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Algorithms for carrying out maximum likelihood parallel factor analysis (MLPARAFAC) for three-
way data are described. These algorithms are based on the principle of alternating least squares, but
differ from conventional PARAFAC algorithms in that they incorporate measurement error
information into the trilinear decomposition. This information is represented in the form of an
error covariance matrix. Four algorithms are discussed for dealing with different error structures in
the three-way array. The simplest of these treats measurements with non-uniform measurement
noise which is uncorrelated. The most general algorithm can analyze data with any type of noise
correlation structure. The other two algorithms are simplifications of the general algorithm which
can be applied with greater efficiency to cases where the noise is correlated only along one mode of
the three-way array. Simulation studies carried out under a variety of measurement error conditions
were used for statistical validation of the maximum likelihood properties of the algorithms. The
MLPARAFAC methods are also shown to produce more accurate results than PARAFAC under a

variety of conditions. Copyright © 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With advancing technology of analytical instrumentation,
data in the form of tensors of second order and higher has
become more commonplace. Examples of such techniques
include fluorescence excitation-emission spectroscopy and
chromatography with multichannel detectors. In 1980,
Hirschfeld [1] provided a very complete table of all the
feasible combinations of techniques capable of providing
second-order data at that time and estimated that about 60%
of the techniques are bilinear under certain conditions.
Extension to trilinear data is easily accomplished when
several samples are analyzed by these methods. This list has
continued to expand in terms of the number of techniques
and possible analytical orders as this instrumentation
becomes commonplace in chemistry laboratories. Ever since
Appellof and Davison [2] provided the first application of
trilinear decomposition to chemistry using both simulated
and real LC/emission/excitation fluorescence data, the
number of applications have expanded to many branches
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of chemistry, ranging from basic research to environmental
and food chemistry.

Trilinear data (and multilinear tensors in general) share
common properties with bilinear data that make the latter
structure central to modern chemometrics. Both types of
data can model deterministic relationships among variables,
especially in cases where a high degree of collinearity exists.
These types of models allow multivariate and multiorder
data to be represented by a smaller number of variables.
Using this smaller set of variables, the data can be described
within experimental error as a P-dimensional hyperplane. In
this case, P is called the chemical rank or ‘true’ rank of the
data set in order to distinguish it from the mathematical
rank. In general, the chemical rank is typically related to the
number of underlying chemical factors or chemical compo-
nents present in the mixture. However, contrary to what
happens in bilinear models, where the smaller set of
variables are abstract solutions of the underlying physical
factors which are not unique due to rotational ambiguities,
the trilinear and higher multilinear models can produce
unique and well-identified solutions (up to trivial differ-
ences in factor order and relative scaling across modes) [3].
In addition, the uniqueness of the solution gives rise to the
‘second-order advantage” which allows the quantitation of
an analyte in the presence of interferences with only one
calibration sample.

A variety of algorithms have been developed to estimate
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the multilinear model, including parallel factor analysis [4]
(PARAFACQ), direct trilinear decomposition [5] (DTLD) and
positive matrix factorization [6] (PMF3). These algorithms
are based on different numerical approaches, namely
alternating least squares (ALS), eigenproblem formulation
and a Gauss-Newton approach, respectively. Each has its
own advantages and disadvantages that make it suitable in a
specific situation. However, PARAFAC (ALS) is currently
the most widely used algorithm, mainly due to its good
convergence properties. ALS, which was introduced by
Yates [7] in 1933, works by simply dividing the parameters
into several sets. Each set of parameters is estimated in a
least-squares sense conditionally on the remaining par-
ameters. The estimation of the parameters is repeated
iteratively until a certain stop criterion is reached. In this
way, a very complex non-linear problem becomes a
sequence of simpler least-squares steps in which the
parameter sets are improved in each step. As all estimates
of parameters are least-squares estimates, the procedure can
only improve the fit or keep it the same if converged. It
follows from this that the objective function decreases
monotonically and, since it is also bounded from below
(the objective function cannot be less than zero), convergence
is always reached. This does not imply that the global
minimum is guaranteed, since a problem like this is
characterized by several local minima. Global convergence
can be assessed when repetitions using different starting
points yield similar sets of parameters. In addition to the
reliable convergence characteristics of ALS, it is also used
because it yields maximum likelihood estimation under
certain noise characteristics.

Methods such as PARAFAC give maximum likelihood
estimates of the model parameters when the noise is
independently and identically distributed with a normal
distribution (iid normal). Noise can be broadly defined as an
undesirable variation in a measured signal which obscures
the measurement of interest, the true signal. Based on the
specific advantages of multilinear data, this definition will be
narrowed to undesirable variation attributable to non-
chemical sources (e.g. instrumental sources). Noise can have
many different origins, having a very complex range of
properties and characteristics. Unfortunately, these proper-
ties and characteristics are not mutually exclusive making
the number of possibilities of noise structures very large. The
term iid has been coined in the chemometric literature to
make a precise and concise description of the fundamental
properties needed to characterize the instrumental noise in
the “ideal’ case. It conveys information about independence
(i.e. the error observed at any one channel is uncorrelated
with the error observed at any other channel) and the
homogeneity of distributions (i.e. identically distributed
implies the error variance and distribution are the same for
all measurements). Conventional least-squares approaches
to trilinear decomposition are maximum likelihood methods
only under iid conditions. These naive assumptions about
the noise structure corrupting the multilinear data can lead
to poor models, since all of the methods rely on a least-
squares procedure. PARAFAC and DTLD are the most
affected since both independence and homoscedasticity
(identical distributions) need to be satisfied to yield the
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maximum likelihood solution. PMF3 can overcome the need
for homoscedastic noise to yield the maximum likelihood
solution because it applies a weighting scheme that solves
this impediment. When minor variations from the assump-
tion of iid normal noise are observed, some scaling tech-
niques can be used with PARAFAC in order to alleviate the
deviations from the iid condition, but this will only yield a
maximum likelihood solution when the noise is uncorrelated
and the heteroscedasticity follows a certain structure. A more
general approach to tackle this problem, W-PARAFAC, was
introduced in 1997 by Kiers [8], who used a weighted
objective function to remedy the problem of heteroscedastic
noise. The algorithm is based on a majorization procedure
instead of an ALS algorithm. W-PARAFAC and PMF3 both
overcome the heteroscedasticity of the noise using a
weighted objective function, but the issue of the noise
correlation is still a problem for both methods, since they
cannot accommodate error covariance terms in the proce-
dure.

The presence of covariance among measurement errors is
a ubiquitous and pernicious effect produced by several
sources ranging from the temporal correlation of pump noise
in chromatography to the spatial correlation of array
detectors in spectroscopy. Another important source of
correlation in the measurement errors is signal processing,
particularly electronic or digital smoothing filters. Because of
all of these effects, correlated measurement errors are likely
to be the rule rather than the exception for multivariate data
sets, implying that standard methods of analysis (both two-
way and multi-way) that make assumptions of iid normal
noise are suboptimal. The only optimal means to account for
the correlation in measurement errors is using a maximum
likelihood approach to estimate model parameters that are
most likely to give rise to the observed measurements. For
bilinear data, this problem has been addressed through the
development of maximum likelihood principal component
analysis (MLPCA) [9], which has been shown to provide
improved results where the effects of noise correlation are
significant.

Correlation among measurement errors in three-way data
is complicated by the unfolding/matricization process
usually used in ALS algorithms. Elements with correlated
measurement errors which may appear adjacent to one
another in a ‘slice’ of the three-way array may become
spatially separated from one another when the cube is
unfolded in certain ways. Because of this, conceptualization
and simplification of error covariance structures for three-
way data are more difficult, and this has impeded the
development of maximum likelihood methods for three-way
data. Until recently, this problem was avoided by the
standard estimation algorithms. Recently, a method called
MILES [10], which is based on a majorization-ALS algorithm,
was introduced to address the problem of correlated
measurement errors for multilinear data. The extent to
which this method yields maximum likelihood estimates is
unclear since no validation of the results was done in this
context and the theoretical foundation of the method is
obscured by the complexity of the algorithm.

This paper introduces the theoretical foundations for
maximum likelihood parallel factor analysis (MLPARA-
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Table I. Standard MLPARAFAC algorithm (uncorrelated errors).

1. GivenanI x J x K cube of data X and a corresponding I x ] x K cube % of measurement error variances, the algorithm is initialized using random

values of the correct dimensions or using estimates obtained by direct trilinear decomposition (TLD).

[A,B,C] = Hd(X,P) (T1)

2. Unfold X and X, retaining the first order and calculate the maximum likelihood estimation of A conditional on B and C.

X, = unfold(X,a); 3, = unfold(Z,a); ¥, = diug(iEﬂ) (T2)
ol =ix, w1z (2, W, 7)) (T3)
Here ‘4" is a row vector of A. Using this estimate and the estimates of B and C the objective function can be calculated using Equation (T4).

1

2= (%0 — %) W, (%0 — %) (T4)

i=1

3. Unfold X and X, retaining the second order and calculate the maximum likelihood estimation of B conditional on € and A.

Xy = unfold(X, b); 2, = unfold(2, b); W, = diag('%;) (T5)
Ib" = ix/ W, 12 (2) W, 2;) ! (Te)

Here /b is a row vector of B. Using this estimate and the estimates of C and A the objective function can be calculated using Equation (T7).

/. . o .
S = D0 0x — %)W, (%, ~ %) (T7)
=1

4. Unfold X and ¥ retaining the third order and calculate the maximum likelihood estimation of C conditional on A and B.

X. = unfold(X, ¢); X = unfold(2, ); "W, = diag("%.) (T8)
KT = kx 12T (Z k1 ZT) ! (T9)

Here ¥¢" is a row vector of C. Using this estimate and the estimates of A and B the objective function can be calculated using Equation (T10).

K
§2 =Y (e =)W (x5 (T10)
=1
5. Calculate the convergence parameters /; and .
b= (S; = S2)/Ski 2= (S2—S)/Sh (T11)

If /1 and /; are less than the convergence limit (typically 10~® in this work), terminate. Otherwise return to step 2.

FAC). MLPARAFAC is an errors-in-variables modeling
method in that it accounts for measurement errors in the
estimation of model parameters. It is an optimal modeling
method in a maximum likelihood sense for functional
models with no errors in the model equations. The present
method is a natural extension to PARAFAC of the MLPCA
method introduced by Wentzell et al. [9]. The mathematical
aspects of the algorithm are described in detail to allow the
principles to be readily applied. The algorithm can accom-
modate heteroscedastic and correlated noise in one or more
dimensions and has excellent convergence characteristics
because its core is based on an alternating least-squares
procedure. Although all the cases used in this paper will be
three-way data this algorithm is extensible to N-way data.

1.1. Notation

In this paper, scalars are indicated by italics and vectors by
bold lower-case characters. Bold upper-case letters are used
for two-way matrices and underlined bold upper-case letters
for three-way data. The letters A, B, Cand I, ], K are reserved
for indicating the first, second and third mode of three-way
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data and the dimensions of those modes, respectively. Also,
the letter P is reserved to represent the number of factors
used in the model. The terms mode, way and order are used
indistinctively, and also the terms factors and components.
When three-way arrays are unfolded to matrices, the
following notation will be used. If X (I x | x K) is unfolded
while retaining the first order to produce a (I x JK) matrix,
this will be designated X,. In the same way, matrices X,
(J x IK) and X. (K x IJ) will be used to represent unfolded
matrices which retain the second and the third orders,
respectively. In general, other matrices with subscripts a, b
and ¢ represent unfolding while retaining the first, second
and third modes. The symbol ® will be used primarily to
indicate the Kronecker product, but will also be used to
represent the tensor product in certain cases which will be
clearly distinguished.

2. THEORY

PARAFAC is an acronym used to refer to two different,
although closely related, concepts. It is used to describe the
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model that the trilinear structure of the data follows, and it is
also used to refer to one of the various algorithms used to
estimate the parameters of the aforementioned model.
PARAFAC was originally introduced by Harshman [4] and
simultaneously and independently by Carroll and Chang
[11], who referred to it as canonical decomposition
(CANDECOMP). The model can be seen as an extension of
bilinear PCA to higher orders. The PARAFAC model for a
three-way array is defined by three loading matrices, A, B
and C, with elements a;,, bj, and c,. It can be written as a
tensor product:

P
X=) a,®b,@c,+E (1)
p=1

where a,, b, and ¢, are the pth columns of the loading
matrices A, B and C, respectively. The model can also be
expressed in scalar form:

P
Xijk = Z AipbjpCip + eiji (2)
p=1

where x;j is an element of the three-way array X and e;; is an
element of the corresponding residual matrix, E, where the
indices refer to modes A, B and C, respectively.

Since most of the mathematical/statistical tools and
concepts used in chemometrics rely on the foundations of
linear algebra, a matrix representation of a three-way array is
very useful. The process of converting a cube or higher order
arrangement of data into a matrix is called unfolding or
matricization and it can be done in at least as many ways as
the array has orders. Equation (3) represents the unfolded
data when the first order is retained:

X, =AZ,+E, 3)

The X, matrix is obtained from the matrix multiplication of
loading matrix A and a matrix Z, which is formed from
loading matrices B and C. The Z, matrix can be obtained as a
Khatri-Rao product [12] of matrices B and C or as a
Kronecker product [13] of matrices B and C premultiplied
by the unfolded superdiagonal ‘identity” matrix of order P
(I,). These alternative representations are shown in Equa-
tions (4) and (5), respectively:

Z, = (C"®|B") (4)
Z, =1,(C" @ B") )

Analogous equations can be used to represent X as the
matrices obtained when the second and third orders are
retained (X, and X,).

Assuming B and C are known (or estimated) and iid noise
conditions, then an estimate of A can be obtained solving the
conditional least-squares problem to minimize the sum of
the squares of the residuals in E. The solution to this problem
is given by the equation

A=X.z,(z2))" (6)
This least-squares estimate of A can in turn be used to obtain

estimates of B and C (given C and B, respectively) by
employing similar equations involving X, and X.. This leads
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naturally to the iterative ALS procedure which can be used
to estimate all of the loadings in a stepwise procedure.

2.1. Non-uniform measurement errors
Unfortunately, in cases where iid noise conditions are
violated, the conventional ALS algorithm will produce
suboptimal estimates of the loadings. In those cases where
measurement errors remain independent but the condition
of homoscedasticity is violated (i.e. each measurement can
have a different variance), a more general objective function
can be minimized to satisfy the maximum likelihood
criterion. Consider the three-way array of measurements X
and an associated array 3, which contains the variances of
the measurements of the corresponding elements in X. For a
given trial solution X (based on estimates of A, B and C such
that X = AZ,), Equation (7) gives the likelihood function in
terms of the matrices unfolded in the A mode:

I
_ 1 1 o viagpljie  igonT

where x, represents the ith row of the unfolded matrix X,
and x, represent the corresponding vector of estimates of X,.
The matrix ‘W, is the measurement error covariance matrix
for the ith row of X,, which in the case of uncorrelated errors
will be a diagonal matrix (JK x JK) containing the variance of
the measurement errors of ‘x,; that is, it is the diagonalized
form of the ith row of 3, The error covariance matrix is
defined according to

W, = E[(% = x)" - (% = x;)] 8)

where E designates an expectation value and 'x° represents
ith row of X}, which is the true or expectation value of X°
unfolded in the A mode. Since X° is not normally known, it is
normally estimated on the basis of mean values, or else W, is
estimated on the basis of prior information (e.g. an
assumption of proportional errors).

Obtaining the maximum likelihood estimates of A,B and
C means maximizing the likelihood function in Equation (7)
with respect to these loading parameters. This is equivalent
to minimizing the logarithm of the likelihood function,
which, when constant terms are ignored, results in the
objective function in Equation (9):

i I
2 i i o Niagp—1/i i o \T 2
S = E (% ="%) W, ("%, —"X,) = E S;
i=1 i=1
I . . . .
1! i intr—11~ i~ jaye—11 i~ jage—1ln
= xI —ix, W VKT g, W xT ik, KT

a a

(x, W
i=1

©)

To minimize the objective function, S2, with respect to the
loadings A given B and C, we first recognize that each term,
S?, in the summation is an independent function of the ith
row of A, designated as i3, and the given matrix Xa, that is
i%, =' aZ,. This means that $* can be minimized by
minimizing the individual terms, allowing each row of A
to be estimated independently as shown in Equations (10)-
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(12).
iy -1 iy inp=1lra7 \T a7 ixy—li
2 =ix, WX iy, W laz,)" —az, "W, lix!
+az, "W Yaz,)" (10)

082

i ixgp—17T -1 T ip—17TaT
% =0-"x,"W,'Z, -Z,'"¥, x, +2Z,'V, Z,a" (11)

a='x, w'zl(z, w zl)! (12)

It should be emphasized that, in these equations, i3 is used to
designate a row of A and does not represent a loading vector
of A. From Equation (12), estimates of ‘a can be combined to
give A. In cases where the error covariance matrix is the
same for all the rows of X,, Equation (12) can be generalized
to the matrix form represented in Equation (13).

A =X,z (z,w;z))" (13)

This equation can also be reduced easily to equation 6 in
cases where the noise is the same (homoscedastic) for all the
channels.

Since the requirement for this development was indepen-
dence of measurement errors, the error covariance matrices
for all the orders are diagonals. Unfolding X in the other two
directions leads to similar equations for B and C, allowing an
equivalent maximum likelihood estimation of X in all the
spaces, subject to the constraint that two of the spaces remain
fixed. This occurs because the objective function of X
unfolded in all the orders reduces to the same summation
but in a different order. To obtain the unrestricted maximum
likelihood estimation of X, it is necessary to optimize the
objective function with respect to all three sets of loading
vectors. An alternative to such a direct optimization is an
iterative approach using ALS.

The algorithm for the maximum likelihood PARAFAC in
cases of heteroscedastic noise is given in Table I. The
algorithm alternately uses the maximum likelihood esti-
mates of two modes, say Band C, to update the estimates in
the mode left out, say A. This procedure is carried out
iteratively, using the previously estimated mode and one of
the other two modes, say A and C, to estimate the other, say
B. This procedure has been found to be simple, fast and
reliable. Although global convergence is not guaranteed, it
does not seem to be susceptible to local minima as is the case
with gradient methods. In addition, this method is very
attractive since its core is based on an ALS framework, which
ensures an improvement of the solution in each step. The
algorithm is easily applied in cases where there are missing
values by incorporating large variances for the missing
measurements. Convergence time depends on the dimen-
sionality of the data, the degree of similarity of the
components forming the system, the accuracy of the initial
estimates and the structure of the errors. The two most
important factors increasing the convergence time are the
dimension of the model and the degree of similarity,
especially the former, which makes each step longer and
increases the necessity for more iterations. Some strategies
have been reported to improve the efficiency of the
algorithm [14], but these will not be incorporated here.
Comparative data on convergence time will be reported in a
future paper.
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It is worth noting that the algorithm presented in Table I
imposes restrictions on the presence of offsets in any mode.
Normally, this would be equivalent to saying that the data
have been properly mean centered [15], but in the case of
non-uniform measurement errors, mean centering is not
equivalent to eliminating offsets. The case of offsets will be
treated from a more optimal, although incomplete perspec-
tive in Section 2.4.

Although the problem of heteroscedastic noise has been
addressed in the literature using weighted PARAFAC
algorithms, the description presented here marks the first
time (to our knowledge) that a formal theoretical treatment
of this problem from a maximum likelihood perspective has
been given. It also represents a good starting point to
generalize this algorithm to more complicated scenarios,
such as systems affected by correlated noise and hetero-
scedastic and correlated noise in two or more dimensions.

2.2. Correlated measurement errors

The incorporation of uncorrelated, heteroscedastic measure-
ment errors into the ALS framework as described in the
preceding section is relatively straightforward. On the
surface it may appear that extension to correlated measure-
ment errors is a trivial matter, since the likelihood function
expressed by Equation (7) should be equally applicable for
error covariance matrices that are not diagonal. However,
there is a critical difference that relates to the way in which
the information in the error covariance matrices is trans-
formed when the three-way array is unfolded. In the case of
uncorrelated measurement errors, the diagonal error covari-
ance matrices in each mode contain all of the information
about the uncertainty in the measurements, although the
order in which this information appears varies with the
modes. In the case of correlated measurements, some of this
information will be lost in one or more modes, making it
impossible to maintain consistency in the ALS estimates
obtained when using the same strategy as for independent
errors.

To illustrate this point, consider the relatively simple case
where the errors are correlated in one order only. For
example, we may have a case where multiple samples of
different composition are separated by chromatography
with multichannel detection and there is significant correla-
tion in the time domain due to pump noise. Alternatively, we
could imagine fluorescence excitation-emission measure-
ments for a series of samples, which are correlated in the
emission domain due to source fluctuations, but uncorre-
lated in the excitation domain because it is scanned at longer
time intervals as the second order. For convenience, we will
say that the measurements along the rows which make up
mode B are correlated, but there is no correlation among
these rows in the three-way array. This situation is con-
ceptually illustrated with a small 4 x 3 x 2 array in Figure 1.
The elements of the array that are labeled with the same
letters are considered to be correlated in this example.
Considering unfolding in the A mode first, the figure shows
the structure of the error covariance matrix for the first row
of X,, which is block diagonal due to the presence of two sets
of correlated measurement errors. The remaining three rows
will have the same error covariance structure, resulting in 72
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non-zero elements in total describing error covariance. On
the other hand, the error covariance matrix for the first row
of X, has a diagonal form since the correlated measurements
appear in the columns. Considering all three rows of X, this
results in only 24 non-zero elements describing the error
structure. Information on the covariance has been lost in this
representation. Finally, the error covariance matrix structure
for the first row of X. is band diagonal. The two error
covariance matrices resulting from this unfolded matrix will
have a total of 72 non-zero values describing the error
covariance and contain the same information as the A mode,
only in a different representation. However, because the
error covariance matrices for X, contain incomplete informa-
tion, the sequence of steps in the ALS algorithm described in
the previous section cannot be completed using this
approach.

As correlation among the orders becomes more complex,
the inability to represent this information becomes more
obvious. This is clear if one realizes that a complete
description of all correlations in the general case would
require (IJK)* elements, but the total number of elements in
the row covariance matrices for, say X, is only I(]K)z. In
order to circumvent this problem a more general solution for
correlated errors will be obtained redefining the problem
and modeling the measurements as a single point in an IJK-
dimensional space. To do this, X (or alternatively any
unfolded representation) is vectorized by applying the “vec’
operator and the equations are adapted as necessary. The
generalization of Equations (12) and (10) are

vec(AT) = (VIQ,;'V,)'VIQ Tvec(XT) (14)
§% = vec(AX")' @ vec(AXT) (15)
CArzra
ajaja
A|l6lblb
l 8 3 g Error Covariance

Unfolded Matrix Structure (Row 1)

-

o[e[e
e[ee
[alalaleefe] m——)p DD
Mode A blb[bJf[f[f D00
ciclcl9]|g(g 000
dld[dlhlh[h 00
0
°
alblc[d[e]f]aln] =P D
Mode B alblc[dlelf[9]h L]
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Figure 1. lllustration of the unfolding of a three-way array and its
effect on the structure of the error covariance matrix for the first
row of the unfolded matrix. Elements with correlated
measurement errors are labeled with the same letter.
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where
V.=, ®Z! (16)
Q, = E[(vec((Xa — X})")) - (vec((X, — X;)"))"] (17)
AX, = (X, — X,) (18)

In these equations, the “vec” operator reshapes a matrix into a
column vector by taking the elements in sequence column-
wise [13]. The symbol ® as used here identifies the
Kronecker product such that each element of I, is multiplied
by )kaT therefore V, is an IP x IJK matrix with Z; repeating
along the diagonal. The matrix €, is the full error covariance
matrix for vec(X!), providing information about the error
covariance among all the measurements. Similar equations
can be obtained by making the appropriate substitutions for
the second and third mode in a trilinear case, or to the other
dimensions in a multilinear case. Based on this, an alter-
nating regression algorithm similar to that in the preceding
section can be formulated as shown in Table II.

In a manner analogous to the ALS algorithm for hetero-
scedastic errors, the generalized algorithm presented in
Table II uses the maximum likelihood estimates in two
spaces to estimate the solution in the other space. In order to
exchange the solutions, the error covariance matrix for
vec(X!), given by Q,, needs to be modified to give the error
covariance matrix for vec(X}) and vec(X!), given by €, and
Q,, respectively. This can be done on an element-by-element
basis; however, since these matrices contain the same
elements in a different order, it is simpler to apply a special
type of matrix called a permutation matrix to carry out the
rearrangement. The permutation matrix is an orthonormal
matrix that changes the arrangement of the elements.
Conveniently, the same permutation matrix that is used to
convert error covariance matrices can also be used to convert
between the vectorized forms of X, X, and X.. Equations
(19)-(22) show how this is done:

vec(X}) = Pyvec(X}) (19)
vec(X!) = Pvec(X)) (20)
Q, = P,Q,P} (21)
Q. =P.Q,P! (22)

The construction of the permutation matrices P, and P,
which consist only of ones and zeros, is conceptually
straightforward but algorithmically involved, so the details
of this will not be presented here.

The algorithm presented in Table II represents a com-
pletely general treatment for the case where correlation can
exist among all of the measurement errors. Although it is
presented for the trilinear case, extension to higher orders is
trivial. The algorithm also has very good convergence
characteristics and gives results that are identical to those
obtained by the algorithm in Section 2.1 in the presence of
uncorrelated noise. In practice, implementation of the
algorithm is limited to some extent by the size and stability
of the matrices and the convergence time. These three factors
are not completely independent from one another. For
example, as X becomes large, the associated error covariance
matrices tend to become ill-conditioned, causing conver-
gence problems. A variety of approaches, such as compres-
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Table Il. General MLPARAFAC algorithm (correlated measurement errors).

1. Givenan I x | x K cube of data X, a corresponding IJK x IJK matrix £, of error covariances for vec(X,) and two permutation matrices P;, and P, to
permute from vec(X,) to vec(Xp) and vec(X,), respectively, the algorithm is initialized using random values of the correct dimensions or using esti-

mates obtained by TLD.

[A,B,C] = td(X, P) (T12)

2. Unfold and vectorize X retaining the first order and calculate the maximum likelihood estimation of A conditional on B and C.

vec(X!) = vec

(unfold(X,a)" ); V, =, © Z1; Q, (T13)

vec(AT) = (\A’EQ;]V[‘)A\A’EQ;]WC(XZ) (T14)

Here vec(A") is the vectorized row form of A. Using this estimate and the estimates of B and C the objective function can be calculated using

Equation (T15).

AX, = (Xo — X,o); 2 = vec(AX,)TQ; Tvec(AX,) (T15)

3. Vectorize X retaining the second order and calculate the maximum likelihood estimation of B conditional on € and A.

vee(X}) = Pyoec(X}); Vy = L @ Z;; Qp = P,Q, P} (T16)
vec(BT) = (VI Q, 'V,) VIO, oec(X]) (T17)

Here vec(B") is the vectorized row form of B. Using this estimate and the estimates of C and A the objective function can be calculated using

Equation (T18).

AXy = (Xp — Xp); S2 = vec(AX,)"Q, Lvec(AX,) (T18)

4. Vectorize X retaining the third order and calculate the maximum likelihood estimation of C conditional on A and B.

vec(X") = Poec(X!); V. = Ik ® Z; Q. = P.Q,P’ (T19)
vec(CT) = (VIQ'V,) VIO vec(XT) (T20)

Here vec(CT) is the vectorized row form of C. Using this estimate and the estimates of A and B the objective function can be calculated using

Equation (T21).

AX, = (Xo — X,); S = vec(AX,)"Q; vec(AX,) (T21)

5. Calculate the convergence parameters /; and Zo.

= (S; = 8})/Shi i = (S = S})/S; (T22)

If /1 and /; are less than the convergence limit (typically 10~® in this work), terminate. Otherwise return to step 2.

sion [14], line search extrapolation [16] and simplifications
based on the error structure [17], may be adapted to the
present algorithm to avoid these problems. The first two
modifications will not be treated in this paper since the first
is beyond the scope of the present work and the second is
primarily an algorithmic modification to the ALS algorithm.
However, the third approach has important practical
implications and for this reason will be the focus of the next
section.

2.3. Simplification: correlation along one order
only

For many chemical applications, error covariance affects
only one order or at least the covariance in other orders can
be neglected. This can, in certain cases, result in substantial
simplification of the generalized algorithm. For the purpose
of illustration, only the case where correlations exist along
the rows (i.e. in the second order, as illustrated in Figure 1)
will be considered, since correlations along other orders can
be rendered equivalent through permutation of the original

Copyright © 2003 John Wiley & Sons, Ltd.

array or appropriate adjustment of equations which will be
presented. For this case, three common cases can be
distinguished: (1) the error covariance is different among
all of the rows forming the array; (2) the error covariance is
different among rows forming different slices but identical
among the rows of the same slice; and (3) the error
covariance is identical among the rows of all the slices. This
section will focus in the second and third cases, since the first
case can only be treated using the general algorithm. To
begin, however, it is helpful to examine the second case,
which is more general and can be extended to the third case
in a straightforward manner.

Imagine a trilinear data set such as the example presented
in Section 2.2, where the error correlation can be expected to
affect only one order, which we will assume to be the second
order as noted above. In addition, in certain cases where this
assumption applies, it may be possible to make the
additional assumption that the error covariance matrix is
the same for each row in the same vertical slice of data.
Considering that the correlation occurs along the rows of X,
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and is the same in each row, all the covariance information is
contained in a single JK x JK covariance matrix W, defined

by
W, = E[(x, — x})" - (%0 — X})] (23)

where x, and x{ can represent any row of X, and X_, the
unfolded forms of the measured data array and the error-
free data array, respectively. Of course, X is not generally
known, so in the absence of a priori knowledge of the error
covariance matrix, ¥, might typically be estimated by
obtaining replicates of the measurements for each row and
using the means in place of x?, then pooling all of the results,

as indicated in Equation (24):

v ~1i ! ZN:(i"x ) ("%, —1%,) (24)
ll~I £ (N—l) a a1 (4 a

where "x, is the nth replicate measurement of the ith row of
X, and X, is the mean of the N replicates for that row. (Note
that these replicates would likely be obtained through
separate experiments for each of the K slices.) Other
strategies are also possible, but these will not be discussed
in detail here. The full covariance matrix, , will now be
block diagonal, consisting of I identical diagonal units of
dimension JK x JK. This situation offers a number of
advantages to the algorithm. From a storage capacity point,
the improvement is related to the reduction of the number of
non-zero elements from a maximum of (IJK)? in the general
case to (]K)z, since (2, that has the form represented in
Equation (25), can also be represented as the sparse
Kronecker product shown in Equation (26):

"W, -
v,

v,

Q, =LV, (26)

Additionally, this improves the numerical stability of the
algorithm since the Kronecker form allows €2, to be inverted
by inversion of the individual covariance matrix ¥, as
shown in Equation (27):

Ql=Tew! (27)

The companion error covariance matrices for the other
orders can be obtained using the permutation matrices via
Equations (28) and (29):

Q' =p,Q,'P] (28)
Q'=pr.Q, P’ (29)

Based on these equations and in the identical block diagonal
form of €, it is easy to demonstrate that the maximum
likelihood solution for the A loadings is obtained using
Equation (30):

A =X,z (z,w; 'z (30)
Although the equation for order A under this assumption is

Copyright © 2003 John Wiley & Sons, Ltd.

analogous in form to Equation (13) for the heteroscedastic
case, the rest of the equations needed to implement the ALS
algorithm are different. In order to obtain these equations, it
should first be realized that Q' can be represented as
shown in Equation (31), as is apparent from Figure 1,
whereas Q! cannot be similarly simplified under these
circumstances.

1\I,C—l

Kq,c—l

This leads to Equations (32) and (33) for the maximum
likelihood estimation of B and C, respectively, under this
assumption:

vec(BY) = (VIQ,'V,) 'V} Q, Tvec(X)) (32)
ol =x fw 'zl (z M z]) ! (33)

In addition to the storage improvements achieved, speed
enhancements are also realized since A can now be
estimated projecting the data at once on to a smaller set of
matrices. In order to estimate the C loading, a row-by-row
procedure has to be implemented since the error covariance
matrices change from slice to slice. The estimation of B has to
be done using the full error covariance matrix as in the
general case since the error covariance terms needed cannot
be summarized in a more efficient manner. This algorithm
for this simplified case is presented in Table IIL

A further simplification is possible when the error
covariance matrix is the same for each row in all the slices,
a situation which is not uncommon, at least to a first
approximation. In this case Equations (27) and (30) can be
used to estimate A as before, and analogous equations can be
used to estimate C by making the appropriate substitutions,
since all of the W are now the same. The calculations are
further simplified by realizing that Q;l, under these noise
characteristics, can be expressed as in Equation (34), since
the permutation matrix in this case is similar to the
commutation matrix used in Reference 17, reducing the
estimation of B to Equation (35):

Q' =v,'0] (34)

B = X,Z} (Z,Z))™" (35)
Table IV gives the algorithm under these assumptions.

24. MLPARAFAC with offsets

So far, it has been assumed that the multilinear data are not
affected by offsets in any mode. Unfortunately, it is not
uncommon in chemical systems to have offsets affecting
different orders. The sources of offsets range from instru-
mental artifacts, such as a spectral background for all
samples or variations in cell position, to factors related to
sample preparation. One general model to describe trilinear
data affected by different kinds of offsets is represented by
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Table lll. Simplified MLPARAFAC algorithm (Simplification 1—same error covariance matrix for each row in a slice, but different between
slices)

1. Givenan I x | x K cube of data X, a corresponding IJK x IJK matrix €, of error covariances for vec(X;) and two permutation matrices P, and P, to
migrate from vec(X,) to vec(X;) and vec(X.) respectively. The algorithm is initialized using random values of the correct dimensions or using esti-
mates obtained by TLD.

[A,B,C] = td(X, P) (T23)

2. Unfold X retaining the first order and calculate the maximum likelihood estimation of A conditional on B and C. Since €, is block diagonal as
shown in T24, A can be calculated at once.

X, = unfold(X,a); Q, = PLOP;; Q, =L W, (T24)
A=X;'2N(zw, 'z (T25)

Using A and the estimates of B and C the objective function can be calculated using Equation (T26).
2 = tr((Xy — X)W, (X, — X)) (T26)

3. Unfold X retaining the second order and calculate the maximum likelihood estimation of B conditional on C and A using ©,.

vec(X) = vec(unfold(Xp))"; Vi = [RZL; (T27)
vec(BT) = (VIQ, V) 'V Q, Yoec(X]) (T28)

Here vec(B") is the vectorized row form of B. Using this estimate and the estimates of C and A the objective function can be calculated using
Equation (T29).

AXy = (Xp — Xp); St = vec(AXh)Tﬂh’lvec(AXh) (T29)

4. Unfold X retaining the third order and calculate the maximum likelihood estimation of C conditional on A and B.k‘I’c is constructed taking the
corresponding block of €2, since it is block diagonal.

X, = unfold(X,c); Q. = P.PLQ,P,P!; "W, (T30)
kw2l (ZE w2 (131)

Here ‘¢" is a row vector of C. Using this estimate and the estimates of A and B the objective function can be calculated using Equation (T32).

K
s2

k=1

5. Calculate the convergence parameters /; and Zo.

= (S5 - 8))/8

2= (e R ) (e %) (T32)

142 = (ST -S)/S; (133)

If /1 and /; are less than the convergence limit (typically 10~® in this work), terminate. Otherwise return to step 2.

Equation (36):

P
X =R+ o+ B+ + ) apbjpcip (36)
p=1

where i is the grand mean of X and a;, ; and 7, represent the
offsets for mode A, B and C, respectively. It has been
reported [15] that, in cases where an overall offset exists, it
can be removed by eliminating the offset associated with any
mode. Therefore, the grand mean can be incorporated into
any or all the offset terms affecting the individual modes.
When the measurements in X are corrupted by iid noise,
proper mean centering to remove the offset is a convenient
approach since this pre-processing step does not destroy the
multilinear characteristics of the data. It is important to note,
however, that mean centering will alter the structure of the
loadings so that they may no longer be readily identified

Copyright © 2003 John Wiley & Sons, Ltd.

with real factors, counteracting one of the main benefits of
trilinear decomposition.

From a mathematical point of view, the mean centering is
equivalent to adding trilinear factors that are formed by the
product of a vector of offsets and two other loading vectors
set to ones as shown in Equation (37):

X=(@e;lk)+ 1,981+ (1191 ® )

P
+) a, @b, ¢, (37)
p=1

Note that Equation (37) is a general formulation and in a
given application, the offset affecting any of the modes could
be set to zero, i.e. ¢, B or y could be a zero vector. In addition,
it could even be constrained to be a general offset affecting
all the measurements equally and then, loadings represent-
ing each mode would be equal to a vector of ones and
everything multiplied by a scalar representing the offset.
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Table IV. Simplified MLPARAFAC algorithm (Simplification 2—same error covariance matrix for each row in each slice)

1. Given an I x | x K cube of data X, and the error covariance matrices ¥, and W, for the A and C orders, respectively. The algorithm is initialized
using random values of the correct dimensions or using estimates obtained by TLD.

[A,B,C] = HA(X. P) (T34)
2. Unfold X retaining the first order and calculate the maximum likelihood estimation of A conditional on B and C.

X, = unfold(X,a); W, (T35)
A=X,¥,'2(z,¥, 'z (T36)

Using A and the estimates of B and C the objective function can be calculated using Equation (T37).
Si = tr((Xa — le)m_l Xa — XH>T) (T37)
3. Unfold X retaining the second order and calculate the maximum likelihood estimation of B conditional on C and A.

Xp = unfold(X, b) (T38)
B =X, 2] (Z,2))™" (T39)

Using B and the estimates of C and A the objective function can be calculated using Equation (T40).
S2 = tr((Xp — Xp) (X — Xp)T) (T40)
4. Unfold X retaining the third order and calculate the maximum likelihood estimation of C conditional on A and B.

X; = unfold(X, c); W, (T41)
C=Xxw 1zl (z.w 'z ™ (T42)

Using € and the estimates of A and B the objective function can be calculated using Equation (T43).
S = tr((Xe = X)W (X, = X)T) (T43)
5. Calculate the convergence parameters /; and Zo.

= (S~ SD)/Sh; 2= (S}~ S))/S; (T44)

If /4 and /5 are less than the convergence limit (typically 10~® in this work), terminate. Otherwise return to step 2.

However, the presence of non-uniform and/or correlated
error distribution makes mean centering no longer optimal
from a maximum likelihood point of view. This can be
understood considering that mean centering in any mode is
the projection of X unfolded in this mode onto the null space
spanned by the vector of ones corresponding to this mode.
Therefore, this projection will only be optimal under iid
conditions. In order to mean center optimally, the procedure
should be incorporated into the ALS algorithm. Contrary to
what happens in MLPCA, where the loadings are con-
strained to be orthogonal, PARAFAC does not impose any
constraints on the estimation of the loadings, making the
inclusion of offsets in the ALS algorithm a more straightfor-
ward task. Additionally, an important benefit is that the
offsets may often be uniquely determined because of the
uniqueness of the PARAFAC model.

A relatively simple approach to handling offsets can be
used when the offsets follow the structure represented by
Equation (37). It is clear from this equation that the offsets
can be incorporated by using from one to three more factors
(in the trilinear case) than the number of factors expected in
the absence of offsets. The number of additional factors
which should be added depends on how many modes
exhibit the offsets in Equation (37). This means of dealing
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with offsets is easily incorporated into the MLPARAFAC
algorithm, and will yield maximum likelihood estimates of
the loadings in accordance with the model, but is not the best
approach. This is because the loadings in the two modes
other than the one in which the offsets occur are allowed to
‘float,” that is, they are not constrained to unity (or, more
generally, a constant value). While these loadings may be
nearly constant and will constitute a maximum likelihood
solution to the expanded-factor model, all of the loadings in
this case should experience a greater variance than would be
expected with the true model. The situation is analogous to
fitting simple bivariate straight line data with an intercept of
zero to linear models. The data could be fit using only a slope
term (intercept forced to zero), or with a slope and intercept
term. Both approaches will yield a maximum likelihood
solution, but the latter strategy (which has a closer fit but
fewer degrees of freedom) will produce a larger variance in
the slope, so it is the less preferred method given a priori
knowledge of a zero intercept. Likewise, if we have prior
knowledge of a structure such as that in Equation (37), it is
better to incorporate this into the modeling process.
Equation (37) is only one of many possible constrained
structures that can exist in trilinear models, and it is clear
that the question of offsets is part of a more general issue of

J. Chemometrics 2003; 17: 237-253



constrained factors. The nature of these constraints is very
application dependent and relies on prior information.
While such constraints can be incorporated into the
MLPARAFAC algorithm, a general discussion of strategies
is premature and beyond the scope of the current paper.
However, one example will be presented in Section 4.5 to
demonstrate the performance of MLPARAFAC in the
presence of offsets.

2.5. Estimation of error covariance matrices

The error covariance matrix is of critical importance in
maximum likelihood methods such as MLPCA and MLPAR-
AFAC. Consequently, questions often arise related to
procedures used to estimate the error covariance matrix,
the quality of these estimates, and the implications of this on
the subsequent analysis. While the emphasis of this work is
on the development of the algorithm, it is legitimate to raise
these concerns, so they will be addressed here, although only
briefly.

Perhaps the most obvious way to estimate the error
covariance matrix is through the use of replicates, as indi-
cated in the discussion related to Equation (24). In practice,
such an approach may be limited by experimental design
considerations or realistic constraints on the number of
experiments that can be conducted. Covariance estimates,
like variance estimates, are notoriously imprecise unless a
large number of replicates are employed. This is often
impractical, although pooling can sometimes be used. The
question then becomes whether it is better to employ
traditional methods (which assume an iid-normal error
structure) or maximum likelihood methods with a noisy
error covariance matrix. Maximum likelihood methods will
generally be favored in situations where the number of
replicates is large and/or the level of heteroscedastic/
correlated noise is high. The precise point at which the use
of maximum likelihood methods becomes advantageous
will depend on the particular application and a detailed
examination of this is beyond the scope of the present work.

An alternative to the often unpopular approach of
measuring replicates is to characterize the error covariance
structure for a particular instrument or application based on
empirical evidence or theoretical considerations. In the same
way that certain instruments are known to exhibit propor-
tional noise, it may be possible to obtain a functional form for
the error covariance in certain types of applications. This is
already done to some degree when multiplicative signal
correction (MSC) is applied to near-infrared data dominated
by scatter noise. Furthermore, in some circumstances, it may
be possible to describe covariance arising from techniques
such as filtering or transformation on a purely theoretical
basis. By using such approaches, more reliable error
covariance matrices can be obtained that are not subject to
the statistics of a small number of replicates.

For the work presented here, which is intended to validate
the algorithm rather than to demonstrate its practical
application, the theoretical error covariance matrix based
on noise simulation was used. This removed any uncertain-
ties associated with the error covariance in the statistical
validation.

Copyright © 2003 John Wiley & Sons, Ltd.
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3. EXPERIMENTAL
3.1. Data sets

Since the objective of this work is to describe the theoretical
basis of the MLPARAFAC algorithm and to validate its
capabilities, all of the data sets employed in this work were
simulated so that the rank and error structure could be
known with confidence. Future studies will examine the
performance of the algorithm for real experimental systems.
Although a wide range of simulations were carried out, the
results from only six data sets are presented here to support
the main conclusions. In all cases, the data sets were rela-
tively small, since the studies generally involved statistical
validation requiring numerous runs.

Data Set 1 was a rank-three data set of dimensions
8 x 7 x 4 used to test the degrees of freedom with conven-
tional PARAFAC algorithm under conditions of iid normal
noise and compare it with the new algorithms. The loadings
for mode A were represented by an 8 x 3 matrix drawn from
a uniform distribution of random numbers from zero to
three (U(0,3)). Similarly, B was a 7 x 3 matrix from U(0,2)
and C was a 4 x 3 matrix from U(0,5). The error-free data
were generated using Equation (3), yielding the 8 x 28
matrix of error-free data, unfolded to maintain the A mode.
The matrix of measurement errors was an 8 x 28 matrix of
normally distributed random numbers (1=0, ¢=0.1, or
N(0,0.1)), which was added to the error-free data to generate
the unfolded form of Data Set 1. This matrix was then folded
into a three-way array and passed to the PARAFAC
algorithms.

Data Set 2 was a rank-three data set of dimensions
6x7x3 and was used to test the algorithm under
conditions of heteroscedastic but uncorrelated noise. The
error-free data were generated in the same fashion as Data
Set 1, with the same ranges of loadings but using the
corresponding dimensions. The matrix of measurement
errors was created by the Hadamard (element-by-element)
multiplication of a 6 x 21 matrix of normally distributed
random numbers drawn from N(0,1) and a 6 x 21 matrix of
random numbers, Q,, drawn from U(0,0.1), representing the
matrix of standard deviation for each measurement in X,,.
The noise matrix and the error-free data set were added and
the resultant matrix was folded.

The error-free part of Data Set 3, which was used to test the
general algorithm for correlation in multiple orders, is
identical with Data Set 1. The noise matrix was created to
introduce non-uniform and correlated noise at the same
time. Initially, an 8 x 28 matrix of normally distributed
random numbers drawn from N(0,1) was generated and
multiplied in an element-by-element fashion by one-tenth of
the value of the error-free measurements. The resultant
matrix was treated with a 15-point moving average filter
along each row in order to produce error covariance. At the
boundaries of the error matrix the filter was wrapped
around the to the opposite side in order to eliminate edge
effects. Since the error matrix was unfolded to maintain
mode A, this approach produced correlation among the
measurements in the two other modes. Although this
approach is not particularly realistic, it represents a general
case for which the covariance structure could be easily

J. Chemometrics 2003; 17: 237-253



248 L. Vega-Montoto and P. D. Wentzell

predicted. Again, the error-free data set was added to the
noise matrix in order to generate the data set.

Data Sets 4 and 5 were 5 x 8 x 4 matrices, again formed by
three components in the same manner as already described
for error-free data. These data sets were used to test
simplifications to the general algorithm related to the error
covariance structure. In both cases, the error-free data were
the same and only the measurement error matrices differed.
The noise matrix for Data Set 4 was generated to simulate a
system where the errors are correlated along only one order
(the B mode) and the error covariance matrix is identical for
each vector in this mode. To do this, four 5 x 8 matrices of
normally distributed random numbers drawn from N(0,0.1)
were generated and all of them were individually treated
with a five-point moving average filter along the rows. The
filtered error matrix was added to the error-free matrix and
used in the simulations. For Data Set 5, the correlated errors
were also only in one order and all the vectors in a given
‘slice’ (mode C fixed) had the same error covariance
structure, but this structure varies from slice to slice. The
measurement error matrices for this data set were generated
in the same manner as for Data Set 4, but the standard
deviation of the normal distribution and the filter width
were varied between slices (¢ =0.15, 0.2, 0.1, 0.05; w=3,5, 7,
3).

Data Set 6, which was used to test the performance in the
presence of offsets, was constructed from a 7 x 8 x 4 rank
three matrix with the same distribution of loading values
and the same noise correlation structure as Data Set 3—
heteroscedastic and correlated in two orders. In this case,
however, a single vector offset was added to the second
order, thatis, a1 x 8 vector of values drawn from U(0,2) was
added to each row of the three way array.

3.2. Computational aspects

All the calculations were carried out on a Sun Ultra 60
workstation with 2 x 300 MHz processors and 512 MB of
RAM and a 700 MHz Pentium-III PC with 128 MB of RAM.
All programs were written in-house using Matlab 6.0 (The
MathWorks, Natick, MA, USA).

4. RESULTS AND DISCUSSION

4.1. Statistical validation

In order to validate the various proposed algorithms, it was
necessary to verify that they yield the maximum likelihood
solution. This can be accomplished by exploiting the
statistical characteristics of S* values for the correct model.
Operationally, this is done by analyzing replicate data sets,
each with the same matrix of error-free data and the same
error structure, but with different realizations of the
measurement error each time. If the distribution of S$* values
for these replicates follows a x> distribution with the
appropriate degrees of freedom, it can then be concluded
that the algorithm is finding the maximum likelihood
solution. Probability plots are used in this work to make
this comparison. Initially, the replicate data sets (normally
100 replicates) are analyzed and the S values are stored.
Then, the S? values are sorted from the smallest to the largest
and assigned a cumulative probability according to their
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position in the list; this is called the observed probability. For
instance, the third element in the list would be assigned an
observed probability of 2/n, where n is the number of
replicates. The expected probability is then calculated using
the »* distribution. The cumulative probability density
function for y* can be calculated using the incomplete
gamma function included in Matlab as shown in Equation
(38):

P(%[0) = Tine (S; , g) (38)

where v is the number of degrees of freedom. If the two
distributions are the same, a plot of the observed probabil-
ities vs the expected probabilities should yield a straight line
with a slope of unity. If the model is insufficient to account
for the systematic variance, either because the form of the
model is incorrect or the parameters are suboptimal, then the
points of the plot will lie above the ideal line. If the model
accounts for an excessive amount of variance, i.e. the
estimated rank is too high and measurement variance is
modeled, the points will lie below the ideal line. It should be
pointed out that the only way to employ this approach is to
use simulated data where the true noise characteristics are
known. Because error estimates for virtually all experimental
measurements will have some (often substantial) degree of
uncertainty, the resulting $% values will not follow a »°
distribution. (For this reason, it can be argued that the
present methods are not truly ‘maximum likelihood,” since
they should also estimate the error covariance, but this is not
practical in most situations.)

The issue of degrees of freedom for trilinear data is far
from being trivial. Bro suggested that degrees of freedom do
not exist a priori [18], but have to be determined from the
specific data. This situation arises from the fact that the rank
of a trilinear data set cannot be calculated based on the same
approach used in bilinear data. For instance, the maximum
rank of a 3 x3 x 3 array is five [19], contrary to what
happens in bilinear data, where the maximum rankofa3 x 3
matrix is always three. Unfortunately, there is no simple rule
for calculating the maximum rank of arrays in general,
except for the bilinear case and some simple trilinear arrays.
However, Durell et al. [20]. reported two equations to
calculate the degrees of freedom in trilinear and quadrilinear
models, as given in Equation (39) and (40):

o(X)
o(X)

3-way = JK=P(I+]+K=2) (39)
4-way = JKL = P(I+]+K+L-3) (40)
The theoretical foundation of these equations is not
completely clear, but it has been suggested in the literature
that they might be used for exploratory (qualitative)
purpose. In other words, they should not be used as the
statistically correct number of degrees of freedom. In the
present work, the approach was to use Equation (39) as
estimator of the statistically meaningful number of degrees
of freedom for a trilinear case. In order to assess the merit of
this approach, trilinear data corrupted with iid normal noise,
such as Data Set 1, were submitted to the standard
PARAFAC algorithm, which is well known to yield the
maximum likelihood solution under these noise characteris-
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Figure 2. Probability plot for PARAFAC results under conditions
of iidnormal errors for 100 (O) and 1000 (+) replicates. The solid
line with unity slope indicates ideal behavior for maximum
likelihood estimation.

tics. The replication procedure described above was per-
formed using 100 and 1000 replicates and the probability
plot, shown in Figure 2, was constructed. It is observed that
the plot follows the theoretical slope very closely for 1000
replicates, indicating that Equation (39) provides a credible
number of degrees of freedom, at least for the purposes of
this study. For 100 replicates, the agreement is not as good
owing to the smaller sample size, but these results are
included as a point of reference for other studies that involve
only 100 replicates. It is worth noting that, even though the
results are not shown, analysis of all of the trilinear data
structures used in this work was carried out under iid
conditions using PARAFAC to confirm the estimated
degrees of freedom.

4.2. Non-uniform (uncorrelated) measurement
errors: Data Set 2

In order to test the validity of the algorithm depicted in Table
I, Data Set 2, which was corrupted with heteroscedastic
error, was employed. Since the main objective of this study is
the statistical validation of the algorithm, the theoretical
error covariance matrix obtained from the simulation par-
ameters was employed. The theoretical error covariance
matrix for each row is calculated using the equation

W, = diag(q,)? (41)

where diag() represents the diagonalization operator that
transforms the vector argument into a diagonal matrix. The
result is a diagonal matrix with the squared elements of ‘q,
(the ith row of Q, the matrix of standard deviations
unfolded in the A mode) along the diagonal. Error co-
variance matrices for the other orders were obtained using
the same equation applied to Q, and Q,, respectively.
Figure 3 shows the results obtained for the analysis of Data
Set 2 using PARAFAC and the version of MLPARAFAC
designed to accommodate heteroscedastic noise. The S?
values in both cases were calculated in the same manner, i.e.
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using Equation (9) with either the PARAFAC or MLPAR-
AFAC estimates of X,. It is clear from the figure that the
estimates obtained using MLPARAFAC follow the expected
behavior for maximum likelihood estimation, with only
minor deviations attributable to the statistical limitations of
the study. On the other hand, the models obtained by
PARAFAC do not adequately account for the systematic
variance in the data set, producing suboptimal solutions that
deviate radically from the line representing expected »*
distribution in the probability plot.

Although this data set was not designed to test the more
general algorithm depicted in Table II, it was also analyzed
using that algorithm to test its generality. The general
algorithm produced exactly the same set of solutions,
indicating that the two algorithms are equivalent under
these noise characteristics.

4.3. Non-uniform and correlated measurement
errors: Data Set 3

In the preceding section, it was noted that the general
MLPARAFAC algorithm for correlated errors was also able
to handle the case of uncorrelated errors. Data Set 3 was
designed to test the general algorithm in the presence of
errors which were correlated and heteroscedastic. Again, the
theoretical error covariance matrix was used. For this
specific data set, the covariance matrix in the A mode is
given by

111,u
Q, = (42)

I\I,a

where “W, represents the error covariance matrix of the i row
of X, and was calculated using the equation

W, = F'(diag((0.1) - ' x°))*F (43)

where F is the 28 x 28 filter matrix designed to carry out the
15-point moving average smooth on the noise (e, = €;iz F),
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Figure 3. Probability plot for the analysis of 100 replicates of Data
Set 2 (non-uniform, uncorrelated errors) by MLPARAFAC (O)
and PARAFAC ().
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MLPARAFAC algorithm with 100 (O) and 1000 (+) replicates,
the standard MLPARAFAC algorithm for uncorrelated errors with
100 replicates (<) and PARAFAC with 100 replicates ().

and second term is a diagonal matrix of the variance of the
noise in the ith row of noise matrix prior to smoothing, equal
to 10% of the error-free measurement squared. The compa-
nion error covariance matrices, ), and €. were calculated
using their respective permutation matrices as shown in
Equations (21) and (22).

Figure 4 shows the probability plots obtained using Data
Set 3. Results for the general MLPARAFAC algorithm, which
can accommodate any covariance structure, are shown for
both 100 and 1000 replicates. Both of these show good
agreement with the expected slope of unity, indicating that a
maximum likelihood solution has been obtained. In contrast,
it is clear that the PARAFAC model has substantial
systematic error, since it generates a maximum expected
probability of unity across all observed probabilities. In
order to test whether the superior performance of the general
MLPARAFAC algorithm was due to its inclusion of the error
covariance structure or simply because it accounts for
heteroscedasticity, results were also generated using the
version of MLPARAFAC designed to accommodate only
heteroscedasticity. For this analysis, only the diagonal
elements of the full error covariance matrix (£2) were
employed. Like the standard PARAFAC algorithm, these
models result in systematic errors, indicating that modeling
the covariance structure is a critical factor.

4.4. Simplified error covariance structures: Data
Sets 4 and 5

While the general MLPARAFAC algorithm should be able to
deal with any error covariance structure, in many cases it
may be possible to use the simplified algorithms presented
in Tables Il and IV. These algorithms were tested using Data
Sets 4 and 5. Data Set 4, which has a simple error covariance
structure consisting of correlation in one mode only and
identical error covariance matrices for all the vectors in this
mode, was used to test the corresponding algorithm in Table
IV, which will be referred to as Simplification 2. The

Copyright © 2003 John Wiley & Sons, Ltd.

probability plots for this study are shown in Figure 5,
together with the results of the generalized algorithm and
conventional PARAFAC. Note that the results of the general
algorithm and Simplification 2 are identical, confirming that
the latter is a special case of the former, and that both appear
to produce the maximum likelihood results. As before, the
performance of PARAFAC is suboptimal.

Simplification 1, which appears in Table III, is designed to
handle the case where (i) error correlation exists in one mode
only and (ii) the error covariance structure differs from
vector to vector along one of the remaining modes, but is the
same along the other remaining mode. Data Set 5, which was
simulated to test this algorithm, was created such that errors
were correlated along the rows (mode B) and the error
covariance matrix was identical for rows within the same
slice (mode A), but different across different slices (mode C).
The results from analysis of 100 replicates are summarized in
Figure 6. As with Simplification 2, the figure shows the
identical results for Simplification 1 and the generalized
algorithm, both of which produce maximum likelihood
estimates, and poor results for PARAFAC.

4.5. MLPARAFAC with offsets: Data Set 6

As noted in Section 2.4, the inclusion of certain kinds of
offsets in the trilinear structure can be modeled by using an
expanded rank model. This can be demonstrated with Data
Set 6, which has offsets added to one order (i.e. @ and 7y are
zero in Equation (37), but B is not). Therefore, expansion of
the PARAFAC model to rank four should accommodate the
offsets. This is demonstrated with the probability plots in
Figure 7, which compares the results of MLPARAFAC
(general algorithm) with conventional PARAFAC, both with
rank four models. It is clear that MLPARAFAC produces the
maximum likelihood solution while PARAFAC does not.
Furthermore, this approach to handling offsets is superior to
mean-centering in that the integrity of the loading vectors is
retained.
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Figure 5. Probability plot for the analysis of 100 replicates of Data
Set 4 (identical row correlations) using the general MLPARAFAC
algorithm (O), Simplification 2 of the general MLPARAFAC
algorithm (*) and PARAFAC ().
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As noted in Section 2.4, the maximum likelihood solution
extracted in this manner does not represent the ‘best’
solution in this application because information about
constraints on the loading vectors in the A and C modes of
the offset factor (i.e. that they are fixed) is not incorporated
into the ALS algorithm. While it is possible to do this, the
inclusion of constrained factors adds algorithmic complica-
tions and introduces questions regarding degrees of free-
dom, so this issue will not be dealt with in this paper.

4.6. Model quality

The preceding sections dealt with the statistical validation of
the maximum likelihood estimation process, but nothing has
been said about the quality of the estimates obtained using
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Figure 7. Probability plot for the analysis of 100 replicates of Data
Set 6 (correlation along modes B and C plus offset on modeB)
using the general MLPARAFAC algorithm (O) and PARAFAC
(0.
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these new algorithms. Although the implication has been
that the MLPARAFAC solutions are better, two reasonable
questions that arise are (1) are the MLPARAFAC estimates
closer to the true underlying factors than the PARAFAC
estimates?, and (2) do the MLPARAFAC estimates offer a
significant advantage over the estimates obtained by
PARAFAC?. The first question can be answered easily using
simulated data. The second question is more general in
essence and it can only be addressed on a case-by-case basis
since the advantages gained by MLPARAFAC will strongly
depend on the type and magnitude of error corrupting the
data and the correct use of a number of parameters related to
the estimation of the model. Some of the parameters
determining the success of MLPARAFAC over PARAFAC
are the number of components, accuracy of the estimation of
the error covariance matrix, and the use of the correct
algorithm based on the error structure present.

The first issue, the closeness of estimates to the true
factors, will be addressed using vector angles as a figure of
merit. This figure of merit is the angular difference between
the true loading vectors and the estimated loading vectors in
each mode. For example, the vector angle between two
loading vectors in mode A is given by

ala
9; = cos™! (A pF ) (44)
ay|[[|ay ||

where a, and a, are the true and estimated values for the pth
loading vector of A. Analogous equations can be used for the
other orders. Smaller angles mean a greater similarity, so by
comparing the vector angles obtained by MLPARAFAC with
those of PARAFAC, the agreement with the true vector can
be assessed. An alternative measure is the correlation

coefficient of the vectors, which is simply the term in
parentheses, but since this approaches unity with small
differences, it is less sensitive.

To evaluate the accuracy of the loadings extracted by
MLPARAFAC and PARAFAC under different conditions,
loadings extracted from 100 replicates of Data Sets 2-6 by
both MLPARAFAC and PARAFAC were used to calculate
vector angles for each of the loadings. These angles were
then averaged over the 100 replicates to give nine mean
angles and their standard deviations (3 modes x 3 factors)
for each method. These results are summarized in com-
pressed form in Table V, which, in the interest in saving
space, shows only the results for the first loading vector in
each mode. The uncertainty given is the population standard
deviation.

The results in Table V support the general view that
MLPARAFAC produces more accurate estimates of the
loading vectors than PARAFAC. Both the mean vector
angles and their uncertainties are smaller in all cases for
MLPARAFAC, although the degree to which this is true
varies with the data set. For Data Set 2, the differences
between the two methods is relatively small. This might be
expected, however, since this data set contains heterosce-
dastic errors only with no correlated errors, and the degree
of heteroscedasticity, arising from proportional errors, is not
very large. Nevertheless, differences are statistically sig-
nificant (note that the standard deviation of the mean will be
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Table V. Comparison of vector angle accuracies for PARAFAC and MLPARAFAC: results are based on 100 replicates and uncertainties
are given as standard deviations

Mean angular deviation (°)

PARAFAC MLPARAFAC
Data set A B A B C
2 0.27 £ 0.15 0.33+0.13 0.21+0.18 0.17 + 0.09 0.19 +0.08 0.14 £ 0.11
3 0.90 + 0.36 0.61+0.34 0.58 +0.37 0.08 +0.02 0.14 +0.05 0.09 +0.04
4 0.17 £0.07 0.27 £0.14 0.21+0.16 0.07 + 0.04 0.19 +0.08 0.10 +0.09
5 0.25+0.12 0.43+0.23 0.32+0.25 0.10 +0.05 0.23 +0.16 0.16 +0.16
6 1.77 £ 1.30 3.04 +1.16 1.52 +1.03 0.24 +0.12 047 +0.14 0.31+0.19

the value reported in the table divided by 10). The
differences are much more dramatic for Data Set 3, which
has correlated errors in two modes, and illustrates the
importance of modeling error covariance. To further
emphasize this point, the analysis of Data Set 3 by
MLPARAFAC assuming only heteroscedastic errors (i.e.
using only the diagonal) produced corresponding vector
angles of 0.92 4 0.37, 0.59 & 0.34 and 0.57 + 0.35, which are
not significantly different from the PARAFAC results. Data
Sets 4 and 5, which exhibit a smaller degree of error
covariance than Data Set 3, also show less dramatic
differences between MLPARAFAC and PARAFAC, but the
angular differences are still about a factor of two and are
statistically very significant. The analysis of these two data
sets employed the simplified algorithms, but it should be
noted that the general algorithm produced identical results,
as expected. In Data Set 6, the addition of a fourth factor
representing the offset decreases the quality of the estimates
in general compared to Data Set 3 (the most similar data set).
Because of the highly correlated error structure, this data set
exhibits a difference of a factor of five or more in the mean
vector angles obtained by the two methods. For comparison
purposes, the corresponding vector angles for the rank three
MLPARAFAC model are 1.52+0.55, 3.79+£0.17 and
1.44 £ 0.42, indicating that the inclusion of the fourth factor
to model the offset is essential.

These results clearly demonstrate that improved estimates
of loadings can be obtained from the trilinear model when
information about the measurement error structure is
available and is incorporated into the modeling process in
the correct way. As already noted, the extent to which these
improvements will be significant for a given application
depends on nature of the application and the characteristics
of the noise. Furthermore, the results presented here were
obtained assuming an absolute knowledge of the measure-
ment error covariance matrix, but in practice this is typically
estimated on the basis of replicate measurements and hence
may be less reliable. The benefits of including measurement
error information must therefore be weighed against the
detrimental effects of including poor quality information.
The development of the algorithms presented here has
demonstrated the potential for improvements that could be
achieved and facilitates application to more practical
situations in which an experimental assessment of their
benefits can be made.

Copyright © 2003 John Wiley & Sons, Ltd.

5. CONCLUSIONS

Four algorithms for carrying out MLPARAFAC based on an
ALS framework have been described. The simplest of these
is designed to work with cases where the measurement
errors are non-uniform (heteroscedastic) but uncorrelated.
The most general form of the algorithm can treat data with
any type of error covariance structure. Two simplifications
of the general algorithm were also presented which more
efficiently handle more restricted error covariance struc-
tures. All of the algorithms were shown to produce maxi-
mum likelihood estimates through a comparison of the
distribution of the objective function with the ;> distribution.
It was also shown that the quality of the estimated loading
vectors for MLPARAFAC was significantly better than for
the PARAFAC models in cases where the error covariance
matrix is known.

Although the principles of MLPARAFAC have been
established here, a number of more practical aspects related
to its implementation remain to be examined. These include
issues related to the computational efficiency and stability of
the algorithms for large arrays, the estimation of error
covariance matrices for three-way data, and the implemen-
tation of constraints on the loadings within the algorithms.
These subjects will be the focus of future investigations.
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