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Abstract

This paper discusses contribution plots for both the D-statistic and the Q-statistic in multivariate statistical process con-
trol of batch processes. Contributions of process variables to the D-statistic are generalized to any type of latent variable
model with or without orthogonality constraints. The calculation of contributions to the Q-statistic is discussed. Control lim-
its for both types of contributions are introduced to show the relative importance of a contribution compared to the contribu-
tions of the corresponding process variables in the batches obtained under normal operating conditions. The contributions are
introduced for off-line monitoring of batch processes, but can easily be extended to on-line monitoring and to continuous
processes, as is shown in this paper. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ž .Multivariate statistical process control MSPC
using projection methods has been proven to be very
useful for monitoring of industrial chemical pro-

w xcesses 1,2 . Applications of MSPC for continuous
processes as well as for batch processes have been

w xvery useful and work very well in practice 1–13 .
The basis of this approach is to build an empirical
model of a set of measurements obtained under nor-

Ž .mal operating conditions NOC . Using this model,
statistical confidence limits are calculated. New mea-
surements are projected onto this model, and the
statistics calculated should be within the confidence

) Corresponding author. Tel.: q31-20-525-5062; fax: q31-20-
525-6638.
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limits for the batch to be in control. The main prob-
lem with this approach is that in the case of a pro-
cess disturbance, no information is obtained about the
cause of the disturbance. This problem was already

w xsignaled by others 3,4,14,15 and one of the solu-
tions to this problem was the use of contribution plots.
A contribution plot shows the contribution of each
process variable to the statistic calculated. A high
contribution of a process variable usually indicates a
problem with this specific variable. The use of con-

wtribution plots seems to work well in practice 3–
x7,15,16 .

In the present paper, the theory of contribution
plots is extended to latent variable models with cor-

Žrelated scores e.g., PARAFAC, multiblock PCA or
.multiblock PLS . Furthermore, control limits for the

contributions are introduced. These control limits
help in finding the process variables that show dif-

0169-7439r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
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ferent behavior compared to batches obtained under
NOC. After a short introduction to the D-statistic and
Q-statistic, which are used in MSPC, the contribu-
tions of each process variable to these statistics to-
gether with their corresponding control limits are
presented. Different problems such as negative con-
tributions to the D-statistic and smearing out of
residuals over time and over different variables are
discussed. A benchmark data set of a simulated
semi-batch emulsion polymerization of styrene buta-

w xdiene 17,18 is used to show the use of the contribu-
tion plots in practice.

2. Theory

The idea of plots of the contribution of each pro-
cess variable to the D-statistic and Q-statistic is in-
troduced for batch processes. At the end of this sec-
tion, the ideas will be generalized to work for contin-
uous processes as well.

2.1. Data

For batch processes, J process variables are mea-
sured for the whole batch duration at K specific time

Ž .intervals. For batch i, this gives a matrix X J=Ki

of process measurements. For the statistical process
control of such a process, I batches obtained under
NOC are necessary to construct a statistical model of
the process data. These I batches are assumed to
capture all the common-cause variation present in the
process. The measurements can be arranged in a

Ž .three-way array X I=J=K . For convenience, in
this paper, the three-way array of batch processes will

Žalways be considered matricized to a matrix X I=
. w xJK where the batch direction is maintained 19 .

Furthermore, X is always considered to be mean cen-
tered across the batch direction.

2.2. D- and Q-statistics

Using a set of I different batches obtained under
NOC, an empirical latent variable model is devel-
oped to describe the data. The general form of this
model equals:

XsTPT qE 1Ž .

Here X contains the process data, TPT is the model
that contains the systematic part of the common-cause
variation within the NOC data, and the residual ma-
trix E contains the nonsystematic part not described

Ž .by the model. T I=R usually describes the differ-
Ž .ence between the batch runs, and P JK=R , which

is the actual model, describes the similarities among
the batch runs. The number of latent variables R is
usually much smaller than I and JK. Several con-
straints for both T and P can be applied. For unfold
principal component analysis, which is often used in
MSPC to model X, T is columnwise orthogonal and
P is columnwise orthonormal, i.e. T T T s D and
PT PsI, where D is a diagonal matrix and I is the
identity matrix. For a PARAFAC model, T is not

Žcolumnwise orthogonal and PsC(B where C K=
. Ž .R and B J = R are components in the time and

process variable direction, respectively, and ( sym-
w xbolizes the Khatri–Rao product 20 .

From the process model, two types of statistics
with known distributions are calculated. These are the
D-statistic for the systematic part of the process vari-
ation and the Q-statistic for the residual part of the
process variation. Using the distributions, confidence
limits for the two statistics can be obtained. For the
monitoring of new batches, the process data of the

Ž .new batch x JK=1 is projected onto the model.new

xT s tT PT qeT 2Ž .new new new

y1T T Tt sx P P PŽ .new new

eT sxT y tT PT
new new new

Ž T .y1In many models, P P equals the identity matrix
and thus tT sxT P.new new

The D- and Q-statistics calculated for the new
batch run should be within the confidence limits for
the batch to be in control. The D-statistic for the new

w xbatch, x , is defined as follows 21 :new

D s tT Sy1 tnew new new

R I 2 y1Ž .
; F R , IyR , a 3Ž . Ž .

I IyRŽ .
where Sy1 equals the inverse of the covariance ma-

y1 ŽŽ T . Ž ..y1trix of T, S s T T r Iy1 . This D-statis-
tic, divided by some constant, follows an F-distribu-
tion with R and IyR degrees of freedom. The Q-



( )J.A. Westerhuis et al.rChemometrics and Intelligent Laboratory Systems 51 2000 95–114 97

statistic for the nonsystematic part of the common
cause variation of a new batch x is defined as fol-new

lows:
JK

2 2Q s e ;g x 4Ž . Ž .Ýnew new , jk Žh.
jks1

where the scaling factor g and the degrees of free-
dom h are called the matching moments of the dis-

w xtribution. Nomikos and MacGregor 1 describe sev-
eral ways to determine the confidence limits for the

Ž .Q-statistic from the residuals E I=JK of the batch
runs obtained under NOC. In the present paper, the

w xJackson and Mudholkar approximation 22 is used.
This approach uses a normal distribution to approxi-
mate the x 2 distribution of the squared residuals.

1yh0
Q su 1yu hlim , a 1 2 0 2ž /u1

1
2 hz 2u h( 0Ž .a 2 0

q 5Ž .
u1

ŽŽ . Ž 2 .. Ž .where h s1y 2u u r 3u , u s tr V , u s0 1 3 2 1 2
Ž 2 . Ž 3.tr V and u s tr V , V is the covariance matrix3

of E, and z is the standardized normal variable witha

Ž .1ya confidence limit, having the same sign as h .0

For both the D- and Q-statistics, 95% or 99%
confidence limits can be obtained. If the statistics of
the new batch fall within these limits, the batch is
considered to be in statistical control. The variation
within this batch is considered as common cause
variation and no special event took place during the
batch.

2.3. Contribution plots

The main goal of MSPC of chemical processes is
to detect variation in the process variables of a new
batch that is different from common-cause variation
in the process. However, the monitoring charts only
detect that there is other variation in the process than
the common-cause variation captured in the NOC
data. This usually means that something is wrong
with the process. The monitoring charts do not give
information on what is wrong with the process, or
which process variables caused the process to be out
of control. By interrogating the underlying process

model, at the point where an event has been de-
tected, contribution plots may reveal the group of
process variables making the highest contribution to

w xthe model or to the residuals 3,4,15,23 .
In MSPC, the systematic variation and the resid-

ual variation are monitored with the D- and Q-statis-
tics, respectively. In case of a process disturbance,
one of these statistics or both will be above the con-
fidence limits. If only the D-statistic is out of con-
trol, the model of the process is still valid, but the
distance between the batch and the center of the
model is too large. In this case, contributions of each
process variable to the D-statistic should be exam-
ined. If the Q-statistic is above the confidence limits,
a new event is found in the data, that is not described
by the process model, presumably because this event
was not present in the NOC data. In that case, the
contributions of each process variable to the Q-statis-
tic should be examined.

2.4. Contribution of the process Õariables to the Q-
statistic

If, for a specific new batch, a disturbance was de-
tected in the Q-chart of the residuals, then the contri-
bution of the variables to the Q-statistic should be
investigated. The contribution cQ of process variablejk

j at time period k to the Q-statistic for this batch
equals:

22Qc s e s x yx 6Ž . Ž .ˆŽ .jk new , jk new , jk new , jk

Ž .where x is the jk th element of x JK=1 ,new, jk new

x is the part of this element predicted by theˆnew, jk

model, and e is the residual. In order to find atnew, jk

which time in the batch and for which variables the
disturbance occurred, all contributions cQ can bejk

plotted and examined. However, this approach may
suffer from embedded error. This will be shown in the
following simple example.

From an industrial batch process, a temperature
Ž .from the heat source jacket T , a temperature of the1

Ž .heat source coil T and the heat source supply pres-2
Ž .sure P , which are highly correlated, were ob-1

tained. Measurements from 45 NOC batches were
collected and after centering and scaling the data, a
two-component unfold PCA model was build on this
data. Fig. 1 shows the two loadings for each of the
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Fig. 1. First two loadings of example data set for temperatures T and T and pressure P .1 2 1

temperatures and pressure that were calculated. Now,
suppose a new batch x is obtained that for the firstnew

half of the batch run is perfectly in control, i.e. it be-
haves in exactly the same way as the mean of the 45
NOC batches. This mean is zero due to the centering
procedure. Halfway through the batch, a sudden jump

Ž . Ž .in temperature T and pressure P is measured,1 1
Ž .while the other sensor T stays on target. This batch2

is shown in Fig. 2. The new batch is projected on the
model and scores, residuals and x can be calcu-ˆnew

lated. Fig. 3 shows x and the residuals e forˆnew new, k

both temperatures and pressure of the new batch. A
clear jump is observed for the residuals of tempera-
tures T and pressure P halfway through the reac-1 1

tion. However, for temperature T and also at the be-2

ginning of the batch for temperature T and pressure1

P , nonzero residuals are observed where the vari-1

ables were still in perfect control, and where the
residuals were expected to be zero. With the projec-
tion of the new data onto the model, all the measure-
ments are compressed into only two score values. For
the calculation of the residuals, the information is ex-

Fig. 2. Trajectories for temperatures T , T and pressure P for simulated new batch.1 2 1
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Fig. 3. Predicted new batch and residuals for T , T and P using off-line approach.1 2 1

tracted from the two score values. Due to this com-
pression and extraction, the information is spread out
over the whole batch. This leads to the nonzero
residuals in the batch, at positions where they were
expected to be zero.

A partial cure to this smearing out of information
is to consider the residuals as if they were obtained
in an on-line mode. This means that at time k in the
batch only the scores and residuals at time k are de-
termined. The same approach as the on-line strategy
for process monitoring presented by Nomikos and

w xMacGregor 1 can be used. This means that with each
new measurement coming in, the remainder of the
batch is filled in using, e.g., the current deviations
approach, then the data is projected on the model and
scores and residuals can be calculated. The current
deviations approach assumes that for each of the pro-
cess variables, the deviation from the mean will stay
the same for the remainder of the batch. This devia-
tion value is then filled in for the remainder of the
matrix with process measurements. Using this ap-
proach, the results of x and the residuals shownˆnew

in Fig. 4 are obtained. Now the residuals at the be-

ginning of the batch are zero as expected. Thus, us-
ing the on-line approach prevents the smearing out of
residuals in the time direction.

Another very important issue of using contribu-
tion plots for residuals is also visible in Figs. 3 and
4. Although, temperature T follows exactly the av-2

erage batch trajectory, the residuals become large at
the end of the batch. However, halfway through the
batch, at time 60, residuals of T and P were al-1 1

ready high. This means that from that point on, the
model is not valid anymore. Therefore, any scores
and residuals later on in the batch cannot be trusted.

Concluding, if the Q-statistic is outside control
limits, residuals should be examined to find the time
and process variables that caused the error. However,
due to embedded error, residuals are smeared out over
time and over the different process variables. The
smearing out of residuals in the time direction can be
solved by calculating residuals as if they were ob-
tained in an on-line mode. The smearing out of resid-
uals over different process variables cannot be solved
in this way. After the first high residuals have been
detected, the model is not valid anymore and the
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Fig. 4. Predicted new batch and residuals for T , T and P using on-line approach.1 2 1

residuals for the remainder of the batch cannot be
trusted. The high residuals found in this way should
be considered, and using engineering knowledge from
the plant, the problem should be addressed. Note that
process variables that are in control can also give high
residuals due to a mismatch of the model.

When the number of process variables is large, it
makes sense to sum the residuals of each process
variable for each time period, in order to detect at
which point during the batch the disturbance took
place.

J J
2Q Qc s c s eŽ .Ý Ýk jk new , jk

js1 js1

J
2

s x yx 7Ž .ˆŽ .Ý new , jk new , jk
js1

Here, e is the residual of the new batch of pro-new, jk

cess variable j at time k, obtained using the on-line

approach described above. It is usually easy to find
the periods at which the disturbances took place. Then
the contribution of all process variables to the
summed residuals can be examined to find those
variables that caused the process disturbance.

If on-line monitoring of the batch process is used,
it is immediately known at which time period the
special event took place in the process. One can di-
rectly zoom in on this period to find the process vari-
ables that are responsible for this special event. Ap-
plications of on-line monitoring of batch processes
with contribution plots of the residuals can be found

w xin Refs. 6,23 . However, the smearing out effect of
residuals is not dealt with in those applications.

After the process variables that caused the distur-
bance of the process have been detected, it is recom-
mendable to show the trajectory of the process vari-
able that caused the disturbance together with its

Žnormal trajectory which is the mean of the trajecto-
ries of all NOC batches for this specific process vari-

.able as a confirmatory practice following a diagno-
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sis of contribution plots. This seems to be an impor-
tant psychological reinforcement to engineers and

w xoperators 3 . It also shows whether the specific pro-
cess variable was higher or lower than usual during
the special event. Furthermore, it can give informa-
tion on the type of disturbance detected, e.g., a slow
drift or a fast level change.

2.4.1. Control limits for contributions to Q-statistic
Plots of the contribution to the Q-statistic are sim-

ilar to standard plots of squared residuals obtained in
an on-line mode, but the contribution plots presented
here also have control limits. These control limits are
used to compare the residuals of the new batch to the
residuals of the NOC data. If in the NOC data a cer-
tain process variable had high residuals, it can also be
expected to have high residuals in the new batch.
However, if a new batch has high residuals for a cer-
tain process variable that had low residuals in the
NOC data, this probably is due to a special event in
the new batch. Thus, instead of considering the abso-
lute size of the residuals, the relative size, compared
to the NOC residuals, should be examined. If the
contributions of a large group of process variables are
studied, it is usually found that several process vari-
ables have high contributions. Using the control lim-
its, it is easier to find those process variables that are
really different, compared to the NOC data. The con-
trol limits are calculated in the same way as the Q-
statistic confidence limit, i.e. using the Jackson and

Ž .Mudholkar approximation as presented in Eq. 5 . For
every combination of process variables or time peri-
ods, the control limits can be calculated according to
this approximation when the corresponding columns
of the NOC residuals E are used. However, for the
contribution plots, the residuals that are obtained in
an on-line mode should be used, as was described
above. Every subset of columns of the on-line E still
follows the x 2 distribution, but the matching mo-
ments g and h will be different.

2.5. Contributions of process Õariables to the D-sta-
tistic

If only the D-statistic is out of control, the model
is still valid, but the scores of the new batch have a
larger Mahalanobis distance to the center of the model
than the batches obtained under NOC. To find the

process variable that caused the scores to be differ-
ent, contributions of each process variable to the
scores can be determined. Conceptually, contribu-
tions are different from loadings. Loadings represent
variability across the entire NOC data set. Contribu-
tions represent the particular process variables that

w xwere unusual for a new given batch 3 . Two differ-
ent approaches for calculating contributions were in-
troduced. The first type of contributions, introduced

w x w xby Miller et al. 3 and by MacGregor et al. 4 is the
contribution of each process variable to a separate
score. The first step in this approach is to find the
specific t score that is above its own confidence lim-
its. The confidence limits for a separate score are de-
fined as follows:

1
a0" t s 1q 8Ž .(Iy1, r ž /Ž . I2

where a t-distribution with Iy1 degrees of freedom
is assumed, and s is the standard deviation of the r thr

score vector. The scores are assumed to be normally
distributed with mean zero. Nomikos and MacGregor
w x1 conclude that the scores are well approximated by
a normal distribution except for the first few time pe-
riods of the batch. The second step of this approach
is to calculate the contribution of each element of the
new batch run x on the r th score for a PCAnew, jk

w xmodel 3 :

ctr sx p 9Ž .jk , r new , jk jk , r

Here, the summed contributions equal the t scorenew, r

of the new batch. If more scores are outside confi-
dence limits, which is often the case, contributions
have to be summed over these scores. This approach
assumes that P of the model is columnwise orthonor-
mal. This is the case in PCA models, but this is not
general for all models. Furthermore, the approaches
assume orthogonal scores. If the scores are not or-
thogonal, it is possible that the D-statistic is above its
confidence limits, but that none of the scores is above
its own confidence limits. This is caused by the fact
that the correlation between the scores is neglected if
univariate control is used on separate scores. Thus, if
the scores are not orthogonal, the approach of contri-
butions to separate scores cannot be used in general.

The second approach of contributions to the D-
w xstatistic was introduced by Nomikos 15 . This ap-
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proach calculates contributions of each process vari-
able to the D-statistic instead of to the separate
scores.

R
D y1c s S t x p 10Ž .Ýjk r r new , r new , jk r , jk

rs1

Here, the contribution of each element x to thenew, jk

D-statistic is calculated. This contribution is summed
over all r components. The summation can be used
in case of orthogonal scores, because then Sy1 is di-
agonal and only the diagonal elements of Sy1 need
to be considered. Furthermore, the loadings P of the
process model are also assumed to be orthogonal,
PT PsI.

Although many statistical data analysis methods
will give orthogonal scores and loadings, this is not
generally the case. Some examples of nonorthogonal
scores can be found in literature. The first example is

w xthe PLS method defined by Martens and Naes 25 ,
which gives the same predictions as standard PLS, but
does not have the restriction of orthogonal scores. The
second example is the use of multiblock PLS where
the block scores are used for monitoring. If the super

Fig. 5. Simple one-component model of two process variables. The
Ždotted lines represent the confidence limits for D-statistic per-

. Ž .pendicular to model and Q-statistic parallel to model . Negative
contributions are encountered only in the gray parts. Measure-
ments A–E, on a line orthogonal to the model are explained in the
text.

Fig. 6. D-statistic for model presented in Fig. 5. The dotted line
represents the model. Measurements A–E, on a line orthogonal to
the model are explained in the text.

w xscore deflation method 26 is used, then the block
w xscores are nonorthogonal. MacGregor et al. 4

showed the use of multiblock PLS for the monitoring
of an LDPE process; however, in that approach, block
score deflation MBPLS was used, which leads to or-
thogonal block scores. Recently, three approaches of
using PARAFAC models for the monitoring of batch

w xprocesses were presented. Dahl et al. 8 compared the
PARAFAC model with an unfold PCA model and

w xBoque and Smilde 7 compared a PARAFAC struc-´
ture to a Tucker3 structure in a multiway covariates

w xregression model. Louwerse and Smilde 27 com-
pare unfold PCA, PARAFAC and Tucker3 structures
to model three-way batch data. PARAFAC loadings
in general are not orthogonal and also cannot be ro-
tated to orthogonality without changing the solution.

w xLouwerse and Smilde 27 also used a corrected way
of calculating the score values of each NOC batch by
projecting this batch on a model developed from all
other NOC batches. This corrected version also leads
to nonorthogonal T and nondiagonal S.

w xAccording to Nomikos 15 , the approach pre-
sented above for the calculation of the contributions
is an approximation and valid only for principal
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component decompositions. The approach presented
in the present paper is a generalization of the work

w xof Nomikos 15 to also work for nonorthogonal
scores and loadings. The D-statistic for a new batch

Ž .x JK=1 is defined as:new

Ty1T y1 T y1 T TD s t S t st S x P P PŽ .new new new new new

JK Ty1T y1 T Ts t S x p P PŽ .Ýnew new , jk jk
jks1

JK Ty1T y1 T Ts t S x p P PŽ .Ý new new , jk jk
jks1

JK
Ds c 11Ž .Ý jk

jks1

Thus, the contribution of element x of the newnew, jk

batch x to the D-statistic equals:new

Ty1D T y1 T Tc s t S x p P P 12Ž . Ž .jk new new , jk jk

T T Ž T )y1 y1Here, t sx P P P and S is the inverse ofnew new

the covariance matrix of the scores T of the NOC

Fig. 7. Contributions of process variable X to D-statistic of model1

presented in Fig. 5. The dotted line represents the model. Mea-
surements A–E, on a line orthogonal to the model are explained in
the text.

Fig. 8. Contributions of process variable X to D-statistic of model2

presented in Fig. 5. The dotted line represents the model. Mea-
surements A–E, on a line orthogonal to the model are explained in
the text.

model. This approach is general and can be used for
any type of model without restrictions to T and P.

Ž .This generalization leads to Eq. 10 for models with
TT TsD and PT PsI.

2.5.1. NegatiÕe contributions
The contribution of process variable x to thenew, jk

Ž .D-statistic, as presented in Eq. 12 , can be positive
or negative, although the sum of all contributions is
non-negative because that equals the D-statistic.

Table 1
Process variables obtained from a simulated batch process of
emulsion polymerization of styrene butadiene rubber

1 Flow rate of styrene
2 Flow rate of butadiene
3 Temperature of the feed
4 Temperature of the reactor
5 Temperature of the cooling water
6 Temperature of the reactor jacket
7 Density of the latex in the reactor
8 Estimate of total conversion
9 Estimate of instantaneous rate of energy release
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Fig. 9. D-statistic chart with 95% and 99% confidence limits. The dots represent the NOC batches and the stars represent the new batches.

Negative contributions were already encountered ear-
w xlier by Kourti and MacGregor 23 . For a better un-

derstanding of negative contributions, the t-score of
Ž .Eq. 12 is expressed as a summation of its separate

multiplications of the data x times the loading p .a a

JK
y1D T T y1c s x p P P SŽ .Ýjk a a

as1

=
Ty1T Tx p P P 13Ž . Ž .jk jk

Ž T .y1If only one latent component is calculated, P P
y1 Ž .and S are just scaling constants and Eq. 13 can

be written, neglecting these constants, as:

JK
Dc s x p p x s x p p xÝjk a a jk jk 1 1 jk jk

as1

qx p p x q . . . qx p p x 14Ž .2 2 jk jk JK JK jk jk

Ž .Eq. 14 shows that the contribution of process vari-
able x to the D-statistic is a summation of the sep-jk

arate multiplications of x p times x p of alljk jk a a

other process variables. Each of these parts can be
positive or negative except for the part where as jk,

Ž .2which equals x p and is non-negative.jk jk

To study the negative contributions, a simple ex-
ample of a one-component model with two process
variables is presented. The loadings of the model are
0.8 and 0.6 for X and X , respectively. Fig. 5 shows1 2

this model represented by the bold diagonal line. The
score value of each combination of X and X ,1 2

equals the projection on the model. The D-statistic is
the square of the score value and the distance per-
pendicular to the model is represented by the Q-sta-
tistic. The D-statistic increases when moving away
from the origin in the direction of the model, and the
Q-statistic increases in the direction orthogonal to the
model. The confidence limits for the D-statistic are
the dotted lines perpendicular to the model and the
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confidence limits for the Q-statistic are the dotted
lines parallel to the model. Inside the dotted box, the
measurements are considered in control. The contri-
bution to the D-statistic in this example for X1

equals:

2Dc s x p qx p x p 15Ž . Ž .x1 1 x1 1 x1 2 x 2

The contribution of process variable X is calculated2

in the same way as the contribution for X . The sum1
Žof these two contributions equals the D-statistic see

.Fig. 6 . Figs. 7 and 8 show the contribution of pro-
cess variable X and X on the D-statistic for each1 2

combination of X and X . The contribution of X1 2 1

is zero for X s0 and for the combination of X and1 1

X on the line that projects onto the origin of the2

model. Between these two lines, c D is negative. Thex1

contribution of X to the D-statistic is zero for X s2 2

0 and for combination of X and X on the line that1 2

projects onto the origin of the model. Between these
two lines, c D is negative. Thus, only in the gray partsx 2

of Fig. 5, negative contributions are observed for ei-
ther one of the variables X or X .1 2

Consider the measurements A–E shown in Fig. 5,
represented by the circles. All these measurements are
on the same line orthogonal to the model, and thus

Ž .project to the same position on the model B . The
D-statistic, which is equal for these measurements
equals 8.42. At the model line in measurement B, the
contribution for X is 5.38 and the contribution for1

X is 3.02. The ratio between the two contributions2

c D and c D on the model line always equals the ratiox1 x 2
Ž .2 Ž .2between the squared loading values, 0.8 r 0.6 s

1.78. If, along the line orthogonal to the model the
value of X is increased towards measurement A,2

then c D increases and c D decreases. In that case, thex 2 x1

high value of X is increasingly important for the2

D-statistic to be high. If, along the same line X is2

decreased towards measurement C, then c D de-x 2

creases and c D increases. In that case, the high valuex1

of the D-statistic is mainly caused by a large X1

value. If X is further decreased along the line, c D
2 x 2

Fig. 10. Q-statistic chart with 95% and 99% confidence limits. The dots represent the NOC batches and the stars represent the new batches.
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will keep decreasing, until it becomes zero for X s02

in measurement D, and even negative for X -0 in2

measurement E. This shows that a negative contribu-
tion is not a special event. It only forces the other
contributions to be even higher.

Negative contributions are obtained when the signs
of two process measurements are different than ex-
pected from the signs of the corresponding loadings.
An object with a negative contribution may some-
times also have a Q-statistic that is outside the confi-
dence limit. In that case, the Q chart will detect the
disturbance. An object such as E, might be caused by
a large value of X , but on the other hand, the value1

of X might also be off. However, in the latter case,2

a value for X which is more expected than the one2

measured, for the corresponding value of X , would1

lead to a D-statistic that is even higher than the one

obtained. Therefore, a high contribution for X in this1

case is a reasonable conclusion.

2.5.2. Control limits of D-contribution plots
Just as in the contribution plots of the Q-statistic,

control limits to the D-statistic help to find the pro-
cess variables that are different in this new batch
compared to the NOC batches. However, in this case,
it is not possible to use the same F-distribution as
used for the D-statistic. The control limits are there-
fore obtained using a jackknife procedure in which
each of the NOC batches is left out once, and contri-
butions are calculated for each of the process vari-
ables of the batches left out.

The mean and variance of all I contributions of
each jth process variable at the k th time period can
be determined and will be used to obtain control lim-

Fig. 11. Total contributions to the D-statistic of batch 51 of all process variables summed for each time period. Control limits represent the
contributions expected from NOC batches. This batch is known to have a disturbance from the start of the process.
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its for contributions of new batches. The upper con-
Ž .trol limit UCL for the contribution for each process

variable is calculated as the mean of the contribu-
tions plus three times the standard deviation of the
contributions for each process variable at each time
period. The lower control limit is not used because
only high contributions force the D-statistic to be out
of control.

These UCL must not be considered to have statis-
tical significance, but are very helpful in detecting
contributions that are higher than contributions of
NOC batches. If the contributions are summed over
all process variables or over all time periods, then the
UCL is obtained by summing the means of the corre-
sponding jackknifed contributions. The standard de-
viation of this summed mean equals the square root

of the summed squared standard deviations of the
corresponding jackknifed contributions

J
2s s s 16Ž .Ýk jk)

js1

2.6. Continuous processes

In continuous processes, J process variables are
measured. For the statistical process control of a con-
tinuous process, a set of I measurements obtained

Ž .under NOC X I=J is used to construct an empiri-
cal process model.

XsTPT qE 17Ž .
Ž .Again X contains the process data, P J=R is the

Ž .model, T I=R describes the differences between

Ž .Fig. 12. Contribution of each process variable to D-statistic of batch 51 summed for time periods 45–60 upper plot and summed for time
Ž .periods 100–200 lower plot .
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Ž .consecutive time points and E I = J contains the
residuals. The number of components R is usually
much smaller than I and J. New measurements

Ž .x J=1 can be projected on this model to see ifnew
Ž Ž ..the process is still in statistical control see Eq. 2 .

Ž . Ž .Then, t R = 1 and e J = 1 are the corre-new new

sponding scores and residuals of the new batch run.
Now the D- and Q-statistics can be calculated to-
gether with their corresponding limits as presented
earlier in this paper.

If, in a continuous process, the D-statistic or the
Q-statistic is above the confidence limit, contribution
plots will directly show which of the J process vari-
ables was the main cause of the disturbance. It is not
necessary to zoom in on a specific period of the pro-
cess. This is comparable to the on-line monitoring
case in a batch process. The contribution to the Q-

statistic in a continuous process for process variable
j is calculated as follows:

22Qc s e s x yx 18Ž . Ž .ˆŽ .j new , j new , j new , j

where e is the residuals of a new measurementnew, j

x and x is the part of x explained byˆnew, j new, j new, j

the process model. In this case, the smearing out of
residuals over different process variables is also pre-
sent. Therefore, the contributions to the Q-statistic
should be interpreted with care.

In continuous processes, and also in on-line moni-
toring of a batch process, it is not necessary to square
the residuals, because they are not summed. If the
residuals are not squared, then they give information
whether a process variable is too low or too high. If
a rising trend is observed in the Q-statistic for con-

Fig. 13. Total contribution to D-statistic of batch 52 of all process variables summed for each time period. Control limits represent the con-
tributions expected from NOC batches. This batch is known to have a disturbance coming in halfway the batch run.
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secutive measurements, it is informative to study the
w xtrend for each process variable. MacGregor et al. 4

examined the difference in contribution between a
measurement that is out of the confidence limits and
the measurement at the start of the trend. Wise and

w xGallagher 28 studied the contribution of the process
variables for each measurement during the trend. Ap-
plications of contribution plots to residuals for con-

wtinuous processes can be found in Refs. 4,5,9,23,
x24,28,29 .

Contributions to the D-statistic for continuous
processes can also be used in the same way as de-
scribed for batch processes.

Ty1D T y1 Tc s t S x p P P 19Ž . Ž .j new new , j j

Control limits for the contributions to both Q- and
D-statistic for continuous processes are calculated in

the same way as presented earlier for batch pro-
cesses.

3. Results

The use of the contribution plots presented in this
paper is illustrated with a benchmark data set of a
simulated semi-batch emulsion polymerization of

w xstyrene butadiene 17 . A semi-batch or fed batch
process is a batch process that is not a closed system,
e.g., a process where during the batch run, monomer
is fed into the autoclave. Still the process has a spec-
ified duration. Meaningful disturbances such as im-
purities in the initial charge of the organic phase and
in the butadiene feed to the reactor were added. Mea-
surements were taken from flow rates, temperatures,

Fig. 14. Contribution of each process variable to D-statistic of batch 52 summed for time periods 110–115. Control limits represent the
contributions expected from NOC batches.
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density, estimates of the conversion and energy re-
lease. A detailed description can be found in litera-

w xture 18 . Table 1 shows the process variables ob-
tained within this data.

Fifty batches were simulated to construct the NOC
data, by introducing typical variations. Three addi-
tional batches were simulated, one with normal con-
ditions and two with product that was out of the
specification range. One of the erroneous batches had
an initial organic impurity contamination in the buta-
diene feed. The other erroneous batch had the same
problem, but the contamination was higher and
started halfway through the batch operation.

The NOC data were arranged in a three-way array
Ž .X I=J=K of Is50 batches, Js9 process vari-

ables and Ks200 time points. To describe the vari-
ation of the process variables around their average
trajectories, each column of X was scaled to mean
zero. Furthermore, each process variable was scaled

to unit sum of squares. This type of scaling is called
w xslab scaling 30,31 .

The NOC data were modeled with a PARAFAC
model. Three components were found to best fit the
data. Although the 50 batches were simulated to come

Ž .from NOC, two batches 12, 16 were fitted rather
badly by the PARAFAC model. These two batches

Žwere removed from the NOC set, and the final X 48
.=9=200 was used to develop the MSPC model.

The PARAFAC model with three components de-
scribes 21% of the total variance in the NOC data.
This amount is small; however, such low percentages
are often seen in modeling batch process data. Two
of the three components of the PARAFAC model are

Ž .rather correlated rsy0.89 . The PARAFAC model
is not the optimal model with respect to described
variance for these data, but it is used here to show that
the generalized contributions can deal with corre-
lated scores. The PARAFAC model is used to de-

Fig. 15. Total contribution to Q-statistic of batch 52 of all process variables summed for each time period using the on-line approach. Con-
trol limits represent the contributions expected from NOC batches.



( )J.A. Westerhuis et al.rChemometrics and Intelligent Laboratory Systems 51 2000 95–114 111

velop an off-line monitoring strategy using the D-
w xand Q-statistic charts as described by Refs. 1,18 .

Fig. 9 shows the D-statistic chart. The NOC batches
Ž .runs 1–50 without run 12 and 16 are all below the
95% confidence limit. These limits were determined
using an F-distribution with R and IyR i.e. 3 and
45 degrees of freedom. Batches 51 and 52, which are
the erroneous batches are clearly detected as out of
control. Batch 53, the extra batch obtained under
normal conditions is clearly below the confidence
limits. The Q-statistic chart in Fig. 10, shows again
that all NOC batches are in control, and only batch
52, with the impurities entering the reactor halfway
the process is above the confidence limit. The erro-
neous batch 51 is thus only detected in the D-statis-
tic chart.

To find out what really happened in the erroneous
batches, contribution plots can point out the specific

process variables that show different behavior from
the batches obtained under NOC. Fig. 11 shows the
contribution of the process variables to the D-statis-
tic for batch 51, the batch with the disturbance from
the start. The contributions of all J process variables
are summed for each time period. The control limits
are calculated using a Jackknife procedure where for
each NOC batch contributions were obtained. The
control limits represent the mean plus three times the
standard deviation of these contributions. In the be-
ginning of the batch, the control limits are high. This
is common in batch processes, where each run needs
some time to stabilize. A lot of violations of the lim-
its can be observed for this batch. After a small vio-
lation in the beginning of the run, the big problem
starts at time 40. Then after the contributions come
below the control limits, they go out for good after
time period 90. It is better to zoom in on a specific

Fig. 16. Total contribution to Q-statistic of batch 52 of all process variables summed for each time period using the off-line approach. Con-
trol limits represent the contributions expected from NOC batches.
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period where the batch started to go out of control.
Fig. 12 shows the contributions when zoomed in on
specific time periods during the run. At the top of this
figure, the contributions of the process variables be-
tween time periods 45 and 60 are shown. This is the
first period that is far above the control limits. Pro-
cess variables 7 and 8 show the largest contributions.
Process variable 9 is also somewhat higher than usual.

ŽAlso for the last part of this specific run period
. Ž .100–200 , process variables 7, density of the latex ,

Ž .and 8 conversion are the ones that have the highest
contributions. This is shown at the bottom of Fig. 12.
The trajectories of these two process variables were
lower than usual. Because variables 3–6 are behav-
ing as usual, the cooling system seems to work prop-
erly. A possible explanation is that an impurity of the
feed caused the decrease in conversion, which is
known to be the case for this specific batch. The dis-
turbance, which started at the beginning of the run, is
not detected earlier, because the beginning of the run

shows a large variation. This can be observed by the
high control limits calculated for the contributions.

Ž .The second erroneous batch batch run 52 , was
outside confidence limits both in the D-statistic and
in the Q-statistic. Fig. 13 shows the contribution to
the D-statistic of the process variables summed for
each time period for this batch. After a small viola-
tion of the control limit in the beginning, the batch is
really out of control after time period 100. It is known
that at this time period, impurities were fed into the
reactor. Zooming in on the period of the large viola-

Ž .tion between time period 110 and 115 , process
Žvariables 5, 6 and 9 have very high contributions see

.Fig. 14 . Fig. 15 shows the contribution of the pro-
cess variables to the Q-statistic for batch 52. These
contributions were obtained from residuals calcu-
lated according to the on-line approach. For a com-
parison, Fig. 16 shows the contributions determined
from residuals obtained in the off-line mode. The
scale and profile of the contributions is similar in both

Fig. 17. Contribution of each process variable to Q-statistic for batch 52 summed for time periods 105–106. Control limits represent the
contributions expected from NOC batches.
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cases, but the on-line approach shows more clearly
the time period where the process went out of con-
trol. Zooming in on the period where the Q-statistic

Žwas first outside the control limits periods 105–106,
.Fig. 17 , besides variables 5 and 6 that were already

detected from the D-statistic contributions, variable
4, the reactor temperature, has a high contribution.
When the trajectories of the process variables with

Ž .high contributions 4, 5, 6 and 9 are examined, the
reactor temperature is somewhat lower than usual for
a small period. Directly after the drop in reactor tem-

Žperature, the temperature in the cooling system vari-
.ables 5, 6 is higher than usual. This implies that the

cooling system is compensating a temperature drop in
the reactor. The instantaneous rate of energy release
Ž .variable 9 is also lower than normal, but no drop in
feed temperature was detected. Hence, something in
the reactor must have caused the temperature to go
down. Again an explanation for this behavior is that
impurities in the feed cause the reaction to slow
down, which was the case in this specific batch.

Summarizing, the contribution plots presented in
this paper are able to point to the specific period in
the batch where the problem occurred. Zooming in on
this period usually signals the process variables that
are different from normal operating behavior. Con-
trol limits are used to show the relative contribution
as compared to the contributions obtained from
batches that were obtained under NOC.

4. Conclusions

In this paper, contributions to D-statistic and Q-
statistic in statistical process monitoring are pre-
sented that can be used for any latent variable com-
ponent or regression model to detect the specific pro-
cess variable at a specific period during the run that
caused the statistic to be out of control. The contribu-
tions to the D-statistic are not limited to models with
orthogonal constraints. Furthermore, the issue of
negative contributions to the D-statistic is discussed.
For the contributions to the Q-statistic, a problem of
smearing out of the residuals over time and over dif-
ferent process variables is addressed. The smearing
out over time can be solved by assuming that the
residuals were obtained in an on-line mode. The
smearing out over different variables cannot be solved

in this way, and therefore the contributions to the
Q-statistic should be interpreted with care. Control
limits are calculated for these contributions to show
the relative contribution as compared to contribu-
tions of batches obtained under normal operating
conditions. These limits help in detecting process
variables that are really different from NOC behav-
ior.
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