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SUMMARY

Batch process data can be arranged in a three-way matrix (batch� variable� time). This paper provides a
critical discussion of various aspects of the treatment of these multiway data. First, several methods that have
been proposed for decomposing three-way data matrices are discussed in the context of batch process data
analysis and monitoring. These methods are multiway principal component analysis (MPCA)—also called
Tucker1—parallel factor analysis (PARAFAC) and Tucker3. Secondly, different ways of unfolding, mean
centering and scaling the three-way matrix are compared and discussed with respect to their effects on the
analysis of batch data. Finally, the role of the time variable in batch process data is considered and methods
suggested to predict the per cent completion of batch runs with unequal duration are discussed. Copyright 1999
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Batch and semi-batch processes are characterized by a prescribed processing of materials for a finite
duration. Specialty polymers, pharmaceuticals and biochemical materials are produced in batch
reactors. Batch annealing in the steel industry, injection molding of polymers, batch distillation and
batch etching of silicon wafers are other examples of batch processes. Typical data from batch
processes include time-varying trajectories of all the measured process variables collected for a
number of batches. Process variables such as temperatures, reactant feed rates, pressure, agitation
intensity, etc., measured at many times throughout the duration of each batch, contain valuable
information that subsequently can be used to analyze the process behavior, improve its performance
and establish acceptable operation limits for process monitoring. For a few processes, product quality
measurements are available during production (e.g. density, latex particle size). However, in most
cases the quality variables are only available at the end of the batch and cannot be used for on-line
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monitoring purposes.
The use of multivariate statistical projection methods for the analysis, on-line monitoring and fault

detection and diagnosis of batch processes has been described by Nomikos and MacGregor.1–3

Tutorials and extensions of these methods for fault diagnosis and for the incorporation of additional
information such as properties of the raw materials are given by Kourti and MacGregor4,5 and Kourti
et al.6

Batch process data can be arranged in a three-way matrix. Nomikos and MacGregor1–3 showed
how to use multiway principal component analysis (MPCA)1–3 and multiway partial least squares
(MPLS)7 for the analysis of three-way batch data. In MPCA the three-way data matrix is unfolded to a
two-way matrix which is analyzed using standard PCA. Other methods that analyze three-way data,
such as parallel factor analysis (PARAFAC)8–11 and Tucker models,10,12 have been applied in
chemistry and are now being suggested for the treatment of batch data.13 This paper examines some
issues related to the use of these three methods in batch process data analysis, but it is not meant to be
a comprehensive treatment of the topic. When using unfolded PCA, Nomikos and MacGregor3

concluded that a specific way of unfolding in which the direction of the batches is maintained is most
suitable for batch process monitoring. They also suggested appropriate ways for centering and scaling
the data. However, recently some other ways of unfolding, centering and scaling have been used.14,15

The impact that these kinds of preprocessing will have on the analysis of batch data is examined.
Finally, in many situations, batch runs are of different durations. Methods for aligning the batch data
and suggestions for predicting the per cent completion of a batch are discussed.

2. COMPARISON OF THREE-WAY METHODS FOR BATCH DATA ANALYSIS

In this section, methods developed to model three-way data are discussed with respect to their use for
batch process data analysis. These methods are multiway principal component analysis (MPCA)—or
Tucker1—PARAFAC and Tucker3.

2.1. Theory on methods

Typical data from a batch process consist ofJ process variables measured atK points in time forI
batches. In MPCA as used by Nomikos and MacGregor,1–3,16the three-way matrixX(I � J� K) is
unfolded to a two-way array so that the direction of the batches is maintained. Then PCA is performed
on the two-way data set. With MPCA, in each component the data are decomposed into a vector in the
batch mode,aM (the term scores is usually used for this mode in batch analysis), and a matrixPd that
describes the variation in the combined variable/time space for each component. The loading vectors
Pd (JK� 1), d = 1, 2, …,D, can then be refolded into a three-way loading arrayP (D� J� K) as
shown in Figure 1. The structural model is

x̂ijk �
XD

d�1

aM
id Pd�j; k� �1�

The index M onaM denotes a component from MPCA. The components are orthogonal and can be
calculated sequentially. Woldet al.7 considered further decomposition of the loading matrixPd,
without centering and scaling, into principal componentscM andbM. This feature is discussed later in
Section 2⋅2 (Table 1).

Other decomposition methods such as PARAFAC8–11 and Tucker310,12 have also been used in
chemometrics for the analysis of three-way data. A tutorial on PARAFAC is given by Bro.11 Figure 2
shows the decomposition of the three-way matrix into trilinear component loadings�aP

f ; bP
f andcP

f �
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according to a PARAFAC model. The three-way matrixX can be expressed as the sum of several
such trilinear components.E is the matrix of the residuals. The structural model of PARAFAC is
given by

x̂ijk �
XF

f�1

aP
if bP

jf cP
kf �2�

where F is the number of components.P is the index on the vectorsaP, bP and cP used for
PARAFAC.

PARAFAC models have the same dimension in the three modes, but this is not necessarily the case
in Tucker3 models. Figure 3 shows the decomposition according to a Tucker3 model. A Tucker3
model decomposes the three-way data into loadings in each direction (AT, BT and CT) which are
connected through a core matrixG. HereG is aD� E� F matrix, A is I � D, B is J� E andC is
K� F. When one of the dimensions inG is the same as inX (e.g.D = I, F = K or E = J), then we have
a Tucker2 model. If two dimensions are the same (e.g.F = K andE = J), then we have a Tucker1
model and this is equivalent to unfoldingX into a two-way matrix and performing PCA on it. The

Figure 1. Decomposition ofX by MPCA toD components. TheX matrix contains data onJ variables measured at
K points in time forI batches.E is the matrix of the residuals

Figure 2. Decomposition ofX by PARAFAC toF components
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structural model of Tucker3 is

x̂ijk �
XD

d�1

XE

e�1

XF

f�1

aT3
id bT3

je cT3
kf gdef �3�

Here we use T3 as the index on the vectorsaT3, bT3 andcT3 for the Tucker3 model. Notice that the
PARAFAC model is a Tucker3 model withD = E = F where the core has all the elements zero except
for the superdiagonalg111, g222, …, gFFF.

An introduction to the Tucker3 models together with some simplifications is given by Geladi.12 For
the PARAFAC and Tucker3 models the components are calculated simultaneously. Therefore, unlike
MPCA, in PARAFAC and Tucker3 the first batch loading of a two-component model may be
different from the first loading of a one-component model. Kiers17 shows that PARAFAC can be
considered a constrained version of Tucker3, and Tucker3 a constrained version of Tucker1 (MPCA).

In the following subsection we will compare the potential of the various three-way methods for the
analysis of batch data from two points of view. First, the main results will come from comparing the
abilities of the methods to model two previously published sets of data from batch polymerization
processes.1,3 Secondly, we will also attempt to provide some insight into the nature of batch data and
the suitability of the methods to capture this structure.

2.2. Case studies

The methods will be compared using data from two batch processes.

. The first data set from an industrial batch polymerization process was supplied by DuPont.3 Data
from 36 good batches were used to build the models. Each batch had a duration of 100 time
intervals, and ten process variables were monitored throughout the process.

. The second data set is from a simulated polymerization of styrene–butadiene (SBR).1 Here 51
good batches were used and six variables were monitored at 200 time intervals. Three other noisy
process variables in this data set were not used.

For this first analysis the same data preprocessing was used for each method. The three-way data
were unfolded in such a way as to maintain the batch direction (unfoldingD or E in Figure 5), and
each column was centered to zero mean (i.e. the mean trajectories of the process variables were
removed) and scaled to unit variance. Other forms of unfolding, centering and scaling and their
consequences will be discussed later in Section 3. The calculations for the PARAFAC and Tucker3
models were performed using theN-way toolbox of Andersson and Bro.18 The MPCA calculations
were performed using the BatchSPC software of the McMaster Advanced Control Consortium. For

Figure 3. Decomposition ofX by Tucker3 model
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the PARAFAC loadings in the batch direction, orthogonal constraints are applied. These loadings will
be used to build monitoring schemes, and orthogonality allows for monitoring each score separately.
Furthermore, PARAFAC models without orthogonal constraints were sometimes found to produce
degenerate solutions. Degenerate solutions are often characterized by highly correlated loadings, and
the resulting models are often unstable and unreliable.11

Table 1 shows the results of modeling the DuPont and SBR batch process data with PARAFAC,
Tucker3 and MPCA. Columns 3–5 show the cumulative percent variation explained for one, two and
three components. Tucker (1,1,1) would have been a PARAFAC, so we chose a Tucker (1,2,2) to
compare models with only one component in the batch direction but show the effect of more
components in the variable and time directions; any number of components in the variable and time
directions could have been used. Notice that when the models are compared on an ‘equal component
basis’, MPCA explains the highest percentage of variation, followed by Tucker3 and PARAFAC. For
the DuPont data, for example, with three components, 57% is explained by MPCA, 40% by a Tucker3
(3,3,3) and 34% by PARAFAC. This illustrates a behavior that is theoretically expected because of
the structure of the models. A comparison on more ‘optimal’ models (cross-validated models) for
each case will follow, after we discuss another feature of this table.

The last column in Table 1 shows results from a PCA performed on the loading matrixPd obtained
from MPCA as illustrated in Figure 4. It gives the cumulative percentage of variation explained by
performing a PCA on thePd matrices using only cross-validated components. The first line (DuPont
data) of this column reads that if a PCA is performed on the first-component loading matrixP1, then
one component explains 53% of variation inP1 and there are three components explaining a total of
82% ofP1. (Only three components were important by cross-validation.) Notice now that 53% of 39

Table 1. Cumulative per cent variation explained with PARAFAC, Tucker3 and MPCA models. The dimensions
of the Tucker3 models (batch, variable, time) are given in parentheses. The cumulative per cent variation

explained by PCA of the loading matrixPd is also given

Number of
components PARAFAC Tucker MPCA PCA ofPd

a

DuPont data 1 21 27 (1,2,2) 39 53, 69, 82
2 30 32 (2,2,2) 50 74, 85
3 34 40 (3,3,3) 57 46

SBR data 1 19 20 (1,2,2) 21 90, 96, 100
2 28 28 (2,2,2) 33 63, 92, 99
3 32 34 (3,3,3) 40 55, 84, 97

a Number of components determined by cross-validation.

Figure 4. PCA can be performed onP1 matrix
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(which is the percentage explained by MPCA) equals 21 (the percentage explained by the PARAFAC
model). Notice also that the percentage explained by the Tucker (1,2,2) model (27%) equals the
fraction ofP1 explained by two PCs times the percentage of variation explained by the MPCA model
(0⋅69� 39 = 27). The same feature was also found to be true for the SBR data. Notice that this feature
is only observed for the first dimensionP1 and it is not known if it is general for all data sets.

This observation would also imply that for a one-component model, only if the MPCA loading
matrix P1 were of rank one (P1 = c1

M(b1
M)T) would the PARAFAC model explain the same

percentage of variation as MPCA. However, the nature of batch data is such that one would normally
expect strong interactions between the time and variable dimensions, which would result inP1 being
of rank higher than one. Batch and semi-batch process data consist of several variables that are
measured in time. These process variables are not only correlated to each other at any given time, but
also correlated to events that happen at earlier times in the process (hence their three-way nature).
Furthermore, the nature of the correlation among the variables and the nature of their correlation with
earlier time periods will, in most batch processes, constantly change over the course of the batch. This
is because batch processes are usually operated to proceed in several stages, where some variables are
deliberately manipulated in a different manner in various stages in order to accomplish different
objectives. For example, in the DuPont process the major phenomenon occurring early in the batch is
the vaporization of solvent, and the reactor heating medium flows are adjusted to provide a desired
rate of change of temperature and control of pressure. However, part way through the batch the
operating procedure is changed and the long-chain polymerization reactions begin. The temperatures
and pressures during this second stage are correlated with one another in a very different manner than
during the first stage, and furthermore, their correlation with prior history is very different. We refer
to this as interactions between the time and variable dimensions. These interactions lead to MPCA
loading matricesPd that usually have ranks much higher than one.

Thus the nature of three-way batch data is often quite different from the trilinear PARAFAC
decomposition, where for each dimension (f) the time direction loading parameters (ckf) are the same
for all variables at each time pointk and the variable dimension loading parameters (bjf) are the same
over all times for each variablej. As a result, PARAFAC is not capable of modeling such complex
interactions within each of its individual components, and these can only be captured, if at all, by
using several components.

The results in Table 1 only considered the per cent variation explained in the fitted data (R2) by
maintaining the same number of components in the batch direction for each model. No attempt was
made to select an ‘optimal’ number of components for each model dimension. In Table 2 we rectify
this by using models based on some ‘optimal’ selection and comparing them on the DuPont data with
respect to the percentage explained by fitting (R2) and the percentage explained by cross-validation
(Q2). Based on a leave-one-batch-out cross-validation procedure, a PARAFAC model with five
components and an MPCA model with three components were selected. A Tucker3 model with four

Table 2. Per cent variation explained by fitting (R2) and cross-validation (Q2) for different scalings ofX. The
initial sum of squares for each different scaling is shown at the bottom of the table

Autoscaling Variable scaling

R2 Q2 R2 Q2

PARAFAC (5) 39 37 40 36
Tucker3 (4,5,3) 44 41 46 43
Unfold PCA (3) 57 48 71 63

Initial sum of squares 3500 35900
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components in the batch direction, five in the time direction and three in the variable direction was
selected. These numbers come from a PCA analysis on each of the unfolded matrices (I � JK, J� IK,
K� IJ) and selection of the number of components from scree plots in each case. (In the batch
direction it was unclear whether three or four components were needed, so four were chosen.)

Column 2 of Table 2 gives the results when the batch data were mean centered in the batch
direction and autoscaled. From the table it can be seen that the MPCA model explains the greatest
percent variation in the fitted data (R2), followed by Tucker3 and PARAFAC. This is expected, since
MPCA is the most flexible model. This has been pointed out by Bro,19 who states: ‘A Tucker1 model
always fits data better than a Tucker3 model which again will fit better than a PARAFAC model, all
except for extreme cases where the models may fit equally well’. However, the interesting thing in
Table 2 is that the percentage explained by cross-validation predictions (Q2) is also clearly the best for
the MPCA model, followed again by Tucker3 and PARAFAC. Notice that these conclusions are only
with respect to the model fits and the predictions via cross-validation. Further studies as to the
potential of the models for process analysis and monitoring need to be performed. Table 2 also shows
results for two ways of scalingX. The scaling issue is discussed in the next section.

3. UNFOLDING, MEAN CENTERING AND SCALING

Typical data from a batch process consist ofJ process variables measured atK points in time forI
batches. In order to be able to use the standard PCA and PLS methods, the three-way data matrix has
to be unfolded to a two-way matrix. Figure 5 shows that the three-way data matrixX (I � J� K) can
be unfolded in six different ways. This results in the following two-dimensional matrices:A (KI � J),
B (JI� K), C (IJ� K), D (I � KJ), E (I � JK) andF (J� IK). However, for PCA and PLS, matrices
B andC are equal and matricesD andE are equal in that they are the same matrix with just the rows or
columns rearranged. MatrixF is the transpose ofA, and a PCA would just switch the scores and
loadings of the two matrices if no centering or scaling was applied. Each of the different
rearrangements of the three-way data matrixX into a large two-dimensional matrix followed by PCA
on this matrix corresponds to looking at a different type of variability.

Figure 5. Unfolding three-way data cubeX into six different two-dimensional matrices
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3.1. MPCA

In the batch process monitoring methods introduced by Nomikos and MacGregor,1–3, 16 the three-
way matrix with process data is unfolded to matrixD. This is the most meaningful way of unfolding
for batch analysis and monitoring. The whole batch (thus all process variable trajectories obtained
during the batch) is considered as one object. With this kind of unfolding, one studies the differences
between the batches. It allows comparing each batch separately against a group of good batches to
classify it as a good or a bad batch. It also gives the possibility to relate the measurements of each
batch to quality measurements of the final product. Mean centering matrixD removes the mean
trajectories of all process variables, thereby removing the main non-linear and dynamic component
from the data. A PCA performed on these mean-corrected data is therefore a study of the systematic
variation in all the variable trajectories about their mean trajectories. If a new batch is compared with
the PCA model of good batches, the variation should be consistent with the systematic variation of the
PCA model.

Recently, applications have been presented in which the three-way matrix with process data was
unfolded to matrixA and scaled to zero mean and unit variance.14,15,20With this way of unfolding,
each point of the trajectory of every batch is considered an object. Mean centering matrixA simply
subtracts a constant (the grand mean of each variable over all batches and all times) from the
trajectory of each variable in each batch. This leaves the non-linear time-varying trajectories in the
data matrix. This type of unfolding and mean centering may be useful when a wide range of different
trajectories have been tried for some of the variables (i.e: when, for the same variable, trajectories
obtained for different batches do not fluctuate around the same mean). Such an example is the case of
designed experiments where it is desired to find what variation in the trajectory shapes is correlated
with various quality variables.21 However, it is not really suitable for batch monitoring or for the
analysis of batches that have been obtained in a consistent manner, as will be illustrated below.

Figure 6 shows the raw data of one of the ten process variables for the 36 batches of the DuPont

Figure 6. Raw data of variable 2 (trajectories of 36 batches) of DuPont data set unfolded to matrixA and to matrix
D and mean centered afterwards
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data unfolded both to matrixA and to matrixD and mean centered afterwards. The dynamic trajectory
is still present in the data after mean centering matrixA, whereas after mean centering matrixD, only
the variation between the batches remains.

A PCA on the unfolded matrixA needs many more components to describe the same systematic
variation in the data as a PCA on the unfolded matrixD. In fact, it usually needs almost as many
components as the number of variables in the original matrixA to end up with the same residual sum
of squares as a cross-validated PCA of matrixD. This is logical if the relationships between the
variables change over the course of the batch. This will be the case if some of the variables are being
manipulated at various times to force the reaction to achieve certain results. To illustrate these points,
we again use the DuPont and SBR batch data from the previous section. The only difference is that for
the SBR data set all nine variables are used here instead of the six mentioned before, so that we can
compare it with the work already presented by Nomikos and MacGregor.1

Table 3 shows results from the two data sets. The first row gives the total sum of squares for each
data set before mean centering (SStot). The next two rows give the sum of squares left after mean
centering the data unfolded toA (SSA) and toD (SSD). Then the percentage of sum of squares of
matrix D explained by PCA is given (% expl. SSD), together with the number of components (PCs)
needed to explain such variation. Finally we give the percentage of sum of squares of matrixA (% SS
neededA) that it is necessary to explain in order to end up with the same residual sum of squares as
obtained with unfolding and centering viaD, together with the number of components required to
explain this variation. For the DuPont data set the total sum of squares of the raw data of all variables
is 25 336. After mean centering, the sum of squares is 2201 for matrixA and only 26⋅3 for matrixD.
For theD matrix, three principal components were selected that explained 57% of the variation in the
process data,3 so the residual sum of squares equals 11⋅35. This means that 99⋅5% of the variation has
to be explained if the three-way matrix is unfolded to matrixA to end up with the same residual sum
of squares. Six PCs are necessary to describe this percentage. For the SBR data, three PCs explained
only 30% of the variation in the process variables.1 To end up with the same residual sum of squares
for matrixA, six PCs are needed. In both the DuPont and SBR data sets the first scores from matrixA
serve mainly to describe the mean trajectories of the variables in time, and the last few components
describe most of the important variation among the batches.

Hence, for purpose of process monitoring, unfolding and mean centering in the manner (matrixA)
offers very little benefit. It focuses on the wrong source of variation in the data, namely the mean
trajectories of the variables over all batches, rather than what is of greatest interest—the variation
among the batches (i.e. about the mean trajectories). Furthermore, in many situations (as those
illustrated here) it gives very little reduction in the dimension of the problem, needing almost as many
latent variables as original variables in order to describe all the structured variation in the trajectories.

Table 3. MPCA results for different ways of unfolding matrixX. The number of components required to explain
the same variation in the process data is much larger when the data are unfolded toA and mean centered than toD

and mean centered

DuPont data
(10 variables)

SBR data
(9 variables)

Total sum of squares (SStot) 25336 1⋅68� 1010

Sum of squaresA centered (SSA) 2201 1⋅03� 108

Sum of squaresD centered (SSD) 26⋅3 2⋅77� 106

% expl. SSD with # PCs 57% with 3 PCs 30% with 3 PCs
% SS neededA with # PCs 99?5% with 6 PCs 98?1% with 6 PCs
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3.2. PARAFAC

Wise15 used PARAFAC to model the three-way batch process data of a semiconductor etching
process for monitoring purposes. As a preprocessing step, the three-way matrix was unfolded to
matrix A, autoscaled to zero mean and unit variance and folded back into the three-way shape. As a
result, the mean of each column in the batch direction of the three-way matrix is not zero. Normally
this is not a problem if one is interested in the trajectory of the variables. In batch process monitoring,
one is not interested in the trajectories of the process variables but in the deviations from their
corresponding mean values. Therefore in that case it is important to remove the mean trajectories of
the process variables before the PARAFAC analysis. Just as was shown for the MPCA case, also a
large number of PARAFAC components are necessary to describe the mean trajectories of the
process variables, if these mean trajectories are not removed.

Table 4 shows the per cent variation explained with a PARAFAC model when the data are
unfolded toA, autoscaled to zero mean and unit variance and folded back for the two data sets. For the
DuPont data the total sum of squares of the data after scaling and centering in this manner (i.e.A) is
35 990. A four-component PARAFAC model on these data explains 98% of this variation (Table 4).
However, by simply removing the mean trajectory of each variable (mean centering using unfolding
D), the sum of squares is only 351, a 99% reduction. Therefore the four-component PARAFAC model
would be missing much of the batch-to-batch variation that it is desired to monitor. As seen in Table
4, similar results were also observed for the SBR data.

Figure 7 shows the trajectories of two process variables of the 36 batches from the DuPont data
when the mean trajectories were not removed from the data. The top figures show the trajectories of
the raw data, and the following figures show the trajectories of the residuals (E1–E4) after the whole
DuPont data set is modeled with one, two, three and four PARAFAC components. Still after four
PARAFAC components the mean at each time point is not equal to zero. This means that the mean
trajectory of the variables is still not completely removed, even if 99% and 98% of the sum of squares
of the two variables have been described respectively. Therefore the main part of the systematic
variation between the batches has not been modeled and will still be in the residuals.

It was also observed that if orthogonal constraints are used in the case of non-zero means in the
batch direction, a large part of the variation in the data could not be described.

3.3. Scaling batch data before using the multiway methods

It has been argued by several authors that autoscaling is not the proper scaling for three-way matrices
because it destroys any trilinear structure of data and incorporates additional three-way components
in some models. It has also been argued that although batch data are not trilinear, using autoscaling

Table 4. Cumulative per cent variation described with PARAFAC model for
data obtained by unfoldingX to matrix A and then centering and autoscaling

columns ofA

Number of components DuPont data SBR data

1 65 56
2 88 83
3 96 96
4 98

% needed to account for
removing average
trajectories

99 98
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will have a bad influence if a PARAFAC model is used to decompose the three-way matrix. It has also
been argued that a proper scaling is variable scaling in which each variable has equal variance. We
believe that the scaling of the available data should be chosen in a way which is most appropriate to
the problem one is trying to solve, and not such that will bias the results towards one method. Once
the problem is correctly formulated, we should then seek the method to solve it.

Nomikos and MacGregor3 report that they tried both forms of scaling in MPCA with no substantial
difference in the results on the DuPont data. The number of components needed for modeling was the
same in both cases, as was the fault detection capability. Also, Nomikos21 states that for the data sets
he used: ‘another way of scaling which gives similar results to what we use in this work is to scale
each variable by its overall (throughout batch duration) standard deviation. The benefit from such
scaling is that periods with more variability will be weighted more and will have a greater influence
on the MPCA model’. He continues by warning: ‘But, if the variability in a particular period is very
large, this will result in the rest of this variable’s history beingignored in the MPCA model’.

Figure 8 shows the raw data and the data after mean centering and different types of scaling. With
autoscaling, all the periods during the variable trajectory are treated equally. If the data are scaled by
variable, then periods of high variability in each variable’s trajectory will be weighted more than the
rest. In other words, periods with a lot of noise in a specific variable (e.g. the start-up of the process in
Figure 8 c, time 0–20) are weighted more than periods with consistent but highly structured
variability. However, in batch process monitoring, it is the deviations in the structured variability that

Figure 7. Raw data of two variables from DuPont data, and their corresponding residual trajectories after one,
two, three or four PARAFAC components have been modeled
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we wish to detect. If the periods that do not vary a lot get a small weight and we emphasize periods
with high uncertainty, then it may not be possible to achieve our objective. Therefore scaling should
always be related to the objectives of the problem. Based on the experience of two of the authors
(T.K. and J.F.M.), autoscaling will be preferable for batch process monitoring if there is no prior
knowledge of the process behaviour and the type of faults that may occur. However, if there is prior

Figure 8. Raw data on trajectories of a variable for 36 batches, and trajectories plotted after mean centering and
applying different scaling on same variable
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knowledge that a specific period during the process is critical, then more weight should be given to
this period, or sampling of the data should become more frequent during this period. The latter
approach is another way to give higher weight to variables for a certain period.

Table 2 shows the results on ‘optimal’ models with both types of scaling. For the DuPont data the
type of scaling had no effect on the number of components and on the fact that MPCA has higherR2

andQ2 than Tucker3 and PARAFAC.

4. THE TIME VARIABLE IN BATCH PROCESS DATA

In many batch processes each batch run has the same duration and the variables follow closely some
predetermined trajectories. However, in other cases the duration of the process varies from batch to
batch. For example, a batch process where an exothermic chemical reaction occurs will vary in
duration between summer and winter, because the cooling water temperature does not allow for as
rapid heat removal in the summer. As a result, one cannot use as much initiator and catalyst and
therefore the reaction takes longer. Another example is where polymerization reactions vary in
duration owing to variation in the amount of impurities in the raw materials. In these situations the
basic shapes of the time trajectories of each variable from batch to batch are similar, but their time
duration varies. In order to analyze such data, it is necessary to account properly for the changing
duration of the batches. This basically involves performing some form of realignment of the batch
data prior to analysis.

Several very successful approaches have been used to align batch data. If a monotonically
increasing or decreasing variable exists that always starts at a given level and ends at another specified
level, then this ‘indicator’ variable may be useful for aligning the batches,3 particularly if it is a good
indicator of the ‘maturity’ or ‘per cent completion’ of each batch. To align the batches, this variable is
simply used in place of time, and all other variables are plotted against it. Kourtiet al.22 analyzed data
from an industrial semi-batch emulsion polymerization reactor where the batch durations varied by
up to 20%. However, by using as an indicator variable the cumulative amount of a key monomer fed
to the reactor over time (always starting at zero and ending with the same total amount), the batches
were almost perfectly aligned. Neogi and Schlags23 used the on-line measurement of a variable
related to total conversion of the monomers to align batches from a polymerization process.

Once the batches are aligned, they can be analysed by any of the three-way methods by replacing
the time direction with the indicator variable direction. For monitoring of new batches, data are
simply collected and analysed at specified intervals of the indicator variable (see e.g. Reference 23).
In this approach to alignment a measure of the ‘maturity’ or ‘per cent completion’ of any batch is
provided by the percentage of its final value that has been attained by the indicator variable at the
current point in time.

If no such indicator variable is available, then alternative approaches have been suggested. If one
can define an end-point for any batch by the achievement of some event that is eventually reached in
all batches, then this point can be used to define a 100% completion or 100% maturity point. For
example, the batches could then be aligned using linear time adjustment by dividing each time point
along the trajectory by the time at the 100% completion point. However, this only results in a linear
compression or expansion of each batch, which is often inadequate for aligning batch trajectories (see
e.g. Reference 24). Many batch runs occur in stages, and often it is only a few of those stages that
proceed more slowly, while other stages may proceed at a normal pace or even more quickly. In this
situation an approach based on ideas from the speech recognition literature, dynamic time warping
(DTW), can be used for the non-linear alignment and synchronization of the batches.24 In DTW each
time point of the batch is shifted backward or forward in time in order to minimize the distance
between the batch and a reference batch. DTW can also be used to predict the per cent completion of
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the batch (J. A. Westerhuiset al., unpublished results). However, applying it in real time is more
difficult than for the indicator variable approach.

Wold et al.14 recently suggested another approach to predicting batch ‘maturity’ and aligning. In

Figure 9. Four temperature profiles of 36 batches of DuPont data set

Figure 10. Predicted vs. real local batch time of a PLS model of four temperatures of 36 batches of DuPont data
set
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this approach the three-way arrayX is unfolded in the variable direction as matrixA in Figure 5. A
PLS model is then developed between the unfolded matrix and the local batch time for each batch.
This model is then used for new batches to predict a batch time, which is then used as an indicator of
‘maturity’ of the batch. This approach assumes that there is sufficient information in the trajectories to
obtain a good prediction of batch time. This requires that there be some linear combination of the
variables in each region of time that is either decreasing or increasing. An illustration of where one
can have problems is shown in Figures 9–11. Suppose one has only the four variables from the
DuPont data that are plotted in Figure 9. The PLS predictions of time for these batches as shown in
Figure 10 are very poor. Note that during periods where all variables in Figure 9 are relatively
constant, the time prediction is also constant and the predicted time can actually decrease as seen at
around 60 min, because the settings of the process variables around this period are very similar to
those at the earlier period around 40 min. An indication that for these data the method is having
difficulties is revealed in the score plots in Figure 11, where extremely non-linear relationships
between the latent variables for the process and time variable spaces are apparent.

In this section we have reviewed several approaches to aligning batch data. The simplest approach,
and the one that has proven most useful to date with industrial data, is to replace time by an indicator
variable. If such a variable does not exist, other approaches can be used, but some caution must be
exercised in applying them.

5. CONCLUDING REMARKS

In this paper, several approaches to batch process data analysis that have appeared in the literature are
discussed. PARAFAC, Tucker3 and MPCA models are compared for their abilities to model two
previously published sets of data from batch polymerization processes.1,3 Based on the results from
these data and on a discussion of the nature of batch data and the suitability of the various methods for
modeling these data, it is argued that MPCA is the preferred three-way modeling approach of batch

Figure 11. Non-linear relation betweent andu scores of PLS model between process variables and local batch
time of four temperatures of DuPont data set
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processes. In both batch data sets, MPCA was able to explain much more of both the fitted data and
the cross-validated predictions and it did so with fewer latent variables in the important batch
direction.

An important step in the preprocessing of batch process data is the unfolding and centering to
remove the mean trajectories of the process variables. By removing the mean trajectories, a large part
of the systematic variation in the data is removed and only the variation between the batches remains.
This specific variation is useful for monitoring new batches because it detects if the systematic
variation of the new batch is consistent with the variation in the good batches used to develop the
model. If the mean trajectories are not removed from the data, many PCA components or PARAFAC
components are necessary to describe the systematic variation between the batches. Proper scaling of
the data is also important in batch process monitoring. Scaling should be chosen such that it improves
the detection of faults.

If batches have unequal duration, it is of interest to align the data and to predict the per cent
completion of the batch. The approach using an indicator variable to replace time is recommended if
such a variable exists. Alternative approaches and potential problems have been discussed.
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