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Abstract

A new strategy is introduced for analyzing two multiblocks tables: DO-ACT. This method is
closely related to the STATIS (or ACT) methodology and the Tucker inter-battery method. The
length of two multiblocks are not necessarily the same and the optimal solution obtained is that
of a global optimization problem. The advantage of using DO-ACT is that the 5rst step provides
a summary of the two multiblocks tables, in the second step two optimal representations (one for
each multiblock) of the observations can be plotted and in the third step a global description of
each table of each multiblock can be made. An example of DO-ACT performance is illustrated
with a real data set. The program implementing the method has been developed using the S-Plus
6:0J (2000) language.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Many generalizations of standard linear multivariate analysis like principal compo-
nent analysis (PCA) or canonical correlation analysis (CCA) have been proposed for
study three or more sets of variables, that is to say a multiblock table. In this paper,
a multiblock table (or a multiblock) is a set (or group) of matrices measured with the
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same observations. Most of the extensions of CCA determine the dimension (or rank)
of the model step by step, using linear combinations of the variables of each matrix and
optimizing a criterion (Horst, 1961; Carroll, 1968; Saporta, 1975; Van de Geer, 1984;
Esco5er and PagBes, 1984, 1994; Casin, 2001). Only few methods optimize a global
criterion and generate in a right way a solution with 5xed rank (Gower, 1975; Lavit,
1988; Lavit et al., 1994). Some methodologies have also been developed for multiway
contingency tables (Carlier and Kroonenberg, 1996) and for one multiblock contin-
gency table (BEecue-Bertaut and PagBes, 2003) generalizing the correspondence analysis
method. In the case of two multiblocks, some methods exist for building regression
models. In the chemometric literature, generalizations of the PLS regression method
can be found (Bro, 1996; Westerhuis et al., 1998; Smilde et al., 2000). But if the prob-
lem is the simultaneous analysis of a pair of multiblock tables, only one method exists:
STATICO (Simier et al., 1999). Unfortunately, this method works with two data sets of
same dimension, that is to say with data arranged in two three-way arrays. To be able to
compare the results of our new methodology, we propose a new version of STATICO
which allows the use of two multiblocks (with diHerent number of variables in each
matrix).

The purpose of this paper is to introduce a new approach for 5nding common dimen-
sions inside two multiblocks tables with diHerent length and for describing each one
of them. This global approach, referred as DO-ACT (DOuble ACT), is closely related
to the STATIS (or ACT) strategy and Tucker inter-battery method (Tucker, 1958) and
is made of three successive steps. This multiblock method, can be bene5cial to analyze
large data sets where the measurements are organized with an important number of
tables (or length). The DO-ACT methodology is used to take into account the block
structure (two multiblocks) of the data set during the calculations. The Section 2 of
this paper gives the general notations; in Section 3 the main features of STATIS
and Tucker inter-battery methodologies are brieIy presented. Section 4 describes the
DO-ACT approach and before concluding, an application on a real data set is made in
Section 5.

2. Notation

The two multiblocks (or sets of matrices) are referred by {Xk}k (k = 1; : : : ; K) and
{Yl}l (l= 1; : : : ; L). K and L are the length of the two multiblocks, and it is assumed
without loss of generality that K and L are not simultaneously equal to unity. Each
Xk and Yl are n × pk and n × pl tables, where all the variables are measured on the
same n observations. Without loss of generality all the variables, the columns of the
matrices, are assumed to be D-centered (or/and scaled) with respect of a weighting
matrix D of n × n dimension whose positive diagonal elements sum to 1. In most of
the cases D is the uniform weighting: D = (1=n)Idn, where Idn is the identity matrix.
With this notation, the D-scalar product between two variables (or vectors) x and y
in Rn is de5ned by (x; y)D = x′Dy (where x′ is the transposed vector, or matrix, x).
This scalar product is equal to the covariance between x and y if the two vectors are
D-centered.
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We de5ne K + L statistical triplets (Xk; QXk ; D) (k = 1; : : : ; K) and (Yl; QYl ; D) (l =
1; : : : ; L) where D is the metric in Rn as de5ned above and QXk and QYl are the
metrics in the observations spaces Rpk and Rpl , respectively. QXk and QYl are pk ×pk

and pl × pl symmetrical de5nite positive matrices. They are used to calculate the
scalar products between the observations in Rpk and Rpl respectively. The identity
matrix (Idpk or Idpl) is the most widely used metric, but it can be possible to choose
another one, see for example (Cailliez and PagBes, 1976; Tenenhaus and Young, 1985).
{(Xk; QXk ; D)}k and {(Yl; QYl ; D)}l are also used to refer to the two multiblocks.
WXkD=XkQXkX

′
kD is an n×n matrix called operator and denotes the scalar products

between observations in Rpk . This matrix is similar to VkQXk = X ′
kDXkQXk which is

the variance–covariance matrix between the Xk variables if QXk = Idpk . To end, we
recall that the RV-coe:cient (Escou5er, 1973) measures the proximity between two
statistical triplets (Xk; QXk ; D) and (Xk′ ; QXk′ ; D) and is de5ned as

RV (WkD;Wk′D) =
tr(WkDWk′D)√

tr(WkDWkD)tr(Wk′DWk′D)
:

3. The STATIS and Tucker inter-battery methods

In this section, the main purposes of the STATIS and Tucker inter-battery procedures
are recalled. Details and proofs can be found in Lavit (1988) and Lavit et al. (1994)
for the STATIS methodology and in Tucker (1958) and Chessel and Mercier (1993)
for the Tucker inter-battery analysis.

3.1. STATIS (or ACT) method

In this part, only one multiblock {(Xk; QXk ; D)}k=1; :::;K is considered. For readability,
in this section, the subscript Xk in the operator notation will be dropped. The aim
of STATIS is to 5nd an operator, called the compromise, summarizing the WkD’s
(k =1; : : : ; K) the best, in the sense of a criterion. Next, the second goal of STATIS is
to analyze this compromise, like in PCA, and to plot the observations of the K tables
onto the 5rst components.

The interstructure step of STATIS begins to calculate the scalar products between the
K operators WkD and next allows to make a graphical representation of the operators
(like in multidimensional scaling) in a space of low dimension (two or three). This
graphical con5guration allows us an overall graphical comparison of the K tables.

The C matrix of dimension K × K is made of the scalar products between the
WkD’s operators. The element on line k and column k ′ of C is Ck;k′ = tr(WkDWk′D).
Rather than work with C, we can choose to work with the RV-coe:cients, which can
be seen as the cosine of the angle between the corresponding operators (Escou5er,
1973). Moreover, the user can weight the operators via a diagonal K × K matrix
� = diag(�k), k = 1; : : : ; K . The diagonalization of the C� matrix leads to K scaled
eigenvectors {pr}r=1; :::;K , belonging to RK and associated to the rth eigenvalue �r .
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Then, the plot given by (
√
�rpr;

√
�sps) (r; s in {1; : : : ; K} with r �= s) provides an

Euclidean representation of the K operators in the (r; s) plane.
The next step of the STATIS procedure is the compromise. The purpose is to 5nd

an n × n operator WcD. This operator is a “consensus” between the WkD’s opera-
tors, according to a criterion. The comprise is required to be a weighted mean of
the initial operators: WcD =  

∑K
k=1 �klkWkD, where  is a scaling coe:cient and

l = (l1; l2; : : : ; lK) is the weight vector of the K operators. The criterion used to 5nd
the l vector is ‖WcD‖2 = tr(WcDWcD), where ‖:‖ is the Hilbert–Schmidt norm of
the WcD operator (Robert and Escou5er, 1976). The solution of the optimization of
‖WcD‖2 under the scaling constraint for the l vector (l′l = 1) is the eigenvector as-
sociated with the 5rst eigenvalue of the matrix C�. Because it is a positive linear
combination of positive semi-de5nite operators, WcD is also positive semi-de5nite (see
later for the proof).

The last step, the intrastructure, consists in comparing the views of the observations
given by the compromise with the view given by the initial operators WkD. Then the
PCA of WcD is performed and all the observations of all the operators are plotted
onto the 5rst spaces spanned by the A principal components {ca}a=1; :::;A, elements of
Rn associated with the eigenvalues �c;a. The coordinate of the ith observation of the
kth table on the ath component is given by the ith coordinate of WkDca=

√
�c;a.

3.2. Tucker inter-battery method

In this part, only one table X and one table Y (i.e. L=1 and K=1) are supposed. The
purpose of the Tucker inter-battery method is to 5nd two sets of A components: {cXa =
XQX aa}a=1; :::;A associated with X and {cYa = YQYba}a=1; :::;A associated with Y , which
maximize the criterion cov(XQX aa; YQY ba) with the constraints ‖aa‖2

QX
= a′aQX aa = 1

and ‖ba‖2
QY

= b′aQY ba = 1.
This problem is a compromise between two conIicting objectives: CCA, which max-

imizes the correlation between cX and cY , and PCA of X and Y (with their respec-
tive metrics), what is equivalent to diagonalize WXD= XQXX ′D and WYD= YQYY ′D
(Cailliez and PagBes, 1976), and that maximizes variance of the diHerent components.

The successive solutions cXa and cYa of Tucker inter-battery are the eigenvectors of
WXDWYD and WYDWXD associated with the same eigenvalue �2

a. This implies that
�a is also the optimal covariance. Moreover, it is possible to show that the “factors”
aa and ba are the solution of the diagonalization of the two matrices X ′DYQYY ′DXQX

and Y ′DXQXX ′DYQY . Another diHerence between Tucker inter-battery, CCA and PCA
is that the two sets {cXa}a=1; :::;A and {cYa}a=1; :::;A are not D-orthogonal in Rn.

4. DO-ACT procedure

In this section the DO-ACT approach is de5ned and some of its properties are given.
We brieIy recall notations: two sets of triplets {(Xk; QXk ; D)}k=1; :::;K and
{(Yl; QYl ; D)}l=1; :::;L, measured on the same n observations are considered. All the vari-
ables (columns of X and Y ) are D-centered.
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First, the aim is to study the proximities and the diHerences between the two sets of
K + L triplets and, in a second step, to compare the views of the observations given
by the two compromises (one for each multiblock) with those given by the initial
tables. Next two compromises are calculated, the closer as possible in the sense of a
criterion, and are analyzed. The DO-ACT procedure is organized, as in STATIS, with
three successive stages: interstructure, compromise and intrastructure.

4.1. De:nition

The problem is to 5nd two compromise operators, one per block, WXD and WYD.
Each compromise is a linear combination, with unknown coe:cients, of its respective
operators, maximizing their scalar product: tr(WXDWYD).

Hence we search

WXD = %
K∑

k=1

�k&kWXkD (1)

and

WYD = '
L∑

l=1

!l)lWYlD (2)

with % and ' two scaling coe:cients, � = diag(�k) and * = diag(!l) two diagonal
matrices of a priori operators weights. The two compromises operators WXD and WYD
are searched through the vectors & = (&1; : : : ; &K)′ and ) = ()1; : : : ; )L)′. Without loss
of generality, it is assumed that the two scaling coe:cients are equal to 1. If this
is not the case, the operators WXD and WYD are substituted for WXD=‖WXD‖ and
WYD=‖WYD‖.

The compromises are simultaneously searched subject to the constraints

‖&‖2 = &′& =
K∑

k=1

&2
k = 1; (3)

‖)‖2 = )′) =
L∑

l=1

)2
l = 1: (4)

The solutions are found by means of the Lagrange function L. Let  and + the multi-
pliers associated to the constraints. L is given by

L(&; );  ; +) = tr(WXDWYD) + 1
2 (1 − ‖&‖2) + 1

2+(1 − ‖)‖2): (5)

4.2. Properties

Proposition 1. The solutions of max&;){tr(WXDWYD)} under constraints (3) and (4)
are given by the two eigen equations

*C′�2C*) =  2); (6)
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�C*2C′�& =  2&; (7)

)′) = 1; (8)

&′& = 1 (9)

and the maximum of the criterion is equal to  .

Proof. tr(WXDWYD) =
∑K

k=1

∑L
l=1 �k&k!l)l tr(WXkDWYlD) = &′�C*) = )′*C′�&,

where C is the K × L matrix of the scalar products between the operators: Ck;l =
tr(WXkDWYlD). Hence, the problem is to 5nd the maximum of a bilinear form under
constraints. The associated normal equations are

∇&L = �C*) −  & = 0; (10)

∇)L = *C′�&− +) = 0; (11)

2∇ L = 1 − &′& = 0; (12)

2∇+L = 1 − )′) = 0: (13)

By multiplying (10) on the left by &′ and by using constraint (12),  = &′�C*) is
obtained. Similar arguments applied to (11) and (13) give += =&′�C*), the positive
(see below) optimal scalar product.

The expression of & given by (10) replaced in (11) gives (7). Similar calculations
are made for (6).

In practice, it is unnecessary to diagonalize two systems (7), (9) or (6), (8). Indeed
only one of them is diagonalized and the other coe:cients vector is obtained by using
Eq. (10) or (11).

If the operator weights (in matrices � and *) are equal to 1, the matrices to
diagonalize are C′C and CC′.

In Eqs. (6) and (7), the elements of the two matrices are non-negative (because the
trace of an operators product is positive), and the application of the Perron–Frobenius
theorem, see for example LSutkepohl (1996, p. 141), gives that all the entries of the
5rst eigenvector (& and )) are positive. Hence, the two compromises WXD and WYD
are positive semi-de5nite operators.

The equations in Proposition 1 are similar to those produced by the Tucker inter-
battery methodology, but in the usual formula, the covariances (D-scalar product)
between variables are substituted with the scalar product between operators.

Hence, the de5nition of the 5rst step of the DO-ACT strategy is

De"nition 2. Let {&m}m=1; :::;M and {)m}m=1; :::;M the eigenvectors of (7), (9) and (6),
(8) associated with the eigenvalues { 2

m}m=1; :::;M . Then, the plot ( m&m;  m′&m′) gives
an Euclidean representation of the operators {WXkD}k=1; :::;K onto the plane (m;m′).
The same de5nition holds for ( m)m;  m′)m′) and {WYlD}l=1; :::;L. These two sets of
representations are the interstructure of the DO-ACT strategy.
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These representations can be interpreted as in the interstructure step of STATIS
(Lavit, 1988). The closer all the points are to the 5rst axis, the better the compromise.
Moreover, as the goal of DO-ACT is to make the two compromises the closer as
possible (that is to say to make the compromise observations scalar products in the
X -multiblock as close as possible to the compromise observations scalar products in
the Y -multiblock), the two plots can be compared. If the two compromises are good
compromise of their multiblock and if they are close enough, the two plots should
nearly be the same.

The next proposition shows that the previous operators are also the solutions of two
others problems.

Proposition 3. If ‖WXD‖2 = 1 and ‖WYD‖2 = 1, the solutions in Proposition 1 are
also the solutions of two following optimization problems:

1. max&;){RV (WXD;WYD)} and the optimal value is  ,
2. min&;){‖WXD −WYD‖2} and the optimal value is 2(1 −  ).

Proof. The proof is straightforward because RV (WXD;WYD) = tr(WXDWYD) and
‖WXD −WYD‖2 = 2(1 − tr(WXDWYD)) under the above assumptions.

The next proposition of this section produces two matrices that generate the two
compromise operators WXD and WYD.

Proposition 4. Let the two partitioned matrices X and Y

X = [
√
%�1&1X1; : : : ;

√
%�K&KXK ]; (14)

Y = [
√
'!1)1Y1; : : : ;

√
'!L)LYL]: (15)

WXD and WYD are the operators associated with X and Y .

The demonstration of this property is without ambiguity.
Proposition 4 shows that the analysis of the unweighted juxtaposition of Xk and Yl,

followed by a Tucker inter-battery is not the optimal strategy of the compromise step
of DO-ACT. However, the weighting coe:cients of matrices can be equal to one, but
it is a result of diagonalization (and the structure of the data) and not an a priori
choice.

We can now de5ne the two next steps of the DO-ACT methodology:

De"nition 5. The two compromises of the DO-ACT strategy are WXD and WYD. The
two intrastructures (one for each of the multiblocks) are the representations of the
observations in the Tucker inter-battery analysis of the previous X and Y .

These observations representations can be interpreted with the corresponding vari-
ables plots given by the inter-battery analysis factors aa and ba de5ned in Section 3.2.
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It follows that the plots of the observations viewed by the K + L triplets can be
realized by the supplementary representations of the observations of all the triplets
onto their respective compromise components. For example, the coordinates of the
observations in table Xk on axis a are given by the coordinates of WXkDWYDcY;a=

√
�a.

This is a similar representation to the intrastructure step of STATIS. If all the tables
in one multiblock measure the same variables, then the plots for this multiblock are
directly comparable. Moreover, in order to explain the observations con5gurations,
correlations circles can be made for each table: they are given by the correlations
between the variables in a table and the component of its compromise. Then, the
observations plots and the variables plots can be associated and interpreted as in usual
PCA.

4.3. Some particular cases

The 5rst evident particular case is when the two multiblocks are the same, it is
obvious that the STATIS solution is found. In next proposition, the solution when the
length of one of the two multiblocks is equal to 1 is explicited.

Proposition 6. Let L=1 (in this case WYD is the only one operator of this multiblock)
and for any K , the WXD solution of Proposition 1 is given by

WXD =
K∑

k=1

�k tr(WXkDWYD)WXkD: (16)

The proof is straightforward with Eq. (10).
In Simier et al. (1999), in the case of two multiblocks with the same length (K =L)

and with the same number of variables at each occasion (that is to say with two
three-way data) the authors propose to realize the STATICO approach. Here we present
a new version of STATICO in which we use the operators WXkD and WYlD instead
of X ′

kDYk matrices. Hence, this new version of STATICO methodology can work with
data set where the number of variables at each occasion in diHerent. The new STATICO
is a STATIS methodology applied to the K operators WXkDWYkD (that is to say the
operators of the Tucker inter-battery method), which implies that the compromise is
WcD =  

∑K
k=1 �klkWXkDWYkD. In DO-ACT, one of the two operators products used

in the intrastructure step is

WXDWYD = %'
K∑

k=1

K∑

l=1

�k!l&k)lWXkDWYlD: (17)

The comparison of these two equalities shows that the DO-ACT compromise works
with the K×L cross products whereas STATICO does not. If K=L, choosing one of the
two compromises (or methodologies) is dependent on the user and/or the problematical
of the study: every tables are linked (really or supposed) with all the tables of the other
multiblock, or not.
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In the next section, a real data set illustrates the approach. A program implementing
the method has been developed using the S-Plus 6:0J (2000) language. In this example,
we show the capabilities of this procedure, in particular graphically.

5. Application

5.1. Data

The data set used in this paper has been collected by Forestier (1994). It can be free
obtained from the database of Chessel and DolEedec (1995). This data collection is the
result of an experimentation about the reproductibility of Esolus parallelipipedus in a
Iuvial ecosystem. In these data, there are 10 times of sampling (not equally spaced from
1981-10-27 to 1982-12-01), hence it is possible to compare the results of DO-ACT with
those of STATICO. Moreover, because the sampling points are not equally distributed
in time, the hypothesis of non-inIuence of two successive measurements, which is
assumed in STATICO, is very di:cult to carry out. Hence, DO-ACT seems a priori
more appropriate than STATICO.

This data set is composed of two multiblocks of same length K = L = 10 (time of
sampling) measured on n = 7 observations (stations). The matrices Xk (k = 1; : : : ; K)
contain the measures of seven stages of the evolution of Esolus parallelipipedus, that
is to say: pk = 7 (k = 1; : : : ; K). Esolus parallelipipedus is one of the numerous beetle
species. These insects live in sediments of aquatic environments. The second multi-
block, Yl (l = 1; : : : ; L) contains the values of environmental variables. Table 1 is the
description of the 11 variables. Notice that a lot of them are null at several occasions:
hence the number of variables varies from 9 (matrices 2, 3 and 10) to 11 (matrices
1 and 5–8). The problem is to 5nd the portion of stability of the structure of Esolus
parallelipipedus in the station typology.

The preprocessing of data, because of diHerent units of variables, consists in centering
and scaling in columns, according to the uniform weight (here D = Id7=7). Moreover,

Table 1
Number, name, code and description of the 11 variables of the Y blocks

No. Name Code Description

1 Silt Silt Percentage of silt
2 Sand Sand Percentage of sand
3 Gravel Grav Percentage of gravel
4 Shingle Shin Percentage of shingle
5 Stone Ston Percentage of stone
6 Block Bloc Percentage of block
7 Flag Flag Percentage of Iag
8 Depth Dept Water depth (in cm)
9 Speed Spee Speed of water (in cm/s)

10 Periphyton Peri Periphyton
11 Fragments Frag Organic fragments (from 0-missing to 2-abundant)
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the calculations in DO-ACT procedure are made with RV option, the two diagonal
matrices (* and �) as well as % and ' are, respectively, chosen equal to identity and
one, and all the metrics for X and Y multiblocks are identity matrices.

5.2. Application of DO-ACT

The 5rst results of DO-ACT methodology are the following: the Hilbert–Schmidt
norms of the operators of X -multiblock vary from 4.238 (X9) to 5.964 (X8) and for
Y -multiblock from 4.776 (Y10) to 7.010 (Y8), the RV coe:cients between the two
multiblocks are in the interval [0:2978; 0:8210]. Hence, the K +L=20 matrices have a
comparable variability but the proximities of the diHerent operators are more scattered.

Fig. 1 represents the interstructure in the 5rst principal plane and shows the plot of
the operators of the two multiblocks. Like in the STATIS interstructure, the two 5rst
axes explain the most important part of the total variability of the operators: 98.74%
and 0.86%. We note that the respective positions of the two operators with the same
number k (time of sampling) are not necessary in the same place in the plot and vary
along the time: for example X10 and Y10 are relatively close whereas X4 and Y4 are
very distant. Hence, this representation con5rms us that it is impossible to carry out
the non-inIuence of all the successive measurements. However, it can be noticed that
X9 has all its RV coe:cients, with the Yl, very high (in [0:6718; 0:8210]) that explains
the particular position of this point on the previous graphic. It clearly shows that there
is no evolution of the data with time.

The variation on second axis is very small. So, the diHerences between, for example
Y6 and Y2 are only very small. Moreover, as Y2 and Y4 are confounded, we can a:rm
these two tables are next to be the same. This imply that )2 and )4 are very close
(Table 2).

The RV coe:cients between the DO-ACT the compromise WXD and the Xk operators
(WXkD) are in [0:4539; 0:8536]. We have an analogous interval for Yl matrices and their
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Fig. 1. Inter-structure representation of the two multiblocks in the DO-ACT methodology with the two 5rst
principal axes.
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Table 2
Coe:cients of the X and Y multiblocks compromises in DO-ACT and distances d between the compromise
and the operators building the compromise (d = ‖WXD −WXkD‖ or ‖WYD −WYkD‖)

No. 1 2 3 4 5 6 7 8 9 10

X 0.3028 0.2807 0.3311 0.3274 0.2656 0.3008 0.2421 0.2345 0.4703 0.3419
d 1.1774 0.9559 0.9478 1.0158 0.9060 1.3056 1.3394 1.2668 0.9545 0.7948

Y 0.3362 0.2952 0.2907 0.2985 0.3452 0.3334 0.3264 0.3101 0.2879 0.3322
d 0.8284 0.8093 0.8498 0.8003 0.7857 0.8633 0.7823 0.9345 0.8213 0.8012

compromise WYD: [0:9070; 0:9820]. That is to say, the DO-ACT Y -multiblock compro-
mise (WYD) is a better summary than the one of X -multiblock (in a RV sense). This
conclusion corresponds to what can be seen in Fig. 1: in the Y -multiblock interstructure
representation, all the vectors have near the same length and the angles between them
are small enough. In the X -multiblock inter-structure the vectors are more diHerents.
In conclusion, the RV coe:cient between the two DO-ACT compromise (WXD and
WYD) is equal to 0.8091 and the one between the two STATIS compromises (issued
from the two STATIS procedures of each X and Y block) is 0.7549.

The coe:cients of the DO-ACT compromises are in Table 2. Note that X9 is the
most important for the X compromise whereas it is Y5 in the other multiblock. These
coe:cients show that all the tables do not inIuence the compromise in the same
manner (in this case all the coe:cients would be equal to 1=

√
10=0:3162). Moreover,

this table allows to calculate the &k)l coe:cients present in WXDWYD (or WYDWXD)
used in the DO-ACT intrastructure step (Eq. (17)). The most important pair of operator
is WX9D and WY5D with the value 0:4703 × 0:3452 = 0:1623. This value con5rms that
the STATICO strategy is non appropriate with these data, because this pair of operator
does not exist in its compromise. Moreover, Table 2 contains the Hilbert–Schmidt
distances between the compromise and the operators which it summarizes. We note
that the distances in the Y -multiblock are smaller than those for the X -multiblock and
are very close one with each other. This naturally coincides with the RV values quoted
above in the beginning of the section and with the fact that WYD is a better summary
than WXD. We note also that Y5 and Y7 are the closest of WYD as it could be seen
in Fig. 1 on the 5rst axis. To 5nish this stage we note that the inertia of the two
compromises are, respectively, equal to 4.3809 for the X multiblock and 5.5993 for
the other. These two values con5rm us that the 5rst multiblock is less informative than
the second.

The third stage, is the intrastructure step. Fig. 2 represents the positions of the
compromise observations (stations) onto the two 5rst components of the X and Y
compromises. These two graphics, represent 53.34% of the inertia for the X multiblock
and 63.80% for the other. We note that the positions are very similar. That is to say,
there is a common typology into both the multiblocks and this structure is rather
uni-dimensional.

It appears a 5rst group of very close stations (from 2 to 5) in opposition with
stations 6 and 7. Only the station number 1 seems remote from the others, especially
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Fig. 2. Compromises observations (stations) into the two 5rst components of the X and Y compromise of
the DO-ACT methodology.

due to the second axis. In order to explain these con5gurations, it is possible to make
the variables representations (with the use of the axes aa and ba from the inter-battery
analysis of the compromises X and Y ). Some relative and absolute contributions can
also be calculated as for PCA, but it gives no more information than what we see
on the plots: the stations with the largest contributions (absolute or relative) have the
largest coordinates. Fig. 3 shows the correlations between the variables of each matrix
{Xk}k=1; :::;K with the two 5rst components of the operators WXD, Fig. 4 is the same
representation for {Yl}l=1:::L and WYD. So, all the plots are comparable because all the
tables measure the same variables. All the variables of the X -multiblock are not very
well described by the two 5rst components (see the correlations values in Fig. 3), but
a kind of gradient of the evolution stages (variables) of the beetles can be noticed
with respect to the time of sampling (X1 to X10). Stage 7 (S7) is always diHerent from
the others except in X9 and S1 is dissociated itself from the other variables from the
5rst date to the 5fth and in the tenth. The stages S2 to S6 are generally well enough
grouped in all the times of sampling except for the sixth and ninth dates of sampling,
which seem to be special dates. From the 5rst time (X1) to the third one (X3), the 5rst
axis is an opposition between the seventh stage of evolution S7. S1 is a few remote
from the others and it is 5rst characterized by the 5rst axis and next by the second
axis. Its position seems to move clockwise (several times) around the origin from the
5rst time of sampling (X1) to the seventh date (X7), and in opposite next. Moreover,
stages S2 to S6 are well enough grouped and their positions in the 5rst principal plane
(Fig. 3) move with time: from X1 to X5 and in X10, they are on the upper right side
of the plane, and in the left upper side in X7 and X8. In X6 and X9, they are scattered
on the plot. We note, one more time, that time 9 is very diHerent from the other time
of sampling. Here, axis 1 shows an opposition between stages 3, 6, 7 and the other
stages of evolution. Fig. 4 shows the correlations of the Y -multiblock, environmental
variables, with the two 5rst components. This graphic shows that the correlations are
larger than in the other multiblock. The global structure of correlations is analogous



M. Vivien, R. Sabatier / Computational Statistics & Data Analysis 46 (2004) 155–171 167

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0.
0

0.
1

0.
2

0.
3

axis1

axis2

S1

S2
S3S4 S5S6

S7 X1
-0.2 0.0 0.2

0.
0

0.
05

0.
10

0.
15

axis1

axis2
S1

S2S3

S4S5

S6
S7

X2

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4

-0
.1

0
-0

.0
5

0.
0

0.
05

axis1

axis2

S1

S2

S3

S4S5S6

S7

X3
0.0 0.1 0.2 0.3

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

axis1

axis2

S1
S2
S3

S4
S5

S6

S7

X4

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

axis1

axis2

S1 S2
S3

S4
S5S6

S7

X5
-0.2 -0.1 0.0 0.1

-0
.2

0.
0

0.
2

0.
4

axis1

axis2

S1S2

S3

S4

S5
S6

S7

X6

-0.25 -0.20 -0.15 -0.10 -0.05 0.0 0.05

0.
0

0.
05

0.
10

0.
15

0.
20

axis1

axis2

S1
S2 S3 S4

S5S6

S7

X7
-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.0-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

axis1

axis2

S1S2

S3

S4

S5
S6

S7

X8

-0.4 -0.2 0.0 0.2 0.4

-0
.3

-0
.2

-0
.1

0.
0 axis1

axis2

S1

S2

S3

S4

S5S6

S7

X9
0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

axis1

axis2

S1

S2

S3
S4

S5

S6

S7

X10

Fig. 3. Correlations of the variables of each {Xk}k=1; :::;10 matrices with the two 5rst components (explaining
36.2% and 17.14%) of their compromise in the DO-ACT methodology.
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Fig. 4. Correlations of the variables of each {Yl}l=1; :::;10 matrices with the two 5rst components (explaining
40.74% and 23.06%) of their compromise in the DO-ACT methodology.



M. Vivien, R. Sabatier / Computational Statistics & Data Analysis 46 (2004) 155–171 169

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.2

-0
.1

0.
0

0.
1

y1

y2 y3y4
y5

y6

y7

Y1

axis1

axis2

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.2

-0
.1

0.
0

0.
1

y1

y2

y3y4

y5

y6

y7

Y2

axis1

axis2

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.2

-0
.1

0.
0

0.
1

y1

y2
y3y4

y5

y6

y7

Y3

axis1

axis2

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.2

-0
.1

0.
0

0.
1

y1

y2
y3y4

y5

y6

y7

Y4

axis1

axis2

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.2

-0
.1

0.
0

0.
1

y1

y2
y3y4

y5

y6

y7

Y5

axis1

axis2

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.2

-0
.1

0.
0

0.
1

y1

y2

y3y4
y5

y6

y7

Y6

axis1

axis2

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.2

-0
.1

0.
0

0.
1

y1

y2
y3y4

y5

y6

y7

Y7

axis1

axis2

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.2

-0
.1

0.
0

0.
1

y1

y2

y3y4

y5

y6

y7

Y8

axis1

axis2

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.2

-0
.1

0.
0

0.
1

y1

y2y3
y4

y5

y6

y7

Y9

axis1

axis2

-0.15 -0.10 -0.05 0.0 0.05 0.10

-0
.2

-0
.1

0.
0

0.
1

y1

y2
y3

y4

y5

y6

y7

Y10

axis1

axis2

Fig. 5. Intrastructure representations for the observations of each {Yl}l=1; :::;10 matrices into the two 5rst
components (explaining 40.74% and 23.06%) of their compromise in the DO-ACT methodology.
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in the 10 matrices and when the silt variable is present (Tables 1, 4–8) it is well
described by the second component (except in Y8). This 5gure con5rms that there is a
general granulometry gradient (from silt to Iag). Now, look at brieIy to the position
of the observations given by the supplementary projection of each matrix Yl onto the
5rst intrastructure graph (Fig. 5). These graphs can be associated with Fig. 4, as it
is usually done in factor analysis, to explain the stations con5guration in each table.
Station 7 corresponds to high values of the speed and Iag variables, Stations 3 and 4
correspond to low values of fragments and sand variables. We note a great stability of
the structure for the most important times of prelevements. The only slightly diHerent
graph is the eighth with stations 1, 6 and 7 which are located near the others. In this
example we do not produce the other intrastructure plot (for X -multiblock), this graph
is not more explicit, in an interpretative sense, than the previous one.

So these graphics have shown an evolution of the stages of the beetles with time
especially for stages S1 and S7 and that the granulometry properties of the stations are
approximately the same with time except perhaps at time 6.

6. Conclusion

In this paper, a new computing linear procedure have been presented. DO-ACT gen-
eralizes STATIS and Tucker inter-battery methodologies to take into account data with
two multiblocks structures. This methodology uses a natural scalar product between the
operators associated with each matrix of the two multiblocks.

The data set we used, with low dimensions (n=7; K=L=10), is chosen to illustrate
the behavior of the DO-ACT procedure, but this methodology is very e:cient with
a relatively high observation/variable or length/variable ratio. DO-ACT produces some
useful graphics. The most important is the view of the diHerent tables of the two
multiblocks: this allows us to do an overall comparison. The last step of DO-ACT,
intrastructure step, compares the association between variables and observations and
shows broadly the stable structure.

This methodology can be successfully used in most practitioners 5elds that use many
variables (chemometrics, ecology, etc.) with the simple idea of dividing variables into
groups (or subsets) with the objective of choosing some of them for the future exper-
imentations.

Some extensions of this methodology can now be set in several ways: data sets with
more than two multiblocks, introducing nonlinearity in variables or modeling of one
of the two multiblocks in PLS sense.
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