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Abstract

The factor analysis problem can be conceptualized as an expansion of polynomial equations that are solvable using least-
Ž .squares methods. The equation-oriented system EOS is introduced as a method for solving polynomial equations using a

Ž .preconditioned conjugate gradient CG algorithm for the normal equations. EOS is a fast, easy to program, low computer
memory requirement method for accomplishing this task. EOS can be used to solve multilinear and PARAFAC problems.
The practical aspects of implementing EOS in MATLAB are discussed. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Algebraic expressions such as 3, 5 f or 6 f f are1 1 2

called monomials, and the sums andror differences
of monomials are called polynomials such as f q1

2 f y3 f 2 f . In this work, all of the variables in a2 1 2

polynomial carry only positive integral exponents.
Further more, the polynomial equation is one in

) Corresponding author. Tel.: q1-315-268-3861; fax: q1-315-
268-6654.
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which the right hand side of the equation is a poly-
w xnomial and the left hand side is a constant value 1 .

Some example polynomial equations are

1.02s12 f f y f 2q f q11 2 2 3

0s f f f1 2 3

and

y0.12s f f y10 f q f f .2 3 2 1 2

w xPARAFAC 2 and other multilinear models are
special cases of polynomial equations that are well

w xknown in chemometrics. Paatero 3 has previously

0169-7439r01r$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.
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Ž . w xshown that the conjugate gradient CG 4,5 method
is a powerful tool for solving polynomial equations in

Ž .his program, the multilinear engine ME . ME is a
very flexible way to solve a wide variety of multilin-
ear models that can fit multilinear and quasi-multi-
linear models to two-, three- and many-dimensional
data arrays. In ME, a large table of integer code val-
ues is used to specify the equations. The CG used in
ME must form a matrix of derivatives called the Ja-
cobian matrix, or simply the Jacobian. Whenever the
Jacobian is needed, the program has to retrieve infor-
mation from the table. Although ME is a relatively
efficient algorithm particularly when compared to al-
ternating least squares methods, additional improve-
ments will be useful in a number of applications
where the multilinear model is useful.

Ž .In this work, the equation-oriented system EOS
is introduced to solve the problem. EOS places these
equations in a central role in the organization of the
program and develops a new approach to treat the
Jacobian. Computer time and the memory require-
ments have been reduced significantly. The program-
ming of EOS is sufficiently easy to setup their own
code for input equations.

2. Preconditioned conjugate gradient algorithm

Consider the problem of finding the unknown pa-
Ž .rameters f of size N by 1 from the known data x

and polynomial equations having the following array
relationship

xsP f . 1( ) Ž .

EOS uses several different kinds of input equations
that the user may add. The equations that specify Eq.
Ž . Ž .1 are called model equations. Eq. 1 is a collection
of all the equations that connect the unknown param-
eters and known data. Typically, the user will use two
additional types of equations. For example, for a bi-
linear data set, EOS always needs one equation to
specify the bilinear model, and another one to nor-
malize one factor model in the solution. The normal-
ization equation is called as auxiliary equation in the

w xnaming convention used by Paatero 3 . The m-th

Ž .component of P is denoted by P and Eq. 1 can bem

expressed as

x sP f , ms1, . . . , M 2Ž . Ž .m m

Ž .where x is the least-squares solution to the Eq. 1 if
x minimizes the following equation called the object
function

M
2

x yP f . 3Ž . Ž .Ž .Ý m m
ms1

In most practical situations, one needs to adjust the
Ž .importance of each equation in Eq. 2 . This task can

Ž .be accomplished by weighted least-squares WLS ,
where there is a weight w associated with the m-thm

equation, and the solution to the all equations is ob-
tained by solving the alternative equations

w x s w P f 4Ž . Ž .( (m m m m

or by minimizing of the following equation

M
2

w x yP f . 5Ž . Ž .Ž .Ý m m m
ms1

Ž .In this paper, equations described by Eq. 4 will be
considered.

Ž .Eq. 4 can be solved iteratively. From the esti-
mated value f, a new value, fq t, is calculated to

Ž .yield a better fit to Eq. 4 , where t is the increment
to the f. The task of each step is to find the t.

Since the polynomial is always nonlinear, it will
be helpful to approximate the polynomial by linear
expressions. One way to accomplish this is to replace

Ž .it by a two term Taylor expansion of P fq t around
Ž .the point f. Then Eq. 4 becomes

w x s w P f q w P f t 6Ž . Ž . Ž .( ( (m m m m m f ,m

or

w P f ts w x yP f 7Ž . Ž . Ž .( ( Ž .m f ,m m m m

Ž . Ž .where P f is the Jacobian of derivatives of P f withf

respect to f.
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Ž .The normal equations of Eq. 7 can be repre-
sented as

JT WJtsJTr 8Ž .

by setting the Jacobian matrix J as

J f sP f 9Ž . Ž . Ž .f

and

r f sW xyP f . 10Ž . Ž . Ž .Ž .

where W is the diagonal of matrix with values w .m
Ž . Ž .J f and r f will be written as J and r, respec-

tively, when there is no confusion as to meaning. A
complete listing of symbols and notation are given in
Appendix A.

The original polynomial equations are then trans-
Ž .formed into the form of Eq. 8 . There are a number

of methods to use for obtaining t. The conjugate gra-
Ž .dient CG method is an efficient technique to itera-

tively solve a system of equations. A preconditioning
step is necessary, however, to speed-up the CG com-
putation. In this work, the preconditioner is chosen as
the diagonal of matrix JT WJ.

In some practical situations, the unknown f needs
to be limited with respect to its expected bounds such

w xas restricting values to be non-negative. Paatero 3
suggested an inverse preconditioning method to
achieve non-negativity, which is also used in EOS.

Ž .The CG is an iterative algorithm that solves Eq. 8
first, and then forms a new equation by setting f equal

Ž .to fq t in Eq. 8 . The procedure is then repeated
until convergence is achieved. This approach can be

Ž .quite slow, and the f given in Eq. 8 is not necessar-
Ž .ily an optimal one with respect to Eq. 1 , so one does
Ž .not need to get the best solution to Eq. 8 . An alter-

native approach is to update the J and r in each step
of CG.

The inverse preconditioned CG algorithm for
Ž .solving Eq. 1 is given as the following.

1. Input W and initial f. Set e to be a small posi-
tive value such as 10y12. Set c s1.0. rs0.i

2 5 5u sS w j . Use r to represent the Eu-n m m m n
Ž .clidean norm of r, and function c f changes f

to meet constraints on f.

2. While not reaching convergence and the preset
limit on the number of iterations is not reached,
do

Ž . Ta gsJ r
Ž .b z sc g run n n n
Ž . old Tc r sr, rsg z
Ž . oldd If r s 0, then bs 0, else bs
rrr old, endif
Ž .e tsb tqz
Ž .f vsJt
Ž . Tg tsv Wv
Ž .h asrrt
Ž .i fs fqat
Ž .j For ns1, . . . , N, do

If f meets the constraints, then c sn n
Ž . Žmin 2=c , 1 , else c smax c r32,n n n

. Ž .e , t smax t r2, e . Endifn n
Ž .k Enddo
Ž . 5 Ž Ž ..5l While r c fqat is not less than
5 Ž .5r f , do asar2, enddo
Ž .m If it is impossible to find an a to sat-

5 Ž Ž ..5 5 Ž .5isfy r c fq at - r f , or conver-
gence is slowing down and the user-
specified restart limits allow it, then rs0,

2 Ž .u sS w j , else fsc fqat , endifn m m m n

3. Enddo

Most portions of this algorithm are easy to imple-
ment with the exception of the following three ex-
pressions: gsJTr, vsJt, u sS w j2 . The com-n m m m n

Ž .putation of r f also requires special treatment. Only
the codes for those three equations are related with
the equations. In the Section 3, the approaches to
calculate the three variables are sequentially dis-
cussed.

3. Equation-oriented system

It is well known that the Jacobian can be very large
when attempting to solve very large problems. Thus,
it is generally not practical to store it in memory for
large data sets. In some cases, one can use sparse
matrix techniques to store the Jacobian, but this ap-
proach is also not very efficient. It is computation-
ally expensive to construct and retrieve information
from the Jacobian matrix. The equation-oriented sys-

Ž .tem EOS provides a way to eliminate the problems
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associated with the Jacobian in the CG algorithm by
eliminating the need for the Jacobian matrix alto-
gether.

3.1. Presentation of polynomial equation

Ž .In the model Eq. 1 , the unknown parameters and
known data are assumed to be in vector form. Repre-

Ž .sentation of the CG algorithm Section 2 in vector
form is very short. However, it is not always conve-
nient to use vectors to organize the data. In most
cases, a multidimensional array is a more natural way
to represent the data. However, this approach creates
several problems. One problem is that sparse tech-
niques are necessary. Another problem is that the CG
algorithm needs to frequently reshape or retrieve in-
formation from the vectors. These two problems
make the implementation not very efficient. In some
algorithms, this kind of overhead will not reduce the
speed significantly. For EOS, however, each CG it-
eration step is quite short and the overhead of
vector-based method can be high. In EOS, all data
sets are stored in the original array form, so the sparse
method is avoided and the data sets do not need to
be reshaped.

In EOS, a special form of presentation is used to
input and handle polynomial equations. The pre-
sentation is very close to the ordinary mathematical
form in which the equations would be written. The
following steps are used to transfer a mathematical
equation to its presentation.

1. Expand the polynomial in a sum of monomials.
The variables with an exponent n in the poly-
nomials are replaced by multiplication of the
variables n times.

2. The left-hand side of equation is the data val-
ues that need to be fitted. The right-hand side is
the model used to fit the data.

3. Write equations using a summation, S. Then
remove the summation sign.

For example, mathematical equation

H H

x s f 1 f 2 f 3 q f4 f5 11Ž .Ý Ýi jk i h jh k h i jh k h
hs1 hs1

is represented as

x s f 1 f 2 f 3 q f4 f5 . 12Ž .i jk i h jh k h i jh k h

Ž .In Eq. 11 , the known data is X, and the unknown
variable sets are F1, F2, F3, F4 and F5.

For a given presentation of an equation, an equiv-
alent mathematical expression can be obtained using
a simple rule. The rule is to perform the summation
over all of the indices that only appear in the right-

Ž .hand side for each monomial. For Eq. 12 , the first
monomial f 1 f 2 f 3 has four indices: i, j, k andi h jh k h

h. The first three indices also appear in the left-hand
Ž .side of Eq. 12 in x . Only h is unique to the firsti jk

monomial, so the summation is over h. It is similar
for the second monomial.

3.2. Associated Õariables

Although multidimensional arrays are preferred in
the implementation of the CG in EOS, the vector
representation is better for understanding the compu-
tations involved in the CG algorithm. A new term,
associated variable, is introduced to connect the mul-
tidimensional array with its corresponding vector
form. The concept of the associated variable bridges
the understanding of the vector representation and the
implementation of the array format in EOS. In the CG
algorithm provided in Section 2, all of the data are
presented as vectors. However, in EOS, every vector
exists as a set of arrays. Conceptually, the arrays can
be stacked together to form a vector as is done in

w xother programs such as ME 3 . The arrays that can
form a vector in Section 2’s algorithm are called as
the associated arrays of that vector. The associated
variable is represented by connecting the vector and
the array by underline. For example, if the model

Ž .equation is Eq. 11 , and all of the factors are un-
known parameters, arrays c f 1 , c f 2 , c f 3 ,– – –i h jh k h

c f4 , and c f5 are arrays, and f 1 , f 2 , f 3 ,– –i jh k h i h jh k h

f4 , and f5 ’s c associated variables, respectively.i jh k h

The associated array has the same size of its original
array, e.g. c f 1 has the same size of f 1 .– i h i h

3.3. The Jacobian in EOS

In the CG algorithm, the equations involving J
have to deal with the Jacobian information. For ex-
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ample, in the equation vs Jt, the exact equation
should be Õ s j t in the term of the polynomialm m n n

representation. In EOS, all of the terms in the equa-
tion are converted into corresponding associated
variables, and then the equation is rearranged into
polynomial form. This general rule permits handling
of the Jacobian information in EOS. This approach
avoids the problems associated with the large size of
J.

The above discussion may be somewhat hard to
understand. The following is a simple example to il-
lustrate the idea. Consider a model

xsabq6cy0.5 13Ž .
where y is known data, and a, b and c are unknown
parameters. The derivatives of y with respect to the
unknowns are

x sb 14Ž .a

x sa 15Ž .b

x s6. 16Ž .c

w x Ž .The Jacobian array is b a 6 denoted as J . To
obtain the results of the product of the Jacobian array
w x Ž w x.b a 6 with a vector t s t t t , EOS does not1 2 3

construct J and then calculate S j t as mighths1, . . . ,3 h h

be expected because it would require too much
memory to store J. In EOS, the product is obtained
directly from the expression bt qat q6 t , then J1 2 3

is not needed. Of course, the expression bt qat q1 2

6 t needs to be induced in EOS.3

In the CG algorithm, only the calculations of v, g
and u involve J. With the special representation of
polynomial equations and the concept of associated
variables, the calculation of v, g and u will be given
sequentially. The calculation r is also provided.

3.4. Calculating r

The representation of equations in EOS must be
provided by the user. The calculation of the residuals
of the fit is quite direct. r is obtained by subtracting
the right-hand side variables from the left-hand side

Ž . Ž .variable in Eq. 12 . From Eq. 12 , one obtains

r x sx x =w x y f f 1 = f f 2 = f f 3– – – – – –i jk i jk i jk i h jh k h

=w x y f f4 = f f5 =w x .– – – –i jk i jh k h i jk

17Ž .

3.5. Calculating z

The algorithm for calculating v is performed by
changing the equations in the following steps.For
each model equation,

1. replace the left-hand side variable with its v as-
sociated array;

2. for each monomial, assume there are h un-
known variables in this monomial, yield h
monomials by replacing one unknown variable
with the product of its t associated array at one
time. Add all of the h new monomials together
and replace the original monomial.

Ž .From Eq. 11 , the new equation is

Õ x s t f 1 = f f 2 = f f 3 q f f 1 = t f 2– – – – – –i jk i h jh k h i h jh

= f f 3 q f f 1 = f f 2 = t f 3– – – –k h i h jh k h

q t f4 = f f5 q f f4 = t f5 .– – – –i jh k h i jh k h

18Ž .

3.6. Calculating g

The algorithm for calculating g is to change the
model equations using the following steps.

1. Set all the unknown variables g associated vari-
ables to 0.

2. For each unknown variable in the monomial of
each model equation

Ž .a construct a new equation by keeping the
left-hand side of the original equation, and
keeping the current monomial in the
right-hand side;
Ž .b replace the left side variable with the
product of its r associated array, replace
the unknown variable with its g associated
array;
Ž .c exchange the left-hand side parts and
the g associated array;
Ž .d add the g associated array to the right-
hand side.
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Ž .From Eq. 11 , we have

g f 1 sg f 1 qr x = f f 2 = f f 3 19Ž .– – – – –i h i h i jk jh k h

g f 2 sg f 2 q f f 1 =r x = f f 3 20Ž .– – – – –jh jh i h i jk k h

g f 3 sg f 3 q f f 1 = f f 2 =r x 21Ž .– – – – –k h k h i h jh i jk

g f4 sg f4 qr x = f f5 22Ž .– – – –i jh i jh i jk k h

g f5 sg f5 q f f4 =r x . 23Ž .– – – –k h k h i jh i jk

3.7. Calculating u

The algorithm for calculating u is to change the
model equations using the following steps.

1. Set all of the unknown variables u associated
variables to 0.

2. For each unknown variable in the monomial of
each model equation

Ž .a construct a new equation by keeping the
left-hand side of the original equation, and
keeping the current monomial in the
right-hand side;
Ž .b Replace the unknown variable with its
u associated array, replace the left-hand
side variable with its w associated array;
Ž .c exchange the w associated array with
the u associated array;
Ž .d square each variable in the right-hand
side except the w associated arrays;
Ž .e add the u associated array to the right-
hand side.

The above algorithm does not produce u in an exact
way when there are repetition factors in the right side
of equations, it ignores the interaction terms. The al-
gorithm can be modified to produce the exact values
of u. Experience shows that the above simple version
algorithm works quite well, so EOS employs the
above algorithm.

Ž .For Eq. 11 , we have

u f 1 su f 1 qw x = f f 22 = f f 32 24Ž .– – – – –i h i h i jk jh k h

u f 2 su f 2 q f f 12 =w x = f f 32 25Ž .– – – – –jh jh i h i jk k h

u f 3 su f 3 q f f 12 = f f 22 =w x 26Ž .– – – – –k h k h i h jh i jk

u f4 su f4 qw x = f f52 27Ž .– – – –i jh i jh i jk k h

u f5 su f5 q f f42 =w x . 28Ž .– – – –k h k h i jh i jk

4. Implementation of EOS in MATLAB

The implementation of EOS is divided into fol-
lowing steps.

Ž .a The user provides four variables to collect
information for describing the problem.
Ž .b EOS performs initial steps to set default val-
ues for some variables.
Ž .c Following the algorithms in Section 3, pro-
duce the expression to calculate g, v, u and r in
presentation forms where the expressions sto-
ried as strings in MATLAB.
Ž .d Developing the interpreter of the presenta-
tion of polynomial expression. This function will
be called when the values of g, v, u and r are
wanted in the main CG program.
Ž .e Programming the CG algorithm.

The results are stored as variables in the MAT-
LAB workspace. EOS can be coded in any computer

w xlanguage. MATLAB 6 is a convenient language
since it has been widely used by many chemometri-
cians. In this section, the implementation of EOS in
MATLAB is discussed. Being an interpreted lan-
guage, MATLAB is slower than the compiled lan-
guages such as C, Cqq, or FORTRAN. However,
MATLAB is easy to implement EOS quickly, and it
is easy to debug the program. In the five parts listed

Ž . Ž . Ž .above, parts a , b and e are quite easy to pro-
gram. They do not need to be treated specially. The

Ž .function for part c must be provided in EOS. This
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function provides the expressions to calculate g, v, u
and r in the presentation form. One can also code the
expressions by hand for any special equations fol-
lowing the algorithms as outlined in Section 3, and
does not need to be coded as a general function in
EOS.

Ž .Part d is the only difficult one. MATLAB does
not provide the function to perform multiplication on
multidimensional arrays up to version 5.3. Function
EVALND is coded to interpret the presentation of
polynomial expression. EVALND can be used in a
manner analogous to EVAL, except EVALND can
execute the presentation of polynomial expressions.
Fortunately, the implementation of EVALND can be
completely separated with other parts of EOS.

Ž . Ž .More details of parts c and d are given below.

4.1. Interpreter of the presentation of polynomial ex-
pression

MATLAB does not provide a function to interpret
Ž .expressions such as Eq. 11 . Thus, a function,

EVALND, has been developed. EVALND accepts
expressions translated from the representation of the

Ž .polynomial. For example, expression 12 is con-
verted to

) )

X i , j, k s f 1 i , z f 2 j, z f 3 k , zŽ . Ž . Ž . Ž .– – – – – – – – –
)

q f4 i , j, z f5 k , z 29Ž . Ž . Ž .– – – – –

and then evaluated by EVALND

Xevalnd X i , j, kŽ .Ž – – –
) )

s f 1 i , z f 2 j, z f 3 k , zŽ . Ž . Ž .– – – – – –
) X

qf4 i , j, z f5 k , z . 30Ž . Ž . Ž ..– – – – –

Another important feature of EVALND is that it
automatically groups the terms in an optimal way. For
example, assume there are three matrices: X1, X2 and
X3 of size 100 by 200, 200 by 500, and 500 by 2,
respectively. It is much slower to calculate
Ž ) .) ) Ž ) .X1 X2 X3 than X1 X2 X3 . To EVALND, the
following two expressions

Xevalnd X i , jŽ .Ž – –
) ) X

sX1 i , k X 2 k , t X 3 t , j 31Ž . Ž . Ž . Ž ..– – – – – –

and

Xevalnd X i , jŽ .Ž – –
) ) X

sX1 j, k X 2 k , t X 3 k , j 32Ž . Ž . Ž . Ž ..– – – – – –
) Ž ) .will be evaluated as X1 X2 X3 .

The implementation of EVALND avoids the use of
FOR LOOPs to set or retrieve values from the array.
For a large data set, the FOR LOOP will make the
program extremely slow.

The implementation of EVALND is split into two
functions. One is to arrange the sequence of execu-
tion of the string in EVALND. Another function,
NDTIMES, performs the multiplication on only two
arrays. NDTIMES can be coded in MATLAB or be
replaced by using the MEX function. The easy way
is to use MEX. Function NDTIMES can be obtained
from authors.

To specify the equations, the user just writes the
equations and then translate them into the proper
representations that EOS can evaluate directly.

4.2. Function to giÕe expressions for z, g and u

The algorithms used to implement this function are
given in Section 3 of this paper. The user can also
write expressions by hand to solve special problems
following those algorithms.

In the algorithm provided in Section 2, the vari-
ables t, z, etc., are represented as vectors. In EOS,
these variables exist as associated arrays. They need
not be converted to vectors. For example, to get ts
b= tqz in step 2e in the algorithm, EOS imple-

Ž .ments Eq. 2 in the following way

t f 1 sb= t f 1 qz f 1 33Ž .– – –i h i h i h

t f 2 sb= t f 2 qz f 2 34Ž .– – –jh jh jh

t f 3 sb= t f 3 qz f 3 35Ž .– – –k h k h k h

t f4 sb= t f4 qz f4 36Ž .– – –i jh i jh i jh

t f5 sb= t f5 qz f5 . 37Ž .– – –k h k h k h

5. Example

To illustrate what EOS is doing and give the reader
a more complete image of EOS, an example is dis-
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cussed in this section. The example is a trilinear
model including the equations to normalize two fac-
tor modes

H

x s f 1 f 2 f 3 38Ž .Ýi jk i h jh k h
hs1

J

normf 2 s f 2 39Ž .Ýh jh
js1

K

normf 3 s f 3 40Ž .Ýh k h
ks1

where X, F1, F2, F3, normf2, and normf3 are of size
I by J by K , I by H, J by H, K by H, H by 1,
and H by 1, respectively.

EOS is a function which accepts information from
the user and outputs the estimated unknown parame-

Ž . Ž . Ž .ters. Eqs. 38 , 39 and 40 are passed to EOS as

X i , j, kŽ .– – –

) )

sF1 i , h F2 j, h F3 k , h 41Ž . Ž . Ž . Ž .– – – – – –

NORMF2 h sF2 j, h 42Ž . Ž . Ž .– – –

NORMF3 h sF3 k , h . 43Ž . Ž . Ž .– – –

The values X, normf2 and normf3 are provided by
the user. The weights are stored in w X, w normf2– –
and w normf3, which are the same size as X,–
normf2 and normf3, respectively. The MATLAB
implementation of the algorithm was outlined in Sec-
tion 2 above and is presented in Appendix B.

6. Conclusions

EOS provides a simple framework to solve very
large, complex polynomial equations. The key to im-
plementing EOS is in the user provided equations that
describe both the data structure and the constraints on
the solution. EOS can solve a variety of multilinear
including the PARAFAC problem.

The memory requirements for EOS are quite small
that makes it is a good choice for large data sets. For
a standard multilinear model with M known parame-

ters and N unknown parameters, the memory re-
quirement is 3Mq6N. The 3M space is to store the
associated arrays v, r and x. The 6N space is to store
the associated array c, u, g, z, f and t. When applied
to the simultaneous analysis of several data sets, EOS
has been found to be quite efficient. More quantita-
tive evaluations of the efficiency of this algorithm are
currently being conducted and will be reported in a
future publication.
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Appendix A. Notation and list of symbols

In general, the conventions used in this paper are
as follows. Matrices are represented as bold upper-
case letters and column vectors are represented as
bold lowercase letters. Italic upper and lowercase let-
ters are used for scalars.

The list of important symbols in the paper fol-
lows.

x known data in a vector form
f unknown parameter in a vector form
M number of known data
N number of unknown parameters
Ž .P x vector function to specify the models
Ž . Ž .P x the m-th element of P xm

w weight of the m-th equationm

t the increase of the unknown parameters
P the derivative P of with respect to ff

P the m-th element of Pf ,m f

J Jacobian matrix
Ž .g f the i-th element of Gi
Ž .r f the weighted residual for the fit of x
Ž . ( )r f the i-th element of r fi

g used in the CG algorithm, equals to JTr
z used in the CG algorithm, equals to c gi i i

ruI

u used in the CG algorithm, equals to S g 2
i i i k
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c used in the CG algorithm, to implement thei

inverse preconditioning method
v used in the CG algorithm, equals to Jt
f used in the CG algorithm, the new try of

update f by basic CG step
Ž .c f used in the CG algorithm, the function to

change f to meet constraints

e , a , b , r used in the CG algorithm, check the
w xmeaning from Refs. 4,5

A, B, C, S, T unknown factors in the example mix-
ture model

r , c , g , w , t and u prefixes of r, c, g, w, t– – – – – –
and u associated variables, respectively

Appendix B. Implementation of the algorithm

The following table shows the MATLAB codes for the expressions in the algorithm given in Section 2.

Expression in MATLAB code in EOS
algorithm

T Ž .gsJ r g F1szeros I,H ;–
Ž .g F2szeros J,H ;–
Ž .g F3szeros K H ;–

X X
) )Ž Ž . Ž . Ž . Ž . Ž . .evalnd g F1 i, h sg F1 i, h q r X i, j, k f F2 j, h f F3 k, h ;– – – – – – – – – – – – – – – –

X X
) )Ž Ž . Ž . Ž . Ž . Ž . .evalnd g F2 j, h sg F2 j, h q f F1 i, h r X i, j, k f F3 k, h ;– – – – – – – – – – – – – – – –

X X
) )Ž Ž . Ž . Ž . Ž . Ž . .evalnd g F3 k, p sg F3 k, p q f F1 i, p f F2 j, p r X I, j, k ;– – – – – – – – – – – – – – – –

X XŽ Ž . Ž . Ž . .evalnd g F2 j, h sg F2 j, h q r NORMF2 h ;– – – – – – – –
X XŽ Ž . Ž . Ž . .evalnd g F3 k, h sg F3 k, h q r NORMF3 h ;– – – – – – – –

2 Ž .u sS w j u F1szeros I,H ;–n m m m n
Ž .u F2szeros J,H ;–
Ž .u F3szeros K,H ;–

XŽ Ž . Ž . Ž .evalnd u F1 i, h su F1 i, h qw X i, j, k– – – – – – – – – –
) X

)Ž . Ž . .f F2. 2̂ j, h f F3. 2̂ k, h ;– – – – – –
XŽ Ž . Ž . Ž .evalnd u F2 j, h su F2 j, h q f F1. 2̂ i, h– – – – – – – – –

) X
)Ž . Ž . .w X i, j, k f F3. 2̂ k, h ;– – – – – – –

XŽ Ž . Ž . Ž .evalnd u F3 k, h su F3 k, h q f F1. 2̂ i, h– – – – – – – – –
) X

)Ž . Ž . .f F2. 2̂ j, h w X i, j, k ;– – – – – – –
X XŽ Ž . Ž . Ž . .evalnd u F2 j, h su F2 j, h qw NORMF2 h ;– – – – – – – –
X XŽ Ž . Ž . Ž . .evalnd u F3 k, h su F3 k, h qw NORMF3 h ;– – – – – – – –
X

) )Ž Ž . Ž . Ž . Ž . Ž .vsJt evalnd v X i, j, k s t F1 i, h f F2 j, h f F3 k, h q f F1 i, h– – – – – – – – – – – – – – – –
) X

) ) )Ž . Ž . Ž . Ž . Ž . .t F2 j, h f F3 k, h q f F1 i, h f F2 j, h t F3 k, h ;– – – – – – – – – – – – – – –
X XŽ Ž . Ž . .evalnd v NORMF2 h s t F2 j, h ;– – – – –
X XŽ Ž . Ž . .evalnd v NORMF3 h s t F3 k, h ;– – – – –

)tsb tqz t F1sb t F1qz F1;– – –
)t F2sb t F2qz F2;– – –
)t F3sb t F3qz F3;– – –

Trsg z rs0;
X)Ž . Ž .rsrqg F1 : z F1 : ;– –
X)Ž . Ž .rsrqg F2 : z F2 : ;– –
X)Ž . Ž .rsrqg F3 : z F3 : ;– –
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Expression in MATLAB code in EOS
algorithm

Ttsv Õ ts0;
X)Ž . Ž .ts tqv X : v X : ;– –

X)Ž . Ž .ts tqv NORMF2 : v NORMF2 : ;– –
X)Ž . Ž .ts tqv NORMF3 : v NORMF3 : ;– –

)fs fqat f F1s f F1qa t F1;– – –
)f F2s f F2qa t F2;– – –
)f F3s f F3qa t F3;– – –

)z sc g ru z F1sc F1. g F1.ru F1;– – – –i i i i
)z F2sc F2. g F2.ru F2;– – – –
)z F3sc F3. g F3.ru F3;– – – –

X
)Ž . Ž Ž . Ž . Ž . Ž .Compute r f evalnd r X i, j, k s r X i, j, k y f F1 i, h f F2 j, h– – – – – – – – – – – – – –

) XŽ . .f F3 k, h ;– – –
X XŽ Ž . Ž . Ž . .evalnd r NORMF2 h s r NORMF2 h y f F2 j, h ;– – – – – – –
X XŽ Ž . Ž . Ž . .evalnd r NORMF3 h s r NORMF3 h y f F3 k, h ;– – – – – – –

Within the table, the variables such as a must be placed with the regular names for MATLAB. Again, the
task shown in the table will be done by the program EOS, the user does not need to do any of what is presented.
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