differences may be caused by seasonal changes
in environmental variables (e.g., coolant temperature
variations), variations in quality and impurity concen-
trations of raw materials, unpredictable microbial re-
sponses to slight changes in batch bioprocesses, and
arbitrary termination of batches by plant operators. The
unequal batch data length causes problems for vector-
matrix calculations involved in empirical modeling. In
addition, critical local features in process variables in
each batch corresponding to certain phases of process

dynamics may occur in different times, resulting in
unsynchronized batch profiles. Various techniques to
address these problems are discussed briefly in section
2.1.

Data pretreatment is performed prior to analysis
when batch process data include noisy and collinear
data or have outliers and missing values. The collinear-
ity problem is overcome by using subspace empirical
modeling techniques such as PCA and PLS. Prediction
capabilities of these techniques can also be used to

Figure 1. Three-way array formation and unfolding.

Figure 2. MPLS modeling using different unfolding approaches:
(a) MPLS model blocks for predicting the product quality; (b)
MPLS model blocks for predicting the progress of the batch.
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detect and remove outlying data values or estimate the
values of missing data.

2.1. Alignment of Variable Trajectories. Different
techniques have been suggested to overcome unequal
and unaligned batch process data problems. Dynamic
time warping (DTW) locally translates, compresses, and
expands the patterns so that similar features are
aligned.24,25 Recent applications for data alignment of
batch polymerization26 and batch fermentation are
reported.22,27 Curve registration (CR) technique31 has
been suggested to align batch trajectories with respect
to process landmarks.22,32 It is a twofold process of
identifying landmarks within a trajectory, followed by
warping of the test trajectories to the reference trajec-
tory containing landmark locations.

The indicator variable (IV) technique provides a
simpler alternative. In this technique, a variable is
selected to indicate the progress of the batch instead of

time. This variable should show the maturity of the
evolving batch, should be smooth, monotonically in-
creasing or decreasing, and should span the operation
range for all variables. New observations are taken
relative to the progress of this variable. The data
alignment technique used in this study is a variant of
the IV technique. DTW or CR techniques can also be
used without loss of generality. The MPLS model
developed between process measurements matrix X and
local batch time vector z generates a predicted local time
vector that can be considered as a maturity index, which
has contributions from a wide range of process variable
trajectories. This variable can be used to align each
batch in the reference set by interpolation, resulting in
aligned variable profiles with an equal number of
measurements. The implementation of this approach
becomes challenging when there are discontinuities in
the process operation, as is the case of fed-batch
fermentations. Solutions to this problem are discussed
in section 3.

2.2. Unfolding Batch Data Array and Its Effect
on Online SPM and Quality Prediction. Process
measurements made on J variables at K time intervals
for I batches are arranged into a three-way array X of
size I × K × J (Figure 1) after equalization and
alignment of variable trajectories. Product quality mea-
surements at the end of the batch on M variables form
a matrix Y of size I × M. The three-way array X can be
unfolded into a two-dimensional matrix of the form X
in six different ways. Only two of them, I × KJ and IK
× J presented in Figure 1, are useful for MSPM. To
differentiate the two MPLS techniques with different
types of unfolding, the conventional MPLS technique
that preserves the batch direction (I × KJ unfolding) is
called MPLSB (Figure 2a) and the one that preserves
the variable direction (IK × J unfolding) is called
MPLSV (Figure 2b). MPLSV can be combined with
MPLSB to predict the final product quality.29 This has
been implemented to predict the end-of-batch quality
during the progress of the batch in section 3.3.

Figure 3. Overview of online SPM methodology.

Figure 4. Predicted local batch time for the entire process duration. The peak corresponds to switching from batch to fed-batch operation.
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The MPLSB algorithm uses the unfolded matrix X (I
× KJ) and the quality measurements matrix Y (I × M).3
X is mean-centered to remove the nonlinear dynamic
behavior of variable trajectories and is usually scaled
to unit variance. An MPLS model with R latent vari-
ables, reflecting NO, is developed between the properly-
scaled unfolded X matrix of process measurements
collected from “good” batches that produced acceptable
product quality and the Y matrix of final quality
measurements of these “good” batches. This is achieved
by decomposing X and Y into a combination of scores T
(I × R), loadings P (KJ × R) and Q (M × R), weights W
(KJ × R), and residual matrices E (I × KJ) and F (I ×
M) (Figure 2a) such that

The data matrix Xnew (K × J) of a new batch run that
is monitored is unfolded and scaled to a xnew vector of
size 1 × KJ to predict the scores vector t̂ (1 × R) and
values of the quality variables ŷ (1 × M)

to compare with those of reference batches.
MPLSB poses a problem for online MSPM in real time

because the new batch data matrix Xnew is incomplete
during the progress of the batch. To perform calculations
in eqs 2 and 3 at each time interval k for online
monitoring and final quality prediction in real time,
future values of xnew should be estimated from k + 1 to
K. Four methods have been suggested for estimating
future values of the process trajectories.5,7,40 They
introduce a certain level of arbitrariness to the
MSPM performance, as reported in comparative stud-
ies.5,7,13,18,19,40

When process measurements array X is unfolded to
X (IK × J) by preserving the variable direction,8,28,29 it
can be thought of as a combination of slices of matrices
of size K × J for each batch (Figure 1). The evolution of
the batch can be monitored by developing an MPLS
model between X (IK × J) and a time stamp vector z
(IK × 1) (Figure 2b).29,33 In this case, MPLS decomposes
X and z into a combination of scores matrix T (IK × R),
loadings matrix P (J × R), vector q (R × 1), and weight
matrix W (J × R), and residuals E and f

During the progress of a new batch, a vector xnew of size
1 × J becomes available at each sampling time k. After
application of the same scaling used with reference sets
to the new observations vector, scores and batch progress
(zpred) at time k can be predicted by using the MPLS
model parameters

Because the dimensions of W(PTW)-1 are J × R, online
monitoring of the new batch can be performed without
estimation of future values.

In the preprocessing step, X is mean-centered and
usually scaled to unit variance. The effect of this
preprocessing differs from that of MPLSB because the
dynamic nonlinear behavior of trajectories in X is
retained. Mean centering in MPLSV refers to subtract-
ing grand means of variables from the trajectories in
X. Because it is aimed to model the progress of process
variable trajectories in MPLSV, variable trajectories are
not linearized about the mean trajectory set.

3. Online Process Performance Monitoring
Framework

The online monitoring framework in this work is
based on unfolding of a three-way array by preserving
the variable direction (MPLSV). In addition, MPLSB is
used for online/offline quality prediction.

3.1. Model Development. Model development uses
a reference data set that contains good batches present-
ing NO. Figure 3 summarizes the online monitoring
framework that is combined with time alignment, data
length equalization, and detection and removal of out-
lying batches from the reference set. Data alignment
using an IV can be performed in different ways. If there
exists a process variable that other process variables
can be measured against its percent completion, it can

Figure 5. Results of the alignment procedure for biomass
concentration profiles: (a) phase 1; (b) phase 2. The 0 on the time
axis corresponds to the end of phase 1 time.

X ) TPT + E, Y ) TQT + F (1)

t̂ ) xnewW(PTW)-1, ŷ ) t̂QT (2)

e ) xnew - t̂PT, f ) ynew - ŷ (3)

X ) TPT + E, z ) Tq + f (4)

t̂k ) xnew,kW(PTW)-1, zpred,k ) t̂kq (5)
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be selected as the IV and trajectories of the variables
in the reference set are resampled by linear interpola-
tion techniques with respect to this IV. An alternative,
especially when such an IV is not available, is to develop
an MPLSV model between the process measurements
matrix X and the local time stamps vector z of the
individual batches in the reference set (Figure 2b; y )
z). This MPLSV model provides the relationship be-
tween the local batch time (z) and the evolution of

process variable trajectories. The predictions zpred can
then be used as an IV, and process variables are
resampled on percent increments of this derived vari-
able. It is assumed that variable trajectories contain
sufficient information to fairly predict batch time in
MPLSV modeling. This assumption implies that vari-
able trajectories somewhat linearly increase or decrease
in each process phase. Local batch time prediction
produces weak results when there are discontinuities

Figure 6. Predicted local batch times (zpred) in phases 1 and 2 with control limits (dashed lines).

Figure 7. (a) Partitioning of process measurements space and (b) restructuring for online quality prediction framework.

Ind. Eng. Chem. Res., Vol. 42, No. 20, 2003 4649



or there exist instances in which variables have simul-
taneous piecewise linear dynamics during the evolution
of the batch. As illustrated in Figure 4 with fed-batch
penicillin fermentation data, the predicted time shows
nonincreasing or decreasing behavior in the region
around the discontinuity (Figure 4; batch/fed-batch
switching at about 55 h, indicated by peaks), which
makes it inappropriate for data alignment. Similar
results were also reported for industrial data.18

This problem can be solved by partitioning the entire
process into major operational phases. Two different
data alignment methods are used. When batches in the
reference data set are of unequal length and there is
no appropriate IV that spans the whole batch run, an
MPLSV model is developed between X and the local
batch time stamps z for each process phase. Process
variable trajectories are then resampled with respect
to the percent completion of zpred. A vector zmax contain-
ing predicted termination times of reference batches is
used to calculate the percent completion on zpred. An
alternative is to select appropriate IVs in each phase of
operation. The discontinuity occurs in the transition
from batch to fed-batch operation in penicillin fermenta-
tion (Figure 4). Consequently, there are two operational
phases and two IVs are used. In this case, process
termination is determined according to a maturity
indicator such as a preset percent conversion level or a
certain amount of a component is fed. The use of two
different IVs for fed-batch penicillin fermentation is
discussed in section 4.2. Figure 5 shows aligned biomass
concentration profiles of the reference batches in each
phase of the batch run. As a result of alignment, the
number of measurements in each batch on each variable
is equalized and temporal variation of process events
is minimized so that similar events can be compared.
zpred of a new batch can be used as a maturity indicator.
If its value is smaller than the observed value, the
process is progressing more slowly than the reference
batches. Limits are used to detect an unusual deviation

from the expected time course of the batch. zpred profiles
calculated from the MPLSV model in each phase of the
reference batches are plotted against actual z values in
Figure 6 along with their control limits.

Once the reference data set of good batches is aligned
to give an equal number of measurements in each batch
and synchronized variable profiles, an MPLSV model
is developed between the aligned process variables set
and the percent completion of the batch run, z. Model
parameters from this step are used to construct MSPM
charts as outlined in section 3.2.

3.2. MSPM Charts. It is advantageous to use the
MPLSV model for online monitoring of batch evolution
because no future value estimation is required. How-
ever, this technique may produce weak results for small
disturbances when the goal is detecting deviations from
the mean trajectories. Nonlinear estimated score tra-
jectories are obtained as a result of MPLSV modeling
because nonlinear variable trajectories are used in the
X matrix. Predicted score vectors of reference batches
are gathered to form the reference scores matrix T̂R,k.
Each of the I reference batches is passed through the
online MPLSV calculations (eq 5) as if they were new
batches. Their scores (t̂r,k, r ) 1, R) forms the T̂R,k matrix
at each sampling time k resulting in I observations on
R scores

The nonlinear dynamic behavior is removed from T̂R,k
by subtracting mean score trajectories obtained from the
MPLSV model and constructing multivariate statistical
control limits by using this mean-centered score matrix.
Average score traces thk and the covariance matrix of
mean-centered reference scores Sk at time k are calcu-
lated from the T̂R,k matrix of size I × R

The score plots of latent variables are used to detect any
departure from the in-control region defined by the
confidence limits calculated from the reference set.
Control limits for scores can be computed using Stu-
dent’s t distribution statistics after checking that the
scores have almost normal distribution. The control
limits for new independent t scores under the assump-
tion of normality are defined as34

where tn-1,R/2 is the critical value of the Student’s t test
with n - 1 degrees of freedom at significance level R/2
and n and sref are the number of observations and the
estimated standard deviation, respectively, of the t score
at time k.

If the distribution of scores is significantly different
than normal, th ( 3σ should be used where th are average
estimated scores and σ their standard deviations29

The T 2 chart detects small shifts and deviations from
NO defined by the model. T 2 and its statistical limits

Table 1. Process and Product Quality Variables from
Simulated Fed-Batch Penicillin Fermentation

process
variable no. definition

1 aeration ratea

2 agitator power inputa

3 substrate feed ratea

4 substrate feed temperaturea

5 substrate concentration
6 oxygen saturation (%)
7 biomass concentration
8 penicillin concentration
9 culture volume
10 carbon dioxide concentration
11 hydrogen ion concentration (pH)
12 temperature in the fermentor
13 generated heat
14 cooling water flow ratea

15 amount of substrate added
(computed from variable 3)

quality
variable no. definition

y1 final penicillin concentration
y2 overall productivity
y3 yield of penicillin on biomass
y4 yield of penicillin on substrate
y5 amount of penicillin produced

a Input variables.

T̂R,k ) [t̂I1,k, t̂I2,k, ..., t̂Ir,k, ..., t̂IR,k] (6)

Sk )
t̂k

Tt̂k

I - 1
(7)

(tn-1,R/2sref(1 + 1/n)1/2 (8)

thk )
1

I
∑
i)1

I

T̂iR,k, σk ) x 1

I - 1
∑
i)1

I

(T̂iR,k - thk)
2 (9)
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are also calculated by using the mean-centered score
matrix. T 2 values at each time k follow an F distribu-
tion6

where t̂new,k is the predicted score vector of the new
batch calculated using eq 2, I the number of batches in
the reference set, and R the number of latent variables
retained in the model.

The squared prediction error (SPE) chart shows large
variations and deviations from NO that are not defined
by the model. SPE values that are calculated at each
time k using eq 3 are well approximated by

where g is a constant and h is the effective degrees of
freedom of the ø2 distribution.35

Contribution plots are used for fault diagnosis. T 2 and
SPE charts and score plots produce an out-of-control
signal when a fault occurs, but they do not provide any
information about the fault and its cause. Contribution
plots for T 2, SPE, and scores show which variable(s)
are responsible for inflating T 2, SPE, or scores to
indicate deviation from NO. Contributions to SPE can
be calculated by

where CSPE,ijk is the contribution of batch i to the SPE
value for process variable j at time k.36,37

Variable contributions to T 2 and mean-centered
scores are calculated using a modification of the formu-

lation in Nomikos38 for MPLS

where matrix W* of size R × J is defined as W* )
W(PTW)-1.

Recently, control limits have been suggested for
contribution plots.33,37 These limits are adapted in this
work for contributions to T 2 and SPE. Control limits
for variable contributions to SPE (eq 12) also follow the
ø2 distribution; therefore, they can be calculated as
defined in eq 11. For contributions to T 2, limits are
computed by means of a jackknife procedure in which
each batch in the reference set is left out once, and
variable contributions are calculated for the batch that
is left out. The next step is to calculate the mean and
variance of these contributions from I batches for each
jth variable at a kth time period. Westerhuis et al.37

proposed to use an upper control limit (UCL) for
contributions that is calculated as the mean of the
variable contributions at each time interval plus 3 times
the corresponding standard deviation. Charting variable
deviations from average trajectories at each time instant
can also be used as a diagnostic tool.29 The same
jackknife procedure is also used to construct control
limits for these deviations. They provide information on
how variable trajectories are deviating about the mean
trajectories, but their univariate nature hinders effec-
tive diagnosis especially in the case of drift types of
disturbances.

When used as is, MPLSV modeling produces nonlin-
ear estimated scores along with control limits described
earlier. When a new batch is monitored with the model
parameters of MPLSV, estimated scores of this new
batch will also be nonlinear. After mean centering of

Figure 8. Control charts for SPE and T 2 for the entire process duration and contributions of variables to SPE and T 2 for a selected
interval after an out-of-control signal is detected, for case 1 in phase 2 with 95% and 99% control limits (dash-dotted and dashed lines).

Tk
2 ) (t̂new,k - thk)

TSk
-1(t̂new,k - thk)

I(I - R)

R(I 2 - 1)
∼

F(R,I-R) (10)

SPEk ) ∑
j)1

J

ejk
2 ∼ gøh

2 (11)

CSPE,ijk ) eijk
2 (12)

CTk
2,j ) ∑

r)1

R

Srr
-1tnew,rk

xnew,kWr,j
* (13)
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these scores to reduce their nonlinearity, it is possible
to construct tighter control limits by using eq 8. This
modification allows faster fault detection, as discussed
in section 4. When an out-of-control status is detected
with either type of score plot, variable contributions are
checked for fault diagnosis.

3.3. Online Prediction of the Product Quality.
MPLSV-type models lack the capability to predict online
end-of-batch quality in real time. A two-step integrated
modeling approach can provide online quality predic-
tion. The first step uses MPLSV models for data
partitioning. Data alignment followed by partitioning
for quality prediction can also be performed using DTW
or CR techniques. Because of its simplicity, the IV
technique is chosen in this study. After reference batch
data are aligned, batch data are partitioned according
to percent increments of batch progress (for example,
based on the local batch time or another IV) so that
batches in the reference set are partitioned based on
arbitrarily chosen increments such as 10%, 20% of zpred

(Figure 7a). Each partition of X (IK × J) is rearranged
into a matrix X (I × KJ) as shown in Figure 7b. This
provides a transition between MPLSV and MPLSB
modeling to permit the development of an MPLSB
model between this partial data and the final product
quality matrix Y. This enables the prediction of end-of-
batch quality on percent progress points reflected by
partitions. The number of quality predictions during the
progress of the batch will be equal to the number of
partitions.

Confidence intervals at significance level R are also
suggested for the predicted quality values,5

where tI-R-1,R/2 is the critical value of the Student’s
variable with I - R - 1 degrees of freedom at signifi-
cance level R/2, T and MSE are the score matrix and
mean-squared error from the MPLSB model, and t̂ is
the estimated scores vector of the new batch. An
illustration of the quality prediction method is presented
in case 3 of section 4.2.

Table 2. Fault Detection Times for Case 1

type % completed IV time, h

SPE 34.4 200
T 2 34.4 200
linear score LV4 34.4 200
linear score LV5 34.4 200
nonlinear score LV4 34.4 200
nonlinear score LV5 34.4 200
linear score LV3 36 206

Table 3. Fault Detection Times for Case 2

type % completed IV time, h

T 2 48.4 269
linear score LV2 50 276
linear score LV5 51.6 283
nonlinear score LV2 51.6 283
nonlinear score LV5 52 285
linear score LV4 59.4 319
nonlinear score LV4 60.6 324
linear score LV3 70.2 368
nonlinear score LV3 84.2 433
SPE - -

ŷ ( tI-R-1,R/2(MSE)1/2[1 + t̂(TTT)-1t̂T]1/2 (14)

Figure 9. Variable contributions in phase 2 of case 1 to (a)
deviations from the average batch behavior, (b) to linearized LV4
score, and (c) to linearized LV5 score, all calculated at the interval
of 34-40% completion of IV with control limits (dash-dotted and
dashed lines).
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4. Case Study: Monitoring the Fed-Batch
Penicillin Fermentation Process

4.1. Fed-Batch Penicillin Fermentation Model.
Fed-batch penicillin fermentation process data are
generated using a detailed mathematical model and a
simulator.39 The model has five input variables (1-4
and 14), nine process variables (5-13), and five quality
variables (Table 1). Feedback controllers regulate vari-
ables 11 and 12. Penicillin fermentation has four physi-

ological phases (lag, exponential cell growth, stationary,
and cell death) and two operational phases. The first
two physiological phases are conducted as batch opera-
tion (first operational phase) while the last two are
conducted as fed-batch operation. In the first operational
phase, fermentation is carried out in a batch mode to
promote biomass growth resulting in high cell densities.
The second operational phase is a fed-batch operation
where glucose is fed until the end of the fed-batch

Figure 10. Control charts for SPE and T 2 for the entire process duration and contributions of variables to SPE and T 2 for a selected
interval after an out-of-control signal is detected, for case 2 in phase 2 with 95% and 99% control limits (dash-dotted and dashed lines).

Figure 11. Nonlinear scores for case 2 in phase 2 with control limits (dashed lines).
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operation. In a batch fermentation process that lasts
several days, some microorganisms may have different
generation times. Slight changes in operating conditions
during critical periods may have a significant influence
on the growth and differentiation of microorganisms and
may impact the final product quality and yield. To
simulate the physical uncertainty present in each batch
due to variable metabolic responses, very small pertur-
bations are introduced into the parametric space and
input variables used in the simulator while generating
the batch data set.

4.2. Online Monitoring with IV-Based Align-
ment. The data set has 40 batches containing 14
variables (Table 1; variable 15 is computed from vari-
able 3). Each batch has a different completion time
resulting in an unequal number of measurements on
each variable. The data set is preprocessed for parti-
tioning according to operational phases. First, a batch/
fed-batch switching point is found for each batch and
data are divided into two sets as phases 1 and 2. Every
step of the flowchart in Figure 3 is applied to these data
sets separately. Because variable 3 (substrate feed) is
zero in the batch phase, only 13 variables are left in
this first set. Data alignment is performed by using the
IV technique. Because an IV is not available for the
entire batch run, separate IVs are selected for each
phase. Variable 9 (culture volume) is a good IV candi-
date for phase 1. A new variable called “percent sub-
strate fed” (variable 15) is calculated from variable 3
and used as IV for phase 2. It is assumed that the fed-
batch phase is completed when 25 L of substrate is
added to the fermenter. Data are resampled by linear
interpolation at each 1% completion of volume decrease
for phase 1 and at each 0.2% of total substrate amount
added for phase 2. Data alignment results in an equal
number of data points in each phase such that data
lengths in each phase are K1 ) 101 and K2 ) 501.

An MPLSV model is developed for phase 1 between
autoscaled X1 (IK1 × J1) and the IV vector z1 (IK1 ×
1) by using five latent variables. Cross validation is used
to determine the number of latent variables. X1 (IK1 ×
J1) can be rearranged into matrix X1 (I × K1J1) to
develop an MPLSB model to obtain an estimate of end-
of-batch quality at the end of phase 1. Because all K1
measurements of phase 1 have been recorded by the
beginning of the second phase, there would be no
estimation of variable trajectories required and I × KJ
unfolding can be used for modeling and quality predic-
tion (section 3.3). Autoscaled X1 (I × K1J1) and product
quality matrix Y (I × M) are used as predictor and
predicted blocks, respectively, as illustrated in case 3.
Similarly, another MPLSV model is developed for phase
2 between autoscaled X2 (IK2 × J2) and IV vector z2
(IK2 × 1).

Process variables for the new batch are sampled at
percent increments of volume decrease for phase 1. After
the completion of phase 1, the sampling time is switched
to percent completion of the amount of substrate added.
New data vector xnew (1 × J) is monitored by using the
following algorithm at each sampling time k.

For k ) 1, ..., K (K ) K1 or K2), perform the following:
1. Obtain new batch data: xnew (1 × J).
2. Calculate new batch scores, SPE, T 2, and variable

contributions to these statistics by using the information
generated by the MPLSV model (eqs 5 and 10-13).

3. Compute zpred to determine the batch progress rate
(eq 5).

Figure 12. Linear scores for case 2 in phase 2 with 95% and 99% control limits (dash-dotted and dashed lines).

Table 4. Explained Variance of MPLSB Models for
Online Quality Prediction

model no. X block Y block model no. X block Y block

1 61.57 68.85 5 63.10 97.31
2 61.27 71.27 6 63.35 98.39
3 58.85 89.21 7 63.39 98.89
4 60.62 95.07
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4. Plot data to MSPM charts and check for abnor-
malities.

End.

Three cases with different types of faults are pre-
sented: a step decrease in agitator power (bias change)
and two drift cases of magnitudes -0.018% and -0.05%

Figure 13. Variable contributions for case 2 in phase 2 to (a) deviations from the average batch behavior at the interval of 50-60%
completion of IV, (b) to linearized LV2 score at the interval of 50-60% completion of IV, (c) to linearized LV3 score at the interval of
70-80% completion of IV, (d) to linearized LV4 score at the interval of 59-65% completion of IV, (e) to linearized LV5 score at the
interval of 50-60% completion of IV, all with control limits (dash-dotted and dashed lines).
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h-1 in the substrate feed rate (drift), respectively. Fault
detection times for different multivariable control charts
are recorded and compared. The process is assumed to
be out-of-control if three consecutive points are out of
the 99% confidence limit.

Case 1. The first test case is a step decrease in
agitator power input (variable 2) of magnitude 25%
introduced starting at 200 h from the beginning of the
batch until 250 h. The fault is detected in both SPE and
T 2 plots (Figure 8). Latent variables 4 and 5 of nonlinear
score plots and latent variables 3-5 of linear score plots
(obtained by subtracting mean trajectories) detected the
fault nearly at the same time (Table 2). Contributions
to SPE and T 2 (Figure 8c,d), deviation from the average
batch behavior (Figure 9a), and contributions to latent
variables (Figure 9b,c) are inspected to identify process
variables that have affected the batch. C‚,34-40 denotes
the contribution of each process variable to statistic “‚”
(T 2, SPE, or scores) in the interval 34-40% completion
of the IV. Variable 2, the agitator power input, is
identified correctly to be the source of the deviation in
all contribution plots. In addition, the contribution plot
for latent variable 4 indicates variable 6 (dissolved O2)
as an influential variable, which is consistent with the
fundamentals of the process.

Case 2. The second test case is a small drift of
magnitude -0.018% h-1 introduced into the substrate
feed rate (variable 3) from the start of fed-batch opera-
tion at 50 h until the end of the batch run. There are
significant differences in fault detection times and out-

of-control signal generation in this case (Table 3). T 2

detected the fault fastest (Figure 10). The second fastest
detection is obtained by the linear score control chart
of latent variable 2 (Figures 11 and 12). The last four
latent variables give out-of-control signals for both
linear and nonlinear score matrices. Although SPE is
in control throughout the course of the batch, the
contribution plot for SPE signals an unusual situation
for variable 3 (Figure 10c). Variables 3 and 11 (pH) are
found to be the most affected variables by the fault
according to the T 2 contribution plot. Deviation from
the average batch behavior plot is ineffective in indicat-
ing the most affected variable(s) in this case (Figure
13a).

Case 3. In this case, the online quality prediction
method presented in section 3.3 is tested. Two different
IVs are used to align the two distinct operational phases
(batch and fed-batch). To develop the MPLSB model for
the first phase, data are collected in 50% increments of
phase 1, resulting in two data partitions X1,1 and X1,2
(Figure 7b). A similar approach in phase 2 for every 20%
increase results in five data partitions (X2,n, n ) 1, ...,
5). MPLSB modeling is performed between the rear-
ranged X matrix, which is augmented as a new partition
becomes available, and the Y matrix containing end-of-
batch product quality measurements on five variables
for each batch in the reference set listed in Table 1.
Table 4 summarizes the variance of both X and Y blocks
explained as new MPLSB models are developed when
more data partitions are appended to X. The variance

Figure 14. Online predictions for end-of-batch quality values for a normal batch.
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of Y explained increases as expected because more
process information becomes available with each ad-
ditional model.

Two cases are considered to test this integrated
framework. A normal batch is investigated first. As
expected, the SPE plot produced no out-of-control signal
and the final product quality on all five variables (shown
as a solid star) is successfully predicted (Figure 14). The
prediction capability is somewhat poor in the beginning
because of limited data, but it gets better as more data
become available. In the second case, where a drift of
magnitude -0.05% h-1 is introduced into the substrate
feed rate at the beginning of the fed-batch phase until
the end of operation, the SPE plot signaled out-of-control
right after the sixth quality prediction point (80%
completion of phase 2). Because the MPLSB model is
not valid beyond this point, no further confidence limit
is plotted (Figure 15). Although the predictions of the
MPLSB model might not be accurate for the seventh
(and final) value, the framework generated fairly close
predictions of the inferior quality.

5. Conclusions

An MSPM framework is presented for online batch
process performance monitoring and fault diagnosis.
Unfolding the three-way data array by preserving the
variable direction allowed online monitoring without
requiring future value estimation. Alignment of variable
trajectories and online quality prediction are integrated

into MSPM. Predicting the values of the end-of-batch
quality during the progress of the batch provided a
useful insight to anticipate the effects of excursions from
NO on the final quality. Control limits on contribution
plots enhance the identification of variables that con-
tribute to the inflation of the SPM statistics and improve
the diagnosis capabilities.
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