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In this paper, the application of a number of simplified algorithms for maximum likelihood parallel

factor analysis (MLPARAFAC) to experimental data is explored. The algorithms, described in a

companion paper, allow the incorporation of a variety of correlated error structures into the three-

way analysis. In this work, three experimental data sets involving fluorescence excitation-emission

spectra of synthetic three-component mixtures of aromatic compounds are used to test these

algorithms. Different experimental designs were employed for the acquisition of these data sets,

resulting in measurement errors that were correlated in either two or three modes. A number of data-

analysis methods were applied to characterize the error structures of these data sets. In all cases, the

introduction of statistically meaningful information translated to estimates of better quality than the

conventional PARAFAC estimates of concentrations and spectra. The use of the algorithms that

employ the error structure suggested by the analysis of the error covariance matrix yielded the best

results for each data set. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In 1980, Hirschfeld [1] presaged the current state of analy-

tical instrumentation when he made a very complete compi-

lation of all feasible combinations of techniques capable of

providing second-order data at that time. Nowadays, many

of these combinations are commonplace in the analytical

laboratory and they have been extended a step further by

adding other orders to produce three-way and multi-way

data in general. The vast majority of these combinations

involve a spectroscopic domain, where measurements are

made as a function of wavelength. The spectroscopic order

can be combined with a broad selection of techniques

exploiting different spectroscopic, chromatographic, kinetic,

and physicochemical characteristics of the analyzed sam-

ples. Even though the combination of spectroscopic informa-

tion with chromatographic, kinetic, and physicochemical

attributes have a number of drawbacks, such as poor repro-

ducibility of retention times for chromatography, poor sen-

sitivity in the spectroscopic order with respect to changes in

physicochemical properties, and important deviations from

the bilinear structure in kinetic experiments, these combina-

tions have been extensively used in the chemical literature

[2–23].

Three-way data obtained by pairing fluorescence excita-

tion and emission spectra to produce fluorescence excitation-

emission matrices (EEMs) is perhaps the most common

combination used in chemistry due to the wide availability

of spectrofluorometers and a number of useful features.

First, the measurements can be made on a single instrument

with consistent channel registration. Second, EEMs are char-

acterized by excellent sensitivity, selectivity, and bilinearity.

Finally, a wide variety of different options can be used to

produce trilinear data [17–23]. However, real EEMs can give

rise to nonideal behavior that can disturb the trilinearity of

the data. Among the most common cases are nonlinear

effects caused by high concentration of the analytes and

the presence of instrumental effects such as scattering within

the measurements.

A common problem that arises in the analysis of experi-

mental fluorescence data is related to primary absorption

due to high concentration of chromophores. As the concen-

tration of the compounds increases, their absorptions be-

come more significant at the edge of the cuvette and it will

reduce the amount of light reaching the fluorophores in

the rest of the cell. This will decrease the emission intensity

in a nonlinear fashion. In order to avoid this situation,
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fluorescence excitation-emission measurements of dilute

samples are usually preferred, or in cases where this is not

possible, some corrections can be applied [24,25]. A second

problem is the inadequacy of the mathematical model to

represent scattering effects in the samples (i.e., Rayleigh and

Raman scatter). Unfortunately, corrections for scattering

effects cannot be implemented as easily as the previous

case from an experimental point of view and, in general,

corrections have to be made in the estimation step. Further

scrutiny of this problem has been done and thus far the only

real applications use some kind of weighted decomposition

[9,24,26] to eliminate this problem by considering the scatter-

ing as noise rather than model deviations. In this work,

special attention has been given to the selection of a range

of concentration profiles and excitation and emission wave-

lengths to produce data sets that are not affected by these

deviations of the model.

Deviations apart, the physical model describing this type

of measurement is equivalent to the well-known structural

model called PARAFAC [27,28]. Many different algorithms

[28–35] based on different optimization strategies have

been formulated to estimate the parameters describing

the model. However, the PARAFAC algorithm, based on

an alternating least squares optimization technique, ac-

counts for the majority of the applications reported in the

chemical literature due to its excellent convergence char-

acteristics and simplicity. In addition, the statistical optim-

ality of the least-squares solutions obtained by PARAFAC

was empirically proven by Faber et al. [36] using a com-

parative study with the other methods, and from a more

theoretical point of view by Liu and Sidiropoulos [37] by

comparing the performance of the PARAFAC solutions

obtained for simulated data affected by iid noise with the

Cramer–Rao lower bound. A few examples cover areas as

dissimilar as the estimation of sugar quality and process

parameters in the food industry and the determination of

polycyclic aromatic compounds, pesticides, and dioxins in

different matrices [38–43].

In general, even though the characteristics of the noise

affecting fluorescence EEMs are well documented [44], they

are disregarded in favor of the more simplistic and therefore

unrealistic features characterized by an identical distribution

of independent errors from channel to channel, since this

provides optimal estimates when algorithms based on sim-

ple least squares optimization are used. Recently, two meth-

ods, called maximum likelihood via iterative least squares

estimation (MILES) and maximum likelihood parallel factor

analysis (MLPARAFAC), have been introduced to the che-

mometrics literature [26,45] to optimally estimate the model

using measurement error information. The main difference

between MILES and MLPARAFAC is that MLPARAFAC is a

method based solely on ALS optimization, while MILES

works as an iterative preprocessing tool to condition the

data from a maximum likelihood perspective in order that

least squares methods such as PCA and PARAFAC can

optimally handle the estimation process.

In an earlier companion paper [46], a number of important

simplifications of the general MLPARAFAC [45] methodology

for cases where the error covariance matrix is dominant along

one or two orders, and a compression step prior to the use of

general MLPARAFAC for cases where the error was corrupt-

ing more than two orders, were introduced. These simplifica-

tions complete the theoretical background of the general

methodology presented in the original work [45] by introdu-

cing a new approach to obtain the estimation equations.

Traditionally, the estimation equations for the standard

PARAFAC model and for its derived errors-in-variables

model, general MLPARAFAC, were obtained by switching

among different mathematical arrangements of the same

objective function, expressed differently for each mode. This

strategy is used because, due to the symmetry of the

PARAFAC model, the implementation is not only efficient

but also extremely simple, making the normal equations very

similar from one mode to the other. However, when the

characteristics of the noise are taken into account, this sym-

metry is lost, making it necessary to express the estimation

problem as the general problem, since the existence of a

simplified version of the error covariance matrix in the given

space is not possible or extremely difficult to find. Therefore, a

new approach was introduced in which the data are initially

arranged in order to have the major source of correlated noise

along the mode B, followed by the second major source of

correlation along mode C, leaving mode A as the mode not

affected by correlated noise. After the data are arranged, the

estimation equations are obtained by expressing all of the sub-

steps as minimization problems of the same objective function

written by preserving mode A alone.

The simplifications obtained by using this approach were

tested using simulations. These simulations showed the

statistical characteristics of these new algorithms and the

improvements in terms of performance and quality of

the estimates when the proper simplifications given the

available data were used. However, they also illustrated

the importance of a thorough characterization of the error

covariance matrix in order to use the most suitable algo-

rithm. Unfortunately, the simulations had a very well-

defined error structure, making the process of choosing the

appropriate simplification extremely simple, since informa-

tion about the number of orders affected by the correlated

noise and its structure were accurately known in advance.

Real-life applications are not characterized by this simplicity,

making the decision process a more complex task. Therefore,

the objective of the present paper is threefold. First, a set of

guidelines are introduced to thoroughly characterize the

error structure and rationalize the way in which the different

orders are arranged and the simplifications used. Second, the

different simplifications are applied to experimental EEM

data sets to test whether the improvement observed in

simulations can translate to experimental data. Finally, the

effect of using the different simplifications is explored with

variations in the way the orders are arranged.

2. THEORY

The companion to this paper showed the relationship be-

tween the optimal representation of the error covariance

matrix (the one including all the information about the

variance and the covariance among the elements) for differ-

ent scenarios and the different simplifications used in each

case, reducing to a considerable degree the computational
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burden for MLPARAFAC. Unfortunately, for all cases, it was

assumed that the error covariance matrix describing the

given system was completely known in its structure as

well as its numerical value. In reality, the situation is more

complex. For a given application, it is necessary to initially

characterize the structure of the error covariance matrix to

choose the proper representation and, once this is estab-

lished, its numerical estimation has to be performed. Until

recently, the literature on characterizing error covariance

matrices was virtually nonexistent but a recent paper by

Leger et al. [47] has shed some light on this topic. A number

of two-way data sets were analyzed in this work using those

tools developed by the authors, and these tools can be

extended to three-way data in a straightforward manner,

as suggested by the authors and to be demonstrated here. A

principal objective of this work is to develop a set of tools for

understanding and classifying the measurement error struc-

ture of a given multi-way system through an analysis of

the error covariance matrix. This knowledge will then be

used in conjunction with the different simplifications of

general MLPARAFAC introduced in the companion

paper. There are two immediate benefits to such an

analysis. First, the analysis can provide insight into the

main sources of error affecting the measurement. This can

potentially be used to redesign experiments to minimize

these error sources, since the error structure is directly

related to the experimental design as well as the detection

technique used to collect the data. Most importantly, it can

help the practitioner choose the proper estimation method to

accommodate the error structure in an optimal way. Leger

et al. [47] also speculated on the idea of using this informa-

tion to produce a deterministic model of the error covariance

matrix in order to eliminate the need for extensive replica-

tion in order to estimate the error covariance matrix. How-

ever, in this work, this possibility will not be explored.

In order to put into context the motivation behind these

tools, a brief description of the structure of error covariance

matrices will be given. The tools will then be described,

devoting some attention to the pieces of information pro-

vided by them. Finally, a flow chart will be presented to

choose the optimal representation of the error covariance

matrix and, in turn, the algorithm needed to estimate the

PARAFAC model.

2.1. Analysis of the error covariance matrix
A few important pieces of information are needed to con-

struct an optimal representation of the error covariance

matrix. The first one is the answer to the following question:

How many orders are affected by correlated noise? Second:

Which are the orders affected by correlated noise? Once

these two questions are answered and the data are reorga-

nized by using permutations in a way that the order affected

by correlation is located in mode B if the errors are only

affecting one order, or in modes B and C if the errors are only

affecting two orders. At this point, another important issue

must be addressed by answering the following question: is

the correlation structure the same for all the objects used in

the construction of the error covariance matrix? (In other

words, is pooling of the individual error covariance matrices

statistically correct?)

Figure 1 shows a schematic representation of the structure

of the full error covariance matrix and its equivalent

simplified representations for each case in order to under-

stand the characterization of the error covariance matrix and

the tools used to do it.

It is clear from Figure 1 that the errors can be correlated

along one, two, or three orders, giving rise to different

representations of the full error covariance matrix. For the

cases where the errors are correlated along only one or two

orders, more simplified representations exist. Unfortu-

nately, the analysis of the full-error covariance matrix is

usually precluded by its size. Therefore, this case has to

rely on alternative representations providing similar in-

formation. A substantial amount of information about the

measurement error structure can often be gleaned through

a visual examination of the pooled experimental error

covariance matrix for each mode. As already noted else-

where [47–49], this matrix is typically obtained through the

use of replicate measurements. Normally, a series of R

replicates of each object order is obtained. The definition of

a replicate can vary for different fields, applications and

experiments, but in the present context it is defined as the

measurement realization made to capture the relevant

sources of variation while the underlying chemical

information defining the unattainable true signal is kept

constant.

Operationally, the process to construct the pooled error

covariance starts by unfolding the replicate r of the three-

way data rX retaining the order to be analyzed. This opera-

tion is repeated for the R replicates. For example, to calculate

the error covariance matrix for mode A, rX (I� J�K) is

unfolded while retaining mode A, producing rXa (I� JK).

Then, rXa is transposed and used to calculate the individual

experimental error covariance matrix for each object in-

cluded in mode B and C via Equation 1.

Ro ¼
1

ðR� 1Þ
XR
r¼1

ðrxo � �xxoÞTðrxo � �xxoÞ ð1Þ

where rxo is the oth 1� I row vector of replicate r taken from
rXT

a and �xxo is the 1� I mean vector of the replicate measure-

ments. The subscript ‘o’ is used in a generic way to represent

objects from mode B and C. The degrees of freedom used in

this equation are analogous to the calculation of variance

(which will be represented by the diagonal elements of R)

and, as with the calculation of variance, the estimated error

covariance matrix will have a high degree of uncertainty

unless a large number of replicates are used. In many cases,

as we will see shortly, the error covariance matrices esti-

mated for several objects can be combined to give a pooled

error covariance matrix, Ravg. For this example Ravg can be

calculated as follows:

Ravg ¼ 1

JK

XJK
o¼1

Ro ð2Þ

Of course, such a pooling is statistically valid only if it can be

assumed that the row error covariance structure is the same

for all the objects in the other modes. This situation will be

rigorously analyzed in the next step of the characterization

process, but here only a subjective analysis will be carried
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out to determine the extent of the error correlation effect.

Mathematically, Equations 1 and 2 can be combined to give a

clearer view of this calculation. This is done by considering

the I� JKR matrix of residuals for all replicates of all objects,

Ea. The equation can then be written as:

Ravg ¼ 1

JKðR� 1ÞEaE
T
a ð3Þ

It is important to emphasize that, despite the use of mode A for

the example, this process is exactly the same for the rest of the

modes, but with the given equation adapted accordingly.

Despite the central role of error covariance matrices

in maximum likelihood estimation, their visual interpreta-

tion may be of limited utility since, in the presence of

heteroscedastic errors, a few elements with a high variance

can obscure the interactions among other elements. A more

complete understanding of the interactions of the elements

in the error structure can be gained through inspection of

error correlation matrices. Error correlation matrices can be

calculated by dividing each element of the covariance matrix

by the two contributing standard deviations

�rs ¼
�rs

�r�s
ð4Þ

In this equation, �rs and �rs represent the elements in the rth

row and sth column of the correlation and covariance matrices,

respectively, and �r and �s are the standard deviations at

elements r and s, calculated from the square root of the

Figure 1. Illustration of the possible scenarios in which a full error covariance

matrix can be expressed using different simplified representations of the error

structure to describe all of the sources of variation.
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corresponding elements of the diagonal of the covariance

matrix. In matrix notation, this can be given as:

Scorr ¼ R:

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðRÞ � diagðRÞT

q
ð5Þ

where the notation ‘./’ indicates an element-wise division

(Hadamard quotient), the function ‘diag’ converts the diag-

onal of R into a column vector, and the square root is taken to

be an element-wise operation. By definition, the diagonal

elements of the correlation matrix will be unity. The off-

diagonal elements will indicate the degree of error correla-

tion among elements, although information about the

absolute magnitude of the covariance is lost.

Once these correlations matrices are constructed for each

mode, a conclusion regarding what orders are affected by

correlated errors can be drawn. Based on this conclusion, the

three-way arrays can be permuted in order to have either

the uncorrelated orders in mode A and C for cases where

correlation is only affecting one order, or the uncorrelated

order in mode A for cases where correlation is affecting two

orders.

It is worth noting that the construction of error covar-

iance matrices for cases where correlated noise is affecting

two orders is extended in a straightforward manner as

shown in the following equation where the correlated

orders are B and C

Ri
a ¼ 1

ðR� 1Þ
XR
r¼1

ðrxia � �xxaÞ
Tðrxia � �xxaÞ ð6Þ

where rxia is the 1� JK row vector of replicate r and �xx is the

1� JK mean vector of the replicate measurements. The

pooled error covariance matrix is calculated as shown

Ravg
a ¼ 1

I

XI
i¼1

Ri
a ð7Þ

2.2. Homogeneity among different
error covariance matrices
The visual analysis of the average error covariance and

correlation matrices treats the error structure as a pooled

entity. The pooling of individual error covariance matrices is

permitted by an a priori assumption that the sources giving

rise to this error structure are constant from object to object,

and that each object’s own contribution to the error structure

is fairly constant. Even though a few statistical tests, such as

Wilks’ � and Box’s M tests [50], have been designed to test

the similarity and homogeneity of covariance matrices, the

approximations used for these tests are only valid when the

number of replicates is larger than 20 and the number of

objects/variables is less than 5. Usually, for multi-way data,

these assumptions are violated. Therefore, since the assess-

ment of structure and homogeneity of error covariance

matrices is an important subject, a decomposition tool will

be introduced here taking into account the special require-

ments of this type of data.

To understand the theoretical idea behind the decomposi-

tion tool used in this work, we will initially assume that the

measured error covariance matrix can be factorized accord-

ing to a low-rank bilinear model. This assumption is

obviously limiting in the context of a general model for error

covariance. The authors recognize the limited scope of this

assumption. For instance, the simplest error structure, iid-

normal errors, cannot be represented by this low-rank bi-

linear model, and neither can certain sources of covariance

arising from cosmetic manipulations, such as digital filter-

ing. Nevertheless, reference 47 demonstrated the validity of

these simplified assumptions using a number of examples.

The theoretical foundation supporting this tool will be

illustrated using fluorescence emission spectroscopy, which

is the simplest case of EEMs, since a set emission measure-

ments is recorded at a fixed excitation wavelength. Two

sources of error that have been identified in fluorescence

emission spectroscopy are offset noise and multiplicative off-

set noise [47]. In the first case, which can arise, for example,

from variable cell positioning, the entire spectrum is offset by a

fixed amount. In the second case, the offset depends on the

magnitude of the square root of the signal in a multiplicative

way. This square root dependence might be expected due to

the shot noise characteristics of emission measurements,

which follow Poisson statistics. Therefore, a structural compo-

nent similar to the square-root of the mean emission spectra

can be anticipated. If we consider a series of spectra, X (R

replicates by J wavelength channels), the errors of these types

in the spectra, E (¼X�Xo), could be represented as:

E ¼

x1� � xo

x2� � xo

..

.

xR� � xo

2
66664

3
77775 ¼

e1�

e2�

..

.

eR�

2
66664

3
77775 ¼

e11

e12

..

.

e1R

2
66664

3
77775 1; 1; . . . ; 1½ �

þ

e21

e22

..

.

e2R

2
66664

3
77775

ffiffiffiffiffi
xo1

p
;
ffiffiffiffiffi
xo2

p
; . . . ;

ffiffiffiffiffi
xoJ

q� �
¼ e1 � 1T

J þ e2 �
ffiffiffiffiffi
xo

p

ð8Þ

In this equation, xi� is a row vector (replicate spectrum) from

X, ei� is a row vector (residuals) from E, 1J is a J� 1 vector of

ones, and xo is a row vector representing the error-free

spectrum. The R� 1 vectors e1 and e2 contain the individual

realizations of the offset error and the multiplicative offset

error for each replicate, where e1 and e2 are assumed to be

normal random variables with standard deviations of �1 and

�2. Taking the expectation for the error covariance matrix, we

can write

S ¼ EðeT � eÞ ¼ S1 þ S2 ¼ �2
1 � 1J � 1T

J þ �2
2

ffiffiffiffiffi
xo

p� �T
�
ffiffiffiffiffi
xo

p
ð9Þ

It is important to mention that the structural model shown in

Equation 1 will describe most, but not all, of the variation for

this type of data, since the contributions of other sources,

most notably independent errors (either homoscedastic or

heteroscedastic), are not included. This will have an impact

when the methodology is employed to obtain a deterministic

model for the error covariance matrix, but since our main

objective is the characterization of the homogeneity error

covariance matrix these contributions will be neglected here.

Equation 9 represents the physical model behind the error

structure for a particular object. When different objects are
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considered, this physical model can be mimicked by the

INDSCAL structural model, introduced by Carroll and

Chang [27]. Mathematically, this can be done by collating

individual error covariance matrices into a three-way array

consisting of symmetric slices R1, R2, . . . ,RO. The model

decomposes the slices as:

Ro ¼ FDoF
T þ Eo ð10Þ

where F is a J�P matrix representing the sources of varia-

tion (i.e., structural factors) and Do is the P�P diagonal

matrix whose elements represent the contribution of each

source of variation to the error covariance of object o.

Often, as noted previously, error covariance matrices

from different objects are pooled to give a better estimate

of the error covariance matrix. In these cases, it is expected

that the decomposition of the individual error covariance

matrices (different objects) can be factorized using com-

mon structural factors with contribution vectors that share

the same statistical properties of the specific model. There-

fore, the homogeneity of the individual error covariance

matrices can be reduced to the homogeneity of the struc-

tural factors describing the error sources and the similarity

in the statistical properties of the contribution of each

individual object. For instance, in the example presented,

this would mean that the spectra for individual samples

show a strong similarity (structural factors) and e1 and e2

(contribution vectors) share the same statistical character-

istics for all samples (i.e., same �1 and �2). As explained in

Reference [47], this model is solved using the PARAFAC

algorithm [28], which is simpler and less constrained,

but mathematically equivalent in terms of the solution

produced by Equation 10. It is recommended that the

PARAFAC algorithm be run in a split-half [51] fashion to

make sure of the validity of the estimates.

2.3. Assessment of the error structure
Figure 2 depicts a flow chart indicating the important steps

and metrics to direct the user in the optimal construction,

characterization, and calculation of the error covariance

matrix. This will lead to the use of the optimal estimation

method given the available data.

The first step uses the information obtained through a

subjective analysis of the pooled error correlation matrices

for each mode to make a decision about the number of

modes affected by correlated errors and to sort the modes

in a way that the permuted array will have the uncorrelated

orders in modes A and C for cases where correlation is only

affecting one order, or the uncorrelated order in mode A for

cases where correlation is affecting two orders. This step will

also provide the necessary information to decide whether a

J� J, JK� JK, or IJK� IJK error covariance matrix will be

needed. Matrices with a majority of their elements showing

significant correlation will be considered to describe impor-

tant correlation in this mode. As mentioned before, this

interpretation will be largely subjective as the different error

covariance matrices are visually analyzed. However, some

numerical interpretation can be added by considering that

the decomposition of pooled error covariance matrices

describing important sources of correlation will produce a

low-rank model with few components accounting for a large

proportion of the variance. It is important to mention that

this interpretation must be treated carefully, since on many

occasions the structure in other modes will produce some

artificial structure in the analyzed mode, as was described by

Leger et al. [47].

Once the form of the error covariance matrix is decided,

an analysis of the homogeneity is necessary, regardless the

form. For cases where correlation is important along only

one dimension, it is important to assess whether the objects

in the other two orders will contribute to the structure

equally. This is also true for cases where the correlation is

affecting two orders, with the only difference being that the

equivalence of the contribution is only tested for objects

within the one remaining order. The general procedure

starts by calculating the individual error covariance ma-

trices of order determined in step 1 of the flowchart.

Different split-half data sets are created to assess the

contribution of different objects to the structural factors

when the INDSCAL model is estimated. In the present

context, the split-half method [51] is a type of cross-

validation method in which the homogeneity of the

structural factors in one or more modes is examined by

partitioning the data in half along a remaining mode and

analyzing each half individually. The partitioning is typi-

cally done in such a way to examine variations in the

structural factors that depend systematically on the other

mode. For example, it is advisable to use partition strate-

gies that provide information about short range (e.g. by

taking alternate objects) and long range (e.g. by taking

consecutive blocks of objects) differences in the contribution

of the objects to the error covariance matrix.

The number of factors describing the structural model of

the error covariance model will be chosen by using infor-

mation such as variance accounted for the models, corcon-

dia values, and visual appearance of the factor [47]. Once

this number is established, the structural factors obtained

by different split-half models are aligned to eliminate the

permutation indeterminacy, and then the average struc-

tural factors are calculated. These average structural factors

are used as reference values to calculate the similarity of the

corresponding structural factors obtained from different

split-half models via the average vector angle. The decom-

position of the INDSCAL model also provides information

about object contributions. Low-average vector angles and

statistically homogeneous sample contribution values will

indicate that that pooling of the error covariance matrices

for different objects is correct from a statistical point of

view.

It is important to note that, for cases where the correlation

affects only one dimension, an additional homogeneity test

separating objects from different modes has to be carried out

if the first test fails to indicate global homogeneity. In the

second test, the homogeneity in the other two modes is

examined individually. If the second test also fails, the data

must be treated with an algorithm that is also used to treat

cases where correlation is affecting two modes, as shown in

the flowchart. These approaches will be illustrated with real

samples in Section 4.
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3. EXPERIMENTAL

3.1. Methods
3.1.1. Reagents and samples

Naphthalene (Fisher) was used as received. Acenaph-

thylene (Aldrich) and phenanthrene (BDH) were recrystal-

lized prior to use. Stock solutions of the individual

samples were prepared by mass in acetonitrile

(Anachemia, spectrophotometric grade, 99.9%). The

final concentration ranges were approximately 0.10–

0.34 mg/g (ace), 0.018–0.063 mg/g (nap), and 0.0072–

0.027 mg/g (phe).
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Figure 2. Flow chart employed to characterize the error structure.
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3.1.2. Instrumentation
Fluorescence emission spectra were obtained from samples in

a 1 cm quartz cuvette on a Shimadzu RF-301PC spectrofluo-

rometer with a xenon lamp excitation source. The excitation

wavelength range was between 250 and 305 nm using inter-

vals of 5 nm. The emission wavelength was scanned between

309 and 415 nm in steps of 1 nm. A medium scan speed was

used and the slits for both excitation and emission were set at

5 nm. The pure excitation and emission spectra for each

component are the average of 10 replicates using the same

experimental conditions. These are shown in Figure 3.

3.1.3. Procedure
Fluorescence emission spectra were obtained from mixtures of

three polycyclic aromatic hydrocarbons (PAHs): acenaphthy-

lene (ace), naphthalene (nap), and phenanthrene (phe). Five

replicate sets of spectra were obtained from each of 27 mix-

tures. A three-level, three-factor factorial design was used to

prepare the mixtures and a blank containing only the solvent

(acetonitrile) was run before and after each block.

It is well known that the error structure affecting spectro-

scopic data depends on both the spectroscopic technique and

the experimental design used to record the data. Since the

main objective of this work is testing the performance of

different simplifications of the general MLPARAFAC algo-

rithm in the presence of different error structures, the

procedure described was used to produce three different

data sets through changes in the data acquisition protocols.

Data Set 1 was obtained by scanning all of the samples in

each replicate block in a randomized order. Also, in order to

decrease the possibility of correlated errors, the excitation

wavelengths were also randomized for each replicate block.

Emission spectra were obtained in a consecutive fashion.

Data Set 2 was also obtained by scanning all of the samples

in each replicate block in a randomized order. In this case,

the excitation and emission were scanned in a consecutive

fashion to see if some additional correlation is introduced by

the non-randomized use of the excitation range. The excita-

tion range was scanned from the highest to the lowest

excitation wavelength to decrease the potential effects of

photodecomposition.

Data Set 3 represents the most complex error structure

since the objects in all modes were scanned in a consecutive

fashion (i.e., samples were run in a sequential order and

excitation and emission wavelengths were scanned con-

secutively). This experimental design is generally avoided

by practitioners, since it can introduce temporal correlation

from different sources [44]. Again, the excitation range was

scanned from the highest to the lowest excitation wave-

length. These different designs are represented pictorially

in Figure 4.

3.2. Computational aspects
All the calculations performed in this work were carried

out on a Sun Ultra 60 workstation with 2� 300 MHz pro-

cessors and 512 MB of RAM and a 3.2 GHz Pentium-IV PC

with 1 GB of RAM. All programs were written in-house

using Matlab 6.0 (The MathWorks, Inc., Natick, MA) with

the exception of the PARAFAC and TUCKER3 functions

that were run using the N-Way Toolbox [52].

4. RESULTS AND DISCUSSION

4.1. Analysis of the error covariance matrices
Figures 5–7 show the pooled correlation matrices of each

mode for Data Sets 1, 2, and 3, respectively. They are plotted
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mro

N

310 320 330 340 350 360 370 380 390 400 410

Wavelengths (nm)

Ace
Nap
Phe

Excitation
Spectra

Emission
Spectra

Figure 3. Pure excitation (top panel) and emission (bottom panel) normalized

spectra of the compounds employed in this work. Each spectrum is the average of

ten replicate measurements.
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using an intensity map in which a darker tonality indicates

an absolute correlation value closer to one and a paler

tonality indicates a correlation value closer to zero. The

three cases present a very strong pattern of correlation for

the emission modes, as was expected due to the consecutive

fashion in which this mode was recorded in every case. It is

important to note that the correlation patterns were very

similar for Data Sets 1 and 2 but some differences were

observed for Data Set 3. The physical reason for this differ-

ence is not entirely clear, but is undoubtedly linked to the

sequential order of the samples in the third data set and

indicates the close relationship between experimental design

and error structure. The excitation mode was also highly

affected by correlation in all cases, even though Data Set 1

was scanned in a random manner in the excitation mode.

This result is not completely surprising since, for a given

sample, the emission spectra at each excitation wavelength

were recorded without removing the sample from the

spectrometer. Therefore, the cuvette positioning will pro-

duce an offset, which is one of the most common sources of

correlated errors. This will carry through all the excitation

wavelengths, and is likely an important source of correlation

affecting this mode. Another expected result was related to

the correlation affecting the sample orders. Data Sets 1 and 2

showed a very random distribution of tonalities, indicating

the lack of important sources of correlation affecting these

data sets. However, Data Set 3 was characterized by a very

dark correlation map, indicating important sources of corre-

lation that need to be taken into account in the sample mode.

Conclusions about the necessary permutations and the

optimal representation of the error covariance matrices for

each data set can be drawn based on these plots. For Data

Sets 1 and 2, the correlation pattern suggests that the emis-

sion and excitation orders should be located in modes B and

C and the use of a JK� JK format for the error covariance

matrix. Order permutations are not necessary for Data Set 3,

Figure 4. Simplified pictorial representation of the experimental designs employed to

acquire Data Sets 1, 2 and 3.
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since the general MLPARAFAC algorithm will be needed to

provide optimal estimates, requiring a full IJK� IJK error

covariance matrix and the use of compression in order to use

the algorithm.

Although previous results indicate that the use of J� J

error covariance matrices was unjustified since correlation is

affecting more than one order, a structural decomposition of

the individual error covariance matrices for each mode was

done. In all cases, it was clear that the different objects

pooled produce different sources of structure (results not

shown) indicating again that the use of a pooled J� J error

covariance matrix would be sub-optimal.

Figure 5. Pooled correlation matrices for each mode of Data Set 1 using intensity maps.

Figure 6. Pooled correlation matrices for each mode of Data Set 2 using intensity maps.
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The flowchart in Figure 2 indicates that the next step in the

characterization process is the assessment of the homogene-

ity of the individual error covariance matrices to determine

whether or not pooling is theoretically justified. This step

was carried out for Data Sets 1 and 2, but was not necessary

for Data Set 3 since the full error covariance matrix was

required in this case.

Figure 8 shows the average structural factors and sample

contributions obtained for Data Sets 1 and 2 when a PAR-

AFAC model is used. In both cases, the decomposition was

carried out on the error covariance matrices characterizing

the composite mode formed by the excitation and emission

modes. Consequently, the plot of structural factors exhibits a

repeating pattern of features corresponding to each of the

excitation wavelengths. As discussed in Reference [47],

different pieces of information, such as the variance ac-

counted for the model, the corcondia value [53], and the

shape of the structural factors, are used to identify the

structural model that describes the array of error covariance

matrices. Different split-half models suggest that the error

structure in both cases can be decomposed using two factors,

since the models accounted for more than 90% of the

variance and gave corcondia values of 100%. When a third

component was added, the corcondia values decreased in all

cases to values below 70%. Furthermore, additional ex-

tracted components explained little variation (less than 2%

in all cases), were very noisy, and similar in shape to the

preceding components. The first structural factor resembles

the average emission profile for different excitation wave-

lengths, as anticipated in the theory section, and it also

describes more than 90% of the variation of the model.

This component is characterized by a very low vector angle

(2.7� and 8.9� for Data Sets 1 and 2, respectively), indicating a

high similarity among the estimates for different split-half

models. The second structural component is more hetero-

geneous than the first, as the analysis of vector angles

indicates (16.7� and 10.8� for Data Sets 1 and 2, respectively).

However, the contribution of this component to the error

covariance matrix structure is smaller, as is the variance that

it describes. In addition, some split-half models indicate that

this high variability arises from a few odd-numbered sam-

ples in the first half of the data set (i.e., samples 1–13). It is

also localized in the long-wavelength region of the emission

spectrum where chemical information is likely minimal, as

can be seen in Figure 3.

The sample contributions for the first component are quite

variable, which is expected since these contribution values

represent the stochastic contributions of the structural fac-

tors, as represented in Equations 8 and 10. Assuming the

original contributions satisfy a normal distribution, the con-

tributions extracted from the error covariance matrices

should follow a squared normal distribution if pooling is

acceptable. This is consistent with the pattern observed for

the first component. However, the sample contributions for

the second component are characterized by substantial de-

viations in the contributions of samples 1, 5, and 11. Pro-

blems with these samples are the likely cause of disturbances

in the estimation of the second structural factor described in

the previous paragraph. Because this disturbance appears in

both data sets, it may be related to the preparation of these

samples. However, as noted in earlier work [47], the depar-

ture from homogeneity due to sample contribution will not

Figure 7. Pooled correlation matrices for each mode of Data Set 3 using intensity maps.
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preclude the pooling of the error covariance matrices. This

violation is not as important as the violation of structural

similarity, and in these cases the structural differences are

not really considerable, since the second component has a

small contribution to the error structures.

Summarizing all of the information presented, it can be

said that Data Sets 1 and 2 are affected by correlated noise

that permeates though the excitation and emission modes,

while in Data Set 3, the correlated noise is also affecting the

sample mode. These results indicate that Data Set 3 will need

the use of general MLPARAFC to produce optimal results.

The homogeneity analysis of the error covariance matrices

for Data Sets 1 and 2 using a number of split-half models

indicates that pooling is advisable, since the model was well

described by two structural factors and followed an expected

distribution in the sample contributions.

4.2. Estimation assessment
4.2.1. Figures of merit
Due to the intrinsic differences in the experimental orders

estimated (concentrations and spectra), two different figures

of merit will be used to assess the performance of the

methods. The figure of merit used to measure the quality

of the concentration estimates is the root-mean-square error

of the estimation (RMSEE) calculated as follows:

RMSEEr
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðŷyrp � yo

pÞ
2

Ns � 1

s
ð11Þ

where ŷyrp represents the estimated Ns� 1 vector of concen-

trations for component p and replicate block r, yo
p is the

corresponding Ns� 1 vector of standard concentrations, and

Ns is the number of samples. The use of (Ns� 1) degrees of

freedom for RMSEE is justified by the fact that PARAFAC

model has a well-known scaling indeterminacy that has to be

estimated using at least a reference sample. This equation is

applied to the R replicate blocks and the average value is

obtained using Equation 12:

RMSEEp ¼
PR

r¼1RMSEEr
p

R
ð12Þ

In order to make the interpretation of this value more

meaningful, a relative average root-mean-square error of

the estimation (RRMSEEp) is calculated. This is determined

with respect to the average concentration for component p,

symbolized by �yyp, yielding:

RRMSEEp ¼
RMSEEp

�yyp
ð13Þ

For the excitation and emission modes, vector angles are

preferred as a figure of merit, since they describe the quality

of the estimates more clearly from a geometric point of view.

The expression used to calculate this figure of merit is given

in Equation 14

�rp ¼ cos�1
fT
p f

r
p

kfpkkfrpk

 !
ð14Þ
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Figure 8. Results of two-component PARAFAC decomposition of the individual error covar-

iance matrices for the composite mode formed by excitation and emission modes for Data

Sets 1 and 2: (a) structural factors, (b) sample contributions.
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Here, frp represents the estimated emission or excitation

profile for component p using replicate block r and fp
represents the corresponding reference emission or excita-

tion profile, obtained from separate scans of the pure com-

ponents. As in the case of the RMSEE, the vector angle is also

averaged over R replicates:

���p ¼
PR

r¼1�
r
p

R
ð15Þ

In addition to these two figures of merit that can be used

individually to assess the performance of each algorithm for

each component and mode, a global indicator of the relative

performance of each algorithm with respect to the correspond-

ing standard, PARAFAC estimation, was used. This magni-

tude will be referred to as the performance ratio, PR, and is

calculated as follows for the spectral and concentration modes:

PRspec ¼
PP

p¼1
���

X
p

� �
PP

p¼1
���

PARAFAC
p

� �

PRconc ¼
PP

p¼1 RRMSEE
X

p

� �
PP

p¼1 RRMSEE
PARAFAC

p

� �
ð16Þ

In this equation the superscript ‘X’ represents any of the

possible algorithms that will be used in this work. PR values

lower than unity will indicate superior performance of the

given method over PARAFAC for the same data set, while

values greater than unity will indicate inferior performance.

The authors are aware of the drawbacks of such a summary

statistic, which can be significantly biased by extreme values of

any of the components. However, if the indicator is used with

caution, it has the ability to simplify the analysis considerably.

4.2.2. Performance of the algorithms
Although a proper permutation arrangement and format for

the error covariance matrix were suggested for each data set

in Subsection 4.1, in this section, the results obtained for all

possible permutations and with different error covariance

matrix formats are presented. This was done to compare the

results obtained with different formulations and permuta-

tion orders. There were two objectives in doing this: (1) to

demonstrate that the incorporation of measurement error

information can yield improved results over PARAFAC,

even if it is done in a sub-optimal manner, and (2) to show

that best results are obtained with the proper error covar-

iance structure. It is important to note, before starting the

description and discussion of the results, that no cross-

comparisons among different data sets were done since a

number of experimental factors such as photodecomposi-

tion, solvent volatilization, and other factors associated with

the temporal stability of the samples cannot be controlled. A

good indication of these effects is the fact that the perfor-

mance of the optimal method for each data set decreases

from Data Set 1 (first data set recorded) to Data Set 3 (last

data set recorded).

Tables 1, 2, and 3 summarize the results for Data Sets 1, 2,

and 3, respectively. Each table shows the performance for

each component when different structures of the error

covariance matrix and the corresponding algorithms were

used. The first column of each table gives the algorithm used

and, by implication, the format of the error covariance matrix

assumed. The second column specifies which mode(s) were

considered to be affected by correlated errors. The perfor-

mance is measured as RRMSEEp for the concentration pro-

files and as ���p for the emission and excitation profiles. In

addition, the performance ratios (PR) with respect to the

PARAFAC estimates are also reported as a global indicator

of performance. The rows of the tables shown in bold

indicate the best conditions found in this study for each

data set.

For all of the data sets, the use of error information

translated into a superior performance of the algorithms

tested over PARAFAC as a general trend, with the only

exceptions being Data Sets 1 and 2 when analyzed using

error covariance matrices assuming only sample correlation.

This result is expected, since the previous analysis of the

measurement errors indicated that, for Data Sets 1 and 2,

Table 1. Results obtained by different algorithms when applied to different arrangements of Data Set 1

RRMSEE ��� (Emission profiles) ��� (Excitation profiles)

Method Correlated orders Ace Nap Phe PR Ace Nap Phe PR Ace Nap Phe PR

PARAFAC — 0.0713 0.0827 0.0533 1.00 2.82 1.79 4.38 1.00 1.80 2.79 7.30 1.00
Compress — 0.0673 0.0785 0.0510 0.95 2.16 1.67 3.98 0.87 1.21 0.95 3.85 0.50
PARAFAC
1A Emission 0.0516 0.0655 0.0399 0.76 1.71 1.30 3.17 0.69 0.94 0.76 2.95 0.39
1A Excitation 0.0606 0.0644 0.0428 0.81 1.85 1.44 3.31 0.73 0.99 0.80 3.21 0.42
1A Samples 0.0754 0.0904 0.0584 1.08 2.61 1.95 4.61 1.02 1.40 1.04 4.31 0.57
1B Emission 0.0575 0.0639 0.0433 0.79 1.84 1.36 3.27 0.72 1.00 0.77 3.16 0.41
1B Excitation 0.0596 0.0688 0.0414 0.82 1.98 1.45 3.44 0.77 1.02 0.81 3.28 0.43
1B Samples 0.0786 0.0944 0.0582 1.11 2.55 1.98 4.47 1.00 1.39 1.09 4.25 0.57
1C Emission excitation 0.0488 0.0548 0.0338 0.66 1.61 1.13 2.81 0.62 0.85 0.63 2.57 0.34

1C Emission-samples 0.0570 0.0686 0.0419 0.81 1.95 1.41 3.27 0.74 1.03 0.77 3.14 0.42
1C Excitation samples 0.0693 0.0795 0.0492 0.95 2.19 1.64 3.95 0.87 1.17 0.91 3.80 0.49
1D Emission excitation 0.0478 0.0525 0.0348 0.65 1.58 1.15 2.60 0.59 0.83 0.61 2.55 0.33

Compress full Sample emission excitation 0.0642 0.0719 0.0491 0.89 2.06 1.60 3.63 0.81 1.13 0.88 3.58 0.47
MLPARAFAC

Row(s) in bold represent(s) best case scenario.
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there was no correlation affecting the sample domain. There-

fore, the use of an erroneous error covariance matrix with

spurious correlations will only have a negative effect on the

performance. Comparatively, introduction of error informa-

tion related to the emission order produces marginally better

performance than the use of error information describing the

excitation mode. Different levels of improvement were

found when information about the correlated error affecting

the emission and excitation orders as a composite mode was

utilized by different algorithms. In other words, the perfor-

mances of algorithms such as 1C and 1D, which include error

covariance information about the composite mode formed

by emission and excitation profiles, were significantly better

than the performance of algorithms using error covariance

information of either emission or excitation profiles alone

(e.g., algorithms 1A and 1B). Further to this argument,

insignificant advantages in terms of performance were

found by introducing more localized information about the

error structure, as can be seen by comparing the results

obtained by algorithms 1A and 1B when the same spectro-

scopic order (emission or excitation) was considered. This is

a clear indication that the sources of variation contributing to

the error structure are a combination of effects, such as the

multiplicative and offset contributions anticipated in the

analysis of measurement errors, that permeate through

the composite mode formed by the excitation and emission

modes. Similar levels of improvement were also observed

for Data Set 3 when information about the error covariance

affecting the sample mode was introduced. This was an

important confirmation that the sources of correlation found

for the sample mode in the analysis of the measurement

errors for Data Set 3 were real and the inclusion of them will

translate in a better performance.

The results for Data Sets 1 and 2 were very similar. This

was anticipated due to the similar error structure found in

both data sets. Methods 1C and 1D using error covariance

Table 3. Results obtained by different algorithms when applied to different arrangements of Data Set 1

RRMSEE ��� (Emission profiles) ��� (Excitation profiles)

Method Correlated orders Ace Nap Phe PR Ace Nap Phe PR Ace Nap Phe PR

PARAFAC — 0.1119 0.1801 0.0700 1.00 8.12 2.41 10.56 1.00 4.53 7.24 8.52 1.00
Compress — 0.1032 0.1650 0.0666 0.92 4.18 1.90 8.82 0.71 3.16 2.32 4.07 0.47
PARAFAC
1A Emission 0.0944 0.1478 0.0635 0.84 3.89 1.78 8.33 0.66 2.85 2.07 3.69 0.42
1A Excitation 0.0955 0.1587 0.0636 0.88 4.09 1.89 8.38 0.68 3.04 2.22 3.93 0.45
1A Samples 0.0939 0.1477 0.0605 0.83 4.06 1.89 8.22 0.67 2.93 2.12 3.73 0.43
1B Emission 0.0937 0.1546 0.0616 0.86 3.99 1.78 8.34 0.67 2.88 2.16 3.72 0.43
1B Excitation 0.1004 0.1585 0.0605 0.88 4.14 1.86 8.41 0.68 2.98 2.29 3.92 0.45
1B Samples 0.0893 0.1570 0.0610 0.85 3.93 1.79 8.60 0.68 2.91 2.19 3.67 0.43
1C Emission excitation 0.0979 0.1402 0.0560 0.81 3.87 1.69 7.95 0.64 2.73 2.04 3.51 0.41
1C Emission samples 0.0944 0.1467 0.0625 0.84 3.93 1.72 8.37 0.66 2.92 2.13 3.58 0.43
1C Excitation samples 0.0931 0.1398 0.0598 0.81 3.78 1.80 7.82 0.64 2.86 2.01 3.57 0.42
1D Emission excitation 0.0956 0.1476 0.0560 0.83 3.65 1.75 7.66 0.62 2.68 2.08 3.53 0.41
Compress full Sample emission excitation 0.0870 0.1319 0.0542 0.75 3.46 1.55 7.50 0.59 2.56 1.81 3.29 0.38

MLPARAFAC

Row(s) in bold represent(s) best case scenario.

Table 2. Results obtained by different algorithms when applied to different arrangements of Data Set 2

RRMSEE ���(Emission profiles) ��� (Excitation profiles)

Method Correlated orders Ace Nap Phe PR Ace Nap Phe PR Ace Nap Phe PR

PARAFAC — 0.0740 0.1019 0.0618 1.00 2.55 2.62 7.45 1.00 2.12 2.60 7.20 1.00
Compress — 0.0721 0.0965 0.0572 0.95 1.94 1.98 6.71 0.84 1.21 1.12 3.45 0.48
PARAFAC
1A Emission 0.0580 0.0798 0.0488 0.78 1.61 1.65 5.58 0.70 1.02 0.92 2.96 0.41
1A Excitation 0.0651 0.0861 0.0542 0.86 1.72 1.76 6.17 0.76 1.09 1.05 3.17 0.45
1A Samples 0.0810 0.1105 0.0694 1.10 2.32 2.30 7.94 0.99 1.47 1.34 4.14 0.58
1B Emission 0.0615 0.0796 0.0506 0.81 1.66 1.66 5.84 0.73 1.10 0.98 3.01 0.43
1B Excitation 0.0620 0.0886 0.0523 0.85 1.80 1.77 6.11 0.77 1.15 1.02 3.17 0.45
1B Samples 0.0846 0.1053 0.0708 1.10 2.26 2.20 8.08 0.99 1.42 1.34 4.11 0.58
1C Emission excitation 0.0433 0.0625 0.0372 0.60 1.32 1.31 4.47 0.56 0.79 0.72 2.36 0.32

1C Emission samples 0.0618 0.0845 0.0519 0.83 1.68 1.71 6.02 0.75 1.11 0.99 3.17 0.44
1C Excitation samples 0.0713 0.0950 0.0588 0.95 1.92 1.88 6.62 0.83 1.22 1.12 3.48 0.49
1D Emission excitation 0.0454 0.0641 0.0387 0.62 1.30 1.26 4.51 0.56 0.77 0.77 2.19 0.31

Compress full Sample emission excitation 0.0606 0.0828 0.0524 0.82 1.62 1.72 5.88 0.73 1.10 1.00 2.89 0.42
MLPARAFAC

Row(s) in bold represent(s) best case scenario.
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matrices of a composite mode formed by the emission and

excitation orders yielded the best results for both data sets, as

was anticipated by the analysis of the error covariance.

Improvements in performance in the range between about

60 and 80% were observed for different modes. There were

not significant differences in performance observed between

algorithms 1C, which use a pooled JK� JK error covariance

matrix, and 1D, which use a set of JK� JK error covariance

matrices. However, for method 1D, only two pooled error

covariance matrices were used instead of a set of I individual

error covariance matrices. This simplification was carried

out to reduce the computational load of the algorithm, which

would have been prohibitive. One of the error covariance

matrices was constructed by pooling the odd-numbered

samples and the other was constructed pooling the even-

numbered samples. This partitioning was based on evidence

found during the analysis of error covariance that suggested

anomalous behavior of some odd-numbered samples in the

first half of the data set (see Subsection 4.1). Although no

significant differences were found using algorithm 1D with

this approach, it is difficult to generalize this conclusion to

the case of I covariance matrices.

The relative improvement in predictive ability of the

compressed general MLPARAFAC algorithm was the most

important difference between Data Set 3 and Data Sets 1 and

2. For the three data sets, a Tucker3 compression basis set

formed by 12 components for the sample and excitation

modes and 20 components for the emission mode was

employed. These parameters were selected on the basis of

principles developed in a companion paper [46], but results

were not especially sensitive to them as long as a sufficient

number of components were used. Even though this alter-

native produced an improvement over the PARAFAC model

for Data Sets 1 and 2, the results were worse than the those

produced by most other algorithms. This situation can be

explained by considering that, for Data Sets 1 and 2, the

introduction of error information about the sample domain

is likely to make the error covariance matrix less reliable due

to the introduction of spurious correlations and a reduction

in the number of replicates in the estimation process. On the

other hand, the existence of an important source of error

structure in the sample order for Data Set 3 makes the

estimation of the error covariance matrix essential and

more than makes up for a reduction in the number of

replicates.

In the application of the general MLPARAFAC methodol-

ogy to compressed data sets, performance enhancement can

result not only from the use of error covariance information

but also from the compression procedure itself. To dissect

the improvements from each of these sources, PARAFAC

was also applied to the compressed data. As can be seen

from the results in Tables 1–3, the use of PARAFAC on the

compressed data produced some improvements, but these

are not as large as the improvements observed by using

MLPARAFAC on the same data, indicating the benefit of

using a weighted estimation method.

Some interesting details emerge when the prediction

performances are analyzed for each component. In all cases

the concentration profile of phenanthrene yields the lowest

error followed by acenaphthylene and naphthalene. How-

ever, the emission and excitation profiles of phenanthrene

are poorly predicted in comparison to the other two com-

pounds. This may be indicative of a trade-off trend in the

estimation process that needs to be studied more thoroughly.

It is also worth noting that poor performance exhibited

by Data Sets 1 and 2 when error information describing

the sample domain was used mainly affected the estim-

ation of the concentration profiles, indicating again the

irrelevant information carried by these error covariance

representations.

Even though the time involved in the calculations of these

models was not specifically tabulated, it typically ranged

from one to a few hours. By comparison, PARAFAC models

were computed in time windows of a few minutes to an

hour, depending on the size of the data set and initial

estimates. Therefore, the construction of a table similar to

the ones presented here to choose the best arrangement and

algorithm for a given data set is not recommended. How-

ever, the results presented here validate the analysis of error

covariance as an exploratory strategy to choose the best

arrangement and algorithm given the available data.

5. CONCLUSIONS

In this work, a number of practical aspects related to the

application of the different simplifications of MLPARAFAC

to experimental data have been explored. The algorithms

employed were described in an earlier companion paper [46]

and these were applied to three sets of fluorescence EEM

data from mixtures of three polycyclic aromatic hydrocar-

bons. A number of important tools, previously introduced

for the analysis of the error structure affecting two-way data

[47], were extended to three-way data in this work. These

tools were applied to the three different data sets to char-

acterize the error structure. Two of the data sets exhibited

error covariance along the composite mode consisting of

excitation and emission modes, while the third exhibited

error covariance along all three modes. These characteriza-

tions allowed estimation of an optimal representation of the

error covariance matrix for each data set. When used with

the corresponding algorithm, these error covariance matrices

yielded the best models in each case. Different error struc-

tures and algorithms were employed, showing that the

inclusion of statistically meaningful error information al-

ways produced an improvement in the estimates over con-

ventional PARAFAC, even in cases where the error

covariance information was incomplete. The level of im-

provement depends on the quality and importance of the

error information, but in this work, improvements over

PARAFAC by as much as a factor of three were observed.
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