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A method is presented to standardize two-dimen- 
sional responses (e.g., GC/MS, LC/UV) measured 
on multiple instruments or on a single instrument 
under different operational conditions. This sec- 
ond-order standardization method proceeds by 
calculating two banded diagonal transformation 
matrices, using the responses of a common stan- 
dard sample, to simultaneously correct for the 
response channel shift and intensity variations 
in both dimensions or orders. Different from first- 
order standardization, these two transformation 
matrices must be estimated from a set of simul- 
taneous nonlinear equations via the Gauss-New- 
ton method. The effects of noise and transfor- 
mation matrix bandwidth on the standardization 
performance are studied through computer sim- 
ulation. When tested with experimental LC/UV 
data, the proposed standardization method can 
reduce the variation between two runs from 0.15- 
0.20 to 0.025-0.03 AU. From both the computer 
simulation and experimental data study, it is found 
that the design of the standard sample is critical 
for the parameter estimation and response stan- 
dardization. 

INTRODUCTION 
In previous publications,l-z various standardization meth- 

ods have been reviewed and presented for multivariate 
calibration, to either correct for response variations or adjust 
the calibration model so that it can be applied to another 
instrument producing different responses. These standard- 
ization methods were developed for so-called first-order 
instruments (e.g., spectrometers) that produce a vector of 
data per sample. They were not intended for second-order 
instrumentsjs5 (e.g., GC/MS) that are capable of generating 
a matrix of data for each sample analyzed. Though more 
powerful than first-order calibration in terms of analytical 
capacity, second-order calibration is more prone to response 
variations, which can now occur in both orders simultaneously. 
For example, the second-order data collected from liquid 
chromatography with ultraviolet spectroscopic detection (LC/ 
UV) can have a shift in retention time, due to temperature 
and pressure fluctuations and column aging, as well as a 
wavelength shift in the UV spectrometer and a spectroscopic 
intensity variation, due to the misalignment of the mono- 
chromator and light source intensity changes. To make things 
worse, when such instrumental variations occur in second- 
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order data, it is difficult to decide whether the variations 
come from one order or the other or both. This makes it 
difficult to apply first-order standardization separately in 
each order to standardize a second-order instrument. It is 
therefore necessary to assume that one order is stable while 
the other order is being standardized. For example, in an 
experimental employing thin-layer chromatography with a 
diode array detector, Burns et  al. attempted to solve the 
retention time irreproducibility problem through explicit peak 
shape modeling under the assumption that the spectrometer 
was stable from run to run.6 

In this paper, a general second-order standardization 
method is developed and tested to standardize both orders 
simultaneously and thereby achieve second-order calibration 
transfer. Though second-order calibration transfer was the 
primary motivation for this work, second-order standard- 
ization can also be used for other purposes. One example is 
the interlaboratory comparison and validation of second-order 
instruments, which has been an extremely difficult task.' 

THEORY 

Method Development. In first-order piecewise direct 
standardization (PDS),, the responses of a small set of transfer 
samples measured on two different instruments are related 
to one another through a banded diagonal matrix F (for 
continuous responses), 

R, = R,F (1) 

where R, and R 2  are the matrices containing instrument 
responses in the rows. This banded diagonal matrix F is 
arranged in such a way that the response a t  every specific 
channel on the first instrument can be represented as a linear 
combination of the responses in a small window near this 
specific channel on the second instrument. The linear 
combination can accomplish corrections of both response 
channel shifts and intensity changes. 

When the second-order response of a sample, N1 (dimen- 
sioned m x n), measured on one instrument is compared to 
the response of the same sample, NP (dimensioned the same 
as N1), on another instrument, it is expected that the 
differences will occur in both orders. To correct for such 
complicated differences, two transformation matrices similar 
to F are needed. This leads to the following nonlinear form 
in which the responses of the common sample from both 
instruments are related to one another via a left and right 
transformation matrix, A and B, 

N, = AN,B (2) 

The left transformation A will correct for shift and intensity 
differences between the rows of N1 and N2 (e.g., standardizing 
the LC order) with the following banded diagonal form 
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represent the nonzero elements along !he banded main 
diagonals of A and B, respectively, and NZ is a (u + u + 1) 
X (r + s + 1) submatrix of NP 

when ai (i = 1, 2, ..., p )  is a short column vector. The right 
transformation B will correct for shift and intensity differ- 
ences between the columns of N1 and NZ (e.g., standardizing 
the UV order) with the following banded diagonal form 

14 0 1  

L J 

where bl 
In eq 2, the left transformation A is dimensioned as p X 

m, and the right transformation B is dimensioned as n X q ,  
where p I m and q 5 n. The standardized response N1 is 
thus dimensioned asp X q, with the first and last several rows 
and columns (called missing ends) properly deleted or with 
extrapolation employed. The selection of p and q is directly 
related to the bandwidth in A and B and confined by both 
the rank of N1 or NZ and their original dimensions (m and 
n). This will be addressed in later sections along with the 
discussions on a numerical solution for A and B and their 
uniqueness. 

Once A and B are calculated from the responses N1 and 
NZ of a common standard sample, any future response MZ 
measured on the second instrument can be standardized into 
the response 8 1  as if it had been measured on the first 
instrument using 

= 1, 2, ..., q )  is also a short column vector. 

m, = AM,B ( 5 )  

With 8 1 ,  this sample can be combined with all other 
(calibration) samples measured on the first instrument, for 
the purpose of second-order calibration, library searching, or 
classification. 

Numerical Solution. In the search for a numerical 
solution for A and B in eq 2, an iterative alternating least- 
squares procedure was first used, based on the fact that eq 
2 can be reduced to a first-order standardization problem 
when either A or B is known. The iteration starts by setting, 
for example, the left transformation A as an identity matrix 
and uses the first-order PDS to calculate the right trans- 
formation B, which is then inserted into eq 2 to standardize 
from the right-hand side. This standardized response can 
now be used in another first-order PDS to calculate an update 
for the left transformation A. This cycle can be repeated 
until convergence. Unfortunately, while the iteration does 
converge, it cannot converge to the correct solution. This is 
analogous to solving multivariate optimization problems by 
altering one variable at  a time, indicating that the two orders 
cannot be standardized separately, even in an alternating 
fashion, and a simultaneous solution for both A and B is 
needed. 

I t  is insightful to write out the expression for a typical 
element in N1, NI,~], as a function of a corresponding local 
submatrix of the elements in NZ by the use of eq 2 

N 1 , t ]  = aTN,bJ (6) 
where 

N 2 ~ ~ j - r  N2,i-u j+r  ... XI=[ - ::: ] (7) 

N ~ j + ~ j ,  9 . 9 N2j+uj+r  

Now it becomes clear that, in the second-order standardization 
given by eq 2, a rectangle in response matrix NZ is constructed 
around each corresponding element in N1 and the left and 
right transformation vectors, a, and bj, are estimated such 
that eq 6 is satisfied in a least-squares sense. Recalling that 
in first-order calibration, a small window is constructed on 
the second instrument near each specific response channel 
on the first instrument, it becomes obvious that second-order 
standardization is a 2D version of PDS. In contrast to first- 
order PDS, however, all rectangles in 2D PDS are connected 
with one another through different left and right transfor- 
mation vectors. For example, ai appears in the expressions 
for all elements on the ith row of N1 and bJ appears in the 
expressions for all elements on the j t h  column of NI. As a 
result, a numerical solution similar to the moving window 
method in first-order PDS cannot be devised to produce 
overall least-squares estimations for these two transforma- 
tions. 

A nonlinear least-squares method is proposed here to solve 
for all nonzero parameters in A and B simultaneously. The 
numerical procedure used is the Gauss-Newton method,@ 
which requires explicit expressions for first derivatives of all 
elements in N1. From eq 6, these first derivatives can be 
derived as 

where t c  [i - u, i - u + 1, ..., i + u - 1, i + u l ,  and 

where f c  Li - r, j - r + 1, ..., i + s - 1, i +SI. 
For the elements in the first u rows, last u rows, first r 

columns, and lasts columns of NI, the rectangle in eq 7 cannot 
be constructed. These elements are therefore ignored in the 
nonlinear least-squares estimation described above. Alter- 
natively, an extrapolation procedure may be employed. Thus 
the valid ranges fori  and j in eq 6 are u + 1 I i I m- u and 
r + 1 I j I n - s, respectively. As a result, p and Q in eqs 
3 and 4 are given b y p  = m - u - u and q = n - r - 8 .  I t  should 
be pointed out that although a constant bandwidth is assumed 
for both A and B in the above derivation, A and B can in fact 
have varying bandwidths, as long as the uniqueness condition 
to be discussed in the next section is satisfied. 
Uniqueness of Solution. As can be expected, the 

uniqueness of the nonlinear least-squares solution for A and 
B is dependent on the bandwidths in A and B and the 
dimensionality of N1 and NP. According to the formulation 
in the previous sections, the total number of unknown 
parameters (nonzero elements) in A and B is p(u  + u + 1) 
+ q(r + s + 1). Notice in eq 2, the absolute magnitude of the 
elements in A and B is undetermined. For example, A can 
be scaled up by a factor while B can be scaled down by the 

a' = 1 4  i-uAi i-u+l ... Ai i+u-lAi i+ul (8) Dennis, J.  E., Jr. Nonlinear Least-Squares State of the Art in 
Numerical Analysis; Jacobs, D., Ed.; Academic Press: New York, 1977; 
pp 269-312. 
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same factor without changing the least-squares fit of eq 2. 
Thus in the calculation, an element of A is held constant, for 
example, by setting A l l  1. Though there are p X q usable 
elements in NI,  the number of independent elements in N, 
is limited by its rank and is given as rank (NI)  x max(m,n). 
Therefore, a necessary and sufficient condition for the 
uniqueness of a solution is given by the following inequality 

p ( u  + u + 1) + q ( r  + s + 1) - 1 5 rank(N,) X max(m,n) 
(8) 

For example, when m = n = 10 and u = u = r = s = 1 (Le., 
A and B are banded diagonal matrices each with one 
superdiagonal and one subdiagonal), the uniqueness condition 
is rank(N1) 2 5. In the case of an LCiUV experiment, this 
means that a five-component mixture needs to be injected as 
the standard sample in order to correct for both retention 
time and specral wavelength shift in a range from -1 to +1 
units. 

Equation 8 implies that second-order standardization can 
be accomplished with only one sample, preferably a com- 
plicated sample with high rank. Compared to  first-order 
standardization, where multiple standard samples are re- 
quired, this may be considered as one additional second- 
order advantage. Of course, when more standard samples 
are available for standardization, the second-order standard- 
ization will be improved. In this case, more equations similar 
to eq 2 can he included in the nonlinear least-squares 
estimation, or the sum of all standard samples can be used 
to replace N1 and NP. Since this summed “sample“ has a 
higher signal to noise ratio and possibly a higher rank than 
N1 alone, it is expected that eq 2 will become more overde- 
termined and the nonzero parameters in A and B can be 
better estimated. 

In case multiple bilinear second-order spectra are available 
for standardization, there is an alternative approach to  
calculate the left and right transformations. A trilinear 
decomposition1” can be applied to multiple bilinear samples 
to obtain the resolved pure component spectra X and Y in 
both orders. Assuming two bilinear samples (M and N) are 
measured on the first instrument as M1 and N i ,  which can 
be decomposed as 

M, = X,CMYy 

N, = X,CNYT 

where C,M and Cy are both diagonal matrices with the analyte 
concentrations in M and N on the diagonals. When the same 
two samples are measured on the second instrument, the 
responses M2 and N2 can be similarly decomposed as 

M, = X2C,YT 

N, = X,C,YT 

I t  is seen that the instrumental differences in the X order are 
represented by X1 and X2 while the differences in the Y order 
are represented by Y1 and Yi. Consequently, the left and 
right transformations A and B can be calculated via two 
separate first-order standardizations as follows 

XT = XTAT 

YT = Y:B 

For the same example as given above, a sufficient condition 

(IO) Sanchez, E.; Kowalski, B. R. J .  Chemom. 1990, 4 ,  29. 
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Flgure 1. Simulated standard sample response from the flrst instrument. 

Flgure 2. Simulated test sample response from the flrst instrument. 

for the uniqueness is rank(X1) = rank(X2) = rank(Y1) = 
rank(Y2) I 3, which requires less complicated standard 
samples containing only three components. 

EXPERIMENTAL SECTION 
Computer Simulation of LCiUV Data. The chromatograms 

and spectra for nine components were generated using Gaussian 
peaks. Seven out ofthese nine components were used to generate 
a bilinear response matrix N 

Where x,’s and y,’s are the vectors containing pure chromatograms 
and spectra for these seven components and c,’s are their 
corresponding concentrations. The remaining two components 
were combined with two of the components included in N to 
form another bilinear response M 

To simulate a deviation from the Lambert-Beer law, the following 
transformation” was carried out for every element in N and M 
to generate the true responses NI and MI on the first instrument 
(plotted in Figures 1 and 2 respectively), 

(9) N ,  :, = -log(e-”’I + 0.01) 

M,,,, = -log(e-”’J + 0.01) 

and 

(10) 

The responses on the second instrument were simulated 
through a nonlinear shift of both the chromatographic and 
spectral axes. This nonlinear shift was generated using a 
quadratic form a + bx + C X ~ ,  where the parameters a, b,  and c 

(11) Gernperline,P. J . ;Long,  J. R. ;  Gregoriou, V. G.Anal .  C b m .  1991, 
63, 2313. 
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Wavelength 
Flgure 3. Contour plot of simulated standard sample responses on 
both Instruments (solid line, on the first instrument; dashed line, on the 
second Instrument). 

Wavelength 
Flgure 4. Contour plot of simulated test sample responses on both 
Instruments (solid line, on the fkst Instrument; dashed line, on the second 
Instrument). 

were determined such that the shift at both ends was -1 unit 
while that at the extremes was +1 unit. N and M were subjected 
to this shift with linear interpolation to generate the bilinear 
responses on the second instrument. Following a 10% linear 
intensity gain, a nonlinear intensity change (approximately 10 % 
of the linear intensity) was simulated by adding 0.03, instead of 
0.01, in eqs 9 and 10 to generate the true responses NZ and MZ 
on the second instrument. The responses from the two instru- 
ments are overlaid in the contour plots shown in Figures 3 and 
4. It is seen that there are significant intensity changes and 
complicated response channel shifts from one instrument to the 
other. 

In the simulation, N1 and N P  were used as the standard sample 
responses while MI and Mz were used as the test sample responses. 
Sixnoiselevels,0.00%,0.05%,0.10%,0.50%, 1.00%,and5.00%, 
and eight different types of bands for A and B were tested in a 
full factorial design with five repetitions. Since the simulated 
nonlinear shift was symmetrical in both orders, the same sized 
band was used for A and B. In each simulation, A and B were 
estimated from the standard sample responses on both instru- 
ments and a residual matrix was calculated.for eq 2 which 
indicates the goodnessof the model. From this individual matrix, 
a modeling error was calculated as the mean of the standard 
deviations of all elements. Similarly, a standardization error 
could be calculated from the residual matrix for eq 5 with the 
estimated A and B. To measure the stability of the proposed 
parameter estimation method, a standard deviation was also 
calculated for A and B, which is the mean standard deviation of 
all elements in the estimated A or B (as compared to the A and 
B calculated at 0.00% noise level). 

LC/UV Experiment. In the LC/UV experiment, a reversed- 
phase HPLC system was connected to a Hewlett-Packard (Palo 
Alto, CA) 8452A diode array spectrometer via a flow-through 
cell. The mobile phase consisted of 60% methanol and 40% 
0.005 M tetrabutylammonium sulfate (pH adjusted to 7.0 with 
NH:{.H20). The mobile phase was delivered by two Altex lOOA 
(Altex Scientific, Berkeley, CA) pumps at a total flow rate of 0.4 
mL/min and mixed with the injected sample in a mixingchamber 
before reaching the column and flow-through cell. A Chrompack 
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Figure 5. LCNV response of the standard sample. 

Flgure 8. LClUV response of the test sample. 

(Raritan, NJ) reversed-phase CIS column was modified to allow 
the observation of the separation. The injection valve was a 
pneumatically operated Rheodyne Model 7126 with a 10-rL 
sample loop. The data collection started 70 s after sample 
injection at a rate of 1 spectrum/s for a total of 30 s. The spectra 
were collected in the 200-300-nm range with a 2-nm step. 

Four 100 mg/L solutions of FD&C red dye No. 40, blue dye 
No. 2, yellow dye No. 5, and yellow dye No. 6 were prepared with 
HPLC-grade water and were then used to prepare two mixtures. 
The first mixture was prepared by taking 7 mL each of red dye 
No. 40, blue dye No. 2, and yellow dye No. 5 solutions and diluting 
to 25 mL with water and serves as the standard sample for 
standardization. The other mixture was prepared by taking 2 
mL of red dye No. 40 solution, 5 mL of blue dye No. 2 solution, 
and 7 mL of yellow dye No. 6 solution and diluting to 25 mL, 
which would serve as the test sample for the standardization. In 
the experiment, a 50-pL sample was injected to fill the sample 
loop. After the injection of these two samples, the flow-through 
cell was taken out of the spectrometer. No effort was made to 
align the flow-through cell in the next run of the same two samples 
1 week later. The responses of the two samples measured during 
the first run are shown in Figures 5 and 6. When these two 
samples were measured during the second run, the responses 
became significantly different (shown in Figures 7 and 8). The 
average difference between the responses of the same sample is 
-0.15 AU. Such a dramatic difference would make it impossible 
to compare and utilize the measurements conducted at a different 
time. 

RESULTS AND DISCUSSION 
Computer Simulation. The averaged standard deviations 

in the estimation of all the nonzero elements in the left and 
right transformations, A and B, are plotted in Figures 9 and 
10, respectively. From these two figures, i t  can be seen that 
more stable estimates of A and B are obtained with smaller 
bandwidths, which corresponds to a more overdetermined 
nonlinear system. This is consistent with the discussion 
presented in the Theory section, suggesting that a smaller 
bandwidth is always preferred in terms of parameter esti- 
mation. When the band increases to  [-2 11 and [-1 21, the 



1178 ANALYTICAL CHEMISTRY, VOL. 65. NO. Q, MAY 1. 1993 

I 
OS 
0.6 2 0.4 

0.2 - 
e 
s o  
P 4.2 2 4 .4  

-0.6 

Retenlion Time ( L r )  
Fbure7. Dlfference in the responses of the standard sample between 
two runs. 
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Figure 8. Dlffwence In the responses of the test sample between two 
runs. 
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mean standard deviation of A and B undergoes a significant 
increase, indicating some fundamental change in the system 
described by eq 2. In fact, referring back to the uniqueness 
discussion, it is seen that eq 8 is no longer satisfied in these 
twocases. It is expectedthatduringthe parameter estimation 

- U O %  - 1.00% 

2 
b 
v) 

1001 1-10] I O 1 1  1-1 11 1-201 I021 [ - Z I l  [-12l 
Band ([k I] = [r s]) 

F W I ~  10. Mean standard deviation In the estlmatlon of mhl 
transformallon mablx E at different noise levels. 

the standard deviation will approach infinity, which sur- 
prisingly is not the case in Figures 9 and 10. This is believed 
to he related to the fact that  a nonlinearity of the form in eqs 
9 and 10 was added, and the effective rank of the response 
matrix was slightly increased. 

When the noise effect is considered, i t  is seen that the 
parameter estimation for A is relatively stable in the range 
of 0.00-1.00% noise, while the estimation for B seems to be 
stable inthe whole rangetested (from 0.00% to 5.00% ).When 
Figure 9 is compared to Figure 10, a much more dramatic 
fluctuation in A is observed. In fact, this fluctuation in A is 
so dramatic a t  the 5.00% noise level that some of the points 
had to he left out of the figure. After careful examination, 
it is found that this dramatic variation comes from the rows 
in A corresponding to the retention times around time 13. 
Referring back to Figure 1, i t  is seen that there is only one 
dominant peak in this region of the response. As a result, the 
local rankoftheresponsein thisregionissignificantlysmaller 
than the overall rank which determines the uniqueness of 
parameter estimation, especially when the noise level in the 
data is high. This explains the poor parameter estimation in 
A athighnoise levels. Thecomponentsaredistributed much 
more evenly along the wavelength axis, and the parameter 
estimation in B becomes more stable. In light of this 
observation, the standard sample for second-order standard- 
ization should be designed in such a way that not only the 
overall rank satisfies the uniqueness eq 8 hut also the local 
ranks (whenexamined from both orders) approach this overall 
rank as much as possible. In other words, the different 
components in the standard sample should be evenly spread 
out in the x-y plane. 

The modeling error calculated for the standard sample is 
plotted in Figure 11. In Figure 11, the large error at band I O  
01 indicates that a sufficient standardization model has not 
been obtained. The simulated nonlinear shift is in the 1-1 
11 range, along with the nonlinear intensity change from 
instrument to instrument. When one more nonzerodiagonal 
is included in the standardization (at bands 1-1 01 and [O l]), 
the modeling error is significantly reduced. I t  is interesting 
to note that the modeling errors a t  bands 1-1 01 and I O  11 are 
comparable to each other, showing some form of symmetry. 
This is consistent with the fact that the shift range is actually 
1-1 11. At band [-111, the modeling error is further reduced 
a t  all noise levels. At the same bandwidth with bands 1-2 01 
and 10 21. the modeling errors increase only slightly. This 
suggests that the correction estimation of the range of shifts 
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Flgure 11. Mean standard devlatlon in matching the response of the 
standard sample from the second lo the first instrument at different 
noise levels. - 0.09% - 050% - 1.00% 

0.12 --b- 0.10% 

. .  . .  
(001 [-I 01 [O 11 1-1 I 1  [2Ol I021 1-2 11 1-1 21 

Band ([k 11 = [r SI) 
Flgure 12. Mean standard dedation in matching th8 response of the 
test sample from the second to the first Instrument et different noise 
levels. 

in A and B is not critical owing to the continuity of the 
responses. Whenthehandwidthisoverestimated by onewith 
the range of shifts included (at hands 1-2 11 and [-1 21), the 
modeling error is only slightly reduced, indicating that a 
smaller bandwidth is sufficient to correct for both the 
nonlinear shifts and nonlinear intensity changes. The sym- 
metry in the modeling error a t  hands {[-2 01, [O 211 and {[-1 
21, [-2 11) is also observed. As for the noise sensitivity, it is 
seen that the modeling error increases slowly as the noise 
increasesfrom0.00% to1.00%. From1.00% to5.00% noise, 
the modeling error is significantly increased, due mnstly to 
thelargevarianceintheestimationofA,as has heendiscussed 
above. Nonetheless, this can he improved through a better 
designed standardization sample. 

The standardization error calculated from the test sample 
(Figure 12) shows a pattern similar to that in Figure 11. One 
difference is that the magnitude of the standardization error 
is -2 times that of the modeling error, since the former is 
prediction error while the latter is just fitting error. Another 
difference is that the error increases dramatically when the 
hand reaches [-2 11 and I-1 21, especially a t  higher noise 
levels, indicating the occurrence ofoverfittingwhen an overly 

Flgure 13. Resaualmatrlxofthestandardsampbaflerstandardlration. 

60 Wavelength (nm) 

Flpure 14. ResaUal matrix of the test sample afler standardization. 

large bandwidth is used. In the noise range from 0.00% to 
1.00%, thestandardizationeror isrelativelystahlefrom hand 
[-lo] to [O 21. This is consistent with the discussion above. 
The standardization error in this range is -0.04 absorbance 
unit, which is quite acceptable considering the pronounced 
difference seen from Figures 3 and 4. The variation pattern 
of the standardization error a t  the 5.00% noise level and a t  
hands [-2 11 and [-1 21 is more complicated and less 
interpretable, due to the enormousvariation in theestimation 
of A a t  the 5.00% noise level (Figure9) and the large variation 
in the estimation of both A and B at hands [-2 11 and [-1 
21 (Figure 10). Again, this can he improved by using a better 
designed standard sample. 

LCiUV Experiment. Since the time-dependent response 
variation in the LCiUV experiment comes mainly from the 
chromatographic part of the instrument, the hand chosen for 
B (spectral order) in the standardization is [O 01 and that 
chosen for A (chromatographic order) is [-1 11. Figure 13 
shows the difference in the sample responses after standard- 
ization. I t  is seen that the difference after standardization 
is centered around and close to zero in magnitude, indicating 
that a sufficient model has been attained. However, the 
residual also shows some clear patterns. There appears to he 
three hands in the residual, centered around 2, 12, and 20 s 
in retention time. Referring hack to the standard response 
shown in Figure 5, it becomes clear that the response around 
12 s is close to zero and the response around 2 and 20 s 
corresponds to three similar chromatographic peaks with 
similar spectral features. As has been discussed in the last 
section, this willleadtoarelativelylowlocalrankandunstahle 
parameter estimations. In spite of this clear pattern, the 
mean standard error calculated from the difference in the 
responses has been reduced from -0.15 (without standard- 
ization) to 0.025 after Standardization. 

For similar reasons, the residual after standardizing the 
test sample (Figure 14) also shows a pattern around the three 
retention times mentioned above. The overall trend of the 
residual is nevertheless centered around and close to zero. 
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The standard error from standardization is -0.03. With a 
better designed standard sample, these clear patterns in the 
residual can be eliminated and the standardization perfor- 
mance improved. 

CONCLUSIONS 
The study described in this paper has demonstrated the 

applicability of the second-order standardization method 
developed. The computer simulation has indicated the 
capacity of second-order standardization in modeling both 
the nonlinear shifts and nonlinear intensity changes, with a 
relatively small bandwidth for the right and left transfor- 
mations. In both the computer simulation and the LC/UV 
experimental data study, the extreme importance of the design 
of the standard sample is observed. On the other hand, the 

selection of bands in the transformation matrices can be 
flexible within a certain range with relatively stable stan- 
dardization performance. Future research on the second- 
order standardization should be devoted to error propagation 
and the optimal design of the standard sample(s). 
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