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SUMMARY

This paper presents the standardizedQ-statistic for monitoring residuals of latent variable models in multivariate
statistical process control (MSPC). Before the summation of the squared residuals, they are scaled according to
their expected variation obtained from normal operating conditions (NOC) data. Data from a simulated batch
process and from an industrial batch process are used to show that this scaling improves the sensitivity of theQ-
statistic considerably. The standardizedQ-statistic is introduced for the off-line monitoring of batch processes,
but it can also be used for the monitoring of continuous processes as well as for the on-line monitoring of batch
processes. Copyright 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In multivariate statistical process control (MSPC), empirical models are used to describe data
available from chemical processes. These models are developed from process data obtained under
normal operating conditions (NOC). The models divide the process data (X) into a systematic part
(TPT) and a residual part (E) which is not described by the model:

X � TPT � E �1�

The NOC process data only consist of common cause variation, i.e. variation in the process that is not
due to a disturbance. Confidence limits can be developed around the common cause variation for both
the systematic part of the variation and also the residual part. If new data from the same process are
obtained, they should fall within these limits. In the case of a process disturbance the limits will be
violated.

The approach of using empirical latent variable models for the monitoring of chemical processes
was introduced by Krestaet al. [1] for continuous processes and by Nomikos and MacGregor [2] for
batch processes. Several successful applications have been reported in the literature [1–8]. The
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systematic part of the process data, which is described by the process model, is monitored using aD-
statistic chart. TheD-statistic, which is similar to the HotellingT2 statistic, is a Mahalanobis distance
between the new data and the center of the NOC data. Control limits of this statistic were given by
Tracyet al. [9]. For monitoring the size of the residuals, theQ-statistic is used, which is a summation
of the squared residuals of a specific batch. Confidence limits for theQ-statistic were estimated by
Box [10] and Jackson and Mudholkar [11]. A detailed description of control limits for theQ-statistic
can be found in Reference [2]. However, Nomikos [12] concluded that for theQ-statistic, confidence
limits of 99⋅9% should be used in order not to obtain too many false alarms. Therefore Louwerse and
Smilde [13] suggested projecting each of the NOC batches onto a model developed using the
remaining NOC batches. Residuals from such projections better mimic the residuals of new batches
that are projected onto the final model, and confidence limits of 99% are sufficient.

In the original approach of theQ-statistic, all squared residuals are summed without taking into
account the relative size of the residuals with respect to their expected variation. In this paper it will
be shown that the sensitivity of theQ-statistic can be improved considerably by considering the
residuals relative to their expected variation. This is comparable to the use of standardized residuals
for diagnostic purposes [14]. The newQ-statistic is therefore called the standardizedQ-statistic. The
expected variation can be obtained from the residuals of the NOC data. The improvement of theQ-
statistic by scaling the residuals according to their expected variation is introduced for the off-line
monitoring of batch processes. Two different batch data sets will be used to show that theQ-statistic
becomes more sensitive when the residuals are standardized. The standardizedQ-statistic can easily
be extended to work also in the on-line monitoring of batch processes and in the monitoring of
continuous processes. This is described at the end of Section 2.

2. THEORY

In MSPC, empirical models are used to describe data available from chemical processes. In a batch
process,J process variables are measured forK time periods of I different batch runs. The
measurements can be arranged in a three-way arrayX (I � J� K). For convenience, in this paper the
three-way array of batch processes will always be considered matricized to a matrixX (I � JK) where
the batch direction is maintained [15].

Using a set ofI different batches obtained under normal operating conditions (NOC), an empirical
model is developed to describe the data as well as possible. The general form of this model was
already shown in Equation (1), whereX contains the process data,TPT is the model that contains the
systematic part of the common variation within the NOC data, and the residualsE contain the part not
described by the model.T (I � R) describes the differences between the batch runs, andP (JK� R),
describes the similarities among the batch runs. Any structure may be applied toP, e.g. a PARAFAC,
Tucker3 or Tucker1 structure. The number of componentsR is usually much smaller thanI andJK.

From the process model, two types of statistics with known distributions are calculated. These are
theD-statistic for the systematic part of the process variation and theQ-statistic for the residual part
of the process variation. These statistics are used for statistical process control, to monitor whether
new batches are still in statistical control. Using the distributions, confidence limits for the two
statistics can be obtained. For monitoring new batches, the process data of the new batch,xnew

(JK� 1), are projected onto the model:

xT
new� tT

newPT � eT
new; tT

new� xT
newP�PTP�ÿ1; eT

new� xT
newÿ tT

newPT �2�

The new scorestnew(R�1) and the new residualsenew(JK�1) are used to calculate a newD-statistic
value and a newQ-statistic value respectively for monitoring the new batch.
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Both theD-statistic and theQ-statistic have a different distribution for the batches in the training
set than for the batches in the test set. The process model is developed to optimally fit the batches in
the training set, where the batches in the test set are projected onto this model. Therefore theD-
statistic andQ-statistic are usually larger for batches in the test set than for batches in the training set.

In order to correct for this difference, Tracyet al. [9] used different distributions for the confidence
limits of theD-statistic. For the batches in the training set a�-distribution was used for the confidence
limits of theD-statistic, which are lower than the confidence limits of theF-distribution that is used
for the test set. TheD-statisticD = (t 7 t)TS71(t 7 t) follows anF-distribution if the scorest are
independent of the mean scorest and the covariance matrixS of the scores. This is true for batches
from the test set but not for batches of the training set. Therefore a�-distribution is used for the
confidence limits of theD-statistic of the batches in the training set.

For the Q-statistic the difference between training set and test set is not taken into account.
Nomikos and MacGregor [2] used the same�2 distribution for the confidence limits of theQ-statistic
of batches from the training set and also of batches from the test set. However, the confidence limits
for theQ-statistic obtained using the training set do not represent theQ-statistic of batches in the test
set. Industrial experiences show that a significance level of 99⋅9% should be used in order not to have
too many false alarms [12]. Instead of using different distributions for theQ-statistic of the NOC
batches in the training set and theQ-statistic of new batches in the test set, a different approach can be
used.

In order to better mimic theQ-statistic of new batches, Louwerse and Smilde [13] suggest
projecting each NOC batch in the training set onto a model developed from the remainingI 7 1 NOC
batches in the training set. The projectedQ-statistics are usually larger than the originalQ-statistics
that are obtained from batches that are also used in the model. Therefore, when using the projection
approach, confidence limits of 99% are sufficient. There is however a small difference between the
NOC residuals and new residuals. The NOC batches are projected on a model developed fromI 7 1
NOC batches, whereas new batches are projected on a model developed fromI NOC batches. This
difference can be ignored ifI is large. The projection approach to determineQ-statistics from NOC
batches and confidence limits for theQ-statistic will be called the ordinaryQ-statistic and will be
considered the common approach for the remainder of this paper. The ordinaryQ-statistic will be
compared to the standardizedQ-statistic.

2.1. Q-statistic

TheQ-statistic is used to compare residuals of new batches to a control limit defined using a set of
residuals obtained from batches that were run under normal operating conditions. Ifenewis a vector of
residuals of a new batch run, these residuals are usually well described by a multinormal distribution
with mean zero and covariance matrixS, enew� N(0,S). The quadratic form of these residuals is well
approximated by a weighted�2 distributiong�2

h, where the weightg and the degrees of freedomh are
both functions of the eigenvalues ofS [10]. Sometimesg andh are called the matching moments of
the distribution. TheQ-statistic for the residuals of a new batchenew is thus defined as

Qnew�
XJK

jk�1

�enew;jk�2 � g�2
h �3�

Nomikos and MacGregor [2] describe several ways to determine the confidence limits for theQ-
statistic from the residualsE (I � JK) of the batch runs obtained under NOC. In the present paper the
Jackson and Mudholkar [11] approximation is used. This approach uses a normal distribution to
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approximate the�2 distribution of the squared residuals:

Qlim;� � �1 1ÿ �2h0
1ÿ h0

�2
1

� �
� z�

�����������
2�2h2

0

p
�1

" #1=h0

�4�

where h0 � 1 ÿ 2�1�3=3�2
2; �1 � tr�V�; �2 � tr�V2� and �3 = tr(V3). V is the covariance

matrix ofE, and z� is the standard normal variable with 17 � confidence limit, having the same sign
ash0.

2.2. Scaled residuals

In the ordinaryQ-statistic as defined in Equation (3), each residualenew,jk is given equal weight, i.e. in
the summation of all squared residuals, leading to theQ-statistic, the expected value of (enew,jk)

2 is
assumed equal,E�e2

new;jk� � �2 for all pairs of j, k. However, in many cases this will not be true.
Figure 1 shows control limits based on the standard deviation of the residuals of the process data.
These data are obtained from a simulated semi-batch emulsion copolymerization of styrene and
butadiene. These batch process data will be described further in Section 3. The residuals are from 48

Figure 1. Control limits for residuals of simulated batch data. Dotted curves represent 2⋅57 times standard
deviation of residuals of each separate process variable at each time period. Solid lines represent 2⋅57 times
standard deviation of all residuals. Asterisks represent simulated residuals of size 0⋅02 at times 30 and 140 for

each process variable.
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batch runs obtained under normal operating conditions. The residuals of four process variables (4, 5, 7
and 8) of the simulated semi-batch process are shown after a three-component PARAFAC model was
fitted to the process data. These four process variables, which describe the temperature of the reactor
and the cooling system as well as the density of the latex and the conversion rate, are presented
because they are the ones in which the disturbances of erroneous batches are detected (see Section
3⋅1). The dotted curves represent control limits based on 2⋅57 times the standard deviation of the
residuals of each separate process variable at each time period, which corresponds to a confidence
value of 99%. This shows that the standard deviation of the residuals is not the same for each process
variable or for each time period. The solid lines represent control limits based on 2⋅57 times the
pooled standard deviation of all residuals of the NOC process data. These limits are implicitly used by
the ordinaryQ-statistic by summing all residuals without taking into account their expected variation.
According to the dotted curves, variables 7 and 8 have much smaller residuals than variables 4 and 5.
Furthermore, in variable 8 the residuals decrease during the batch run. The difference in the size of the
residuals is caused by the fact that some of the process variables are described better by the process
model, and thus have smaller residuals, than other process variables. This also holds for different
periods during the batch run.

The difference in size of residuals can also be caused by different scaling procedures. After
autoscaling, each column of theX matrix has equal sum of squares, whereas scaling each process
variable to equal sum of squares, as is done in variable slab scaling, leads to unequal sum of squares
for each column inX. In the last case the residuals of each column are also expected to have unequal
sum of squares.

In every subplot of Figure 1 a residual of size 0⋅02 at times 30 and 140 is represented by an asterisk.
All these eight residuals are considered equally important in the ordinaryQ-statistic, i.e. they all have
the same contribution of (0⋅02)2. However, such residuals of 0⋅02 are well expected in variables 4 and
5 but not in variable 7 and at the end of variable 8. Residuals of 0⋅02 in variable 7 and at the end of
variable 8 should give a high contribution to theQ-statistic because they are rare, whereas the same
residuals in variables 4 and 5 should give a moderate contribution to theQ-statistic. By summing the
squared residuals, as is done in the ordinaryQ-statistic, the information on a residual being rare or
common for a specific variable at a specific time period is lost. In order to keep this information, the
residual of a new batch should be compared to theI NOC residuals from the same process variable at
the same time period. This correct comparison can easily be performed by scaling the residuals by the
spread expected for a specific process variable at a specific time period:

eeijk � eijk

sjk
�5�

Here the residuals of the NOC batches are divided by the standard deviation of the residuals of theI
batches (sjk) for each process variablej at time periodk. The scaled residualsẽi are well approximated
by a multinormal distribution with mean zero and covariance matrixeS;eei � N�0; eS�. Therefore, to
estimate confidence limits for the standardizedQ-statistic, the approximation of Jackson and
Mudholkar [11] can be used for the scaled residualsẼ.

When a new batchxnew (JK�1) is monitored, first the residualsenew (JK�1) are calculated as
described in Equation (2). Then these residuals are scaled using the standard deviation of the NOC
residuals (sjk):

eenew;jk � enew;jk

sjk
�6�
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By using this scaling for new residuals, each scaled residual is compared to its expected spread
according to the NOC residuals. In cases where the residuals of the NOC data show higher variation
than average, the residuals of new batches should also be allowed to have high residuals. However,
for periods with small residuals of the NOC data the residuals of the new batch must also have small
residuals to be considered ‘in control’. The standardizedQ-statistic for the scaled new residuals is

Qnew�
XJK

jk�1

�eenew;jk�2 � eg�2eh �7�

whereg̃ and h̃ are the corresponding moments of the�2 distribution of the scaled residuals.
Figure 2 shows the effect of the scaling of the residuals. Again the same four process variables are

shown. The dotted lines represent the same control limits as the dotted curves in Figure 1. Because of
the scaling, the spread of the residuals is the same for all process variables at every time period, and
thus the control limits have become straight lines. The asterisks added, which represented residuals of
0⋅02 at times 30 and 140, are also scaled. Now the residuals indicated with the asterisks have different
contributions in the standardizedQ-statistic. The residual in variable 8 at time 140 now has a high
contribution to the standardizedQ-statistic, whereas before the scaling its contribution was the same
as the other residuals represented by the asterisks.

Figure 2. Control limits for scaled residuals of simulated batch data. Dotted lines represent 2⋅57 times standard
deviation of residuals of each separate process variable at each time period, which equals the standard deviation

of all scaled residuals. Dotted lines represent the same control limits as the dotted curves in Figure 1.
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The idea of the standardizedQ-statistic can be extended by scaling the residuals by the covariance
structure of the residuals instead of scaling them by the variance as is done in the present paper. This
may lead to an even more improved sensitivity of theQ-statistic.

2.3. On-line monitoring of batch processes and continuous processes

In this paper theQ-statistic of scaled residuals is introduced for the off-line monitoring of residuals of
batch process data. However, this can easily be extended to the on-line monitoring of batch processes
and to the monitoring of continuous processes.

For both the on-line monitoring of batch processes and the monitoring of continuous processes,
data of a new measurementxT

new (1� J) are compared to their expected variation obtained from NOC
dataX (I � J). The residuals of the new measurementeT

new (1� J) will be compared to their expected
variation obtained from the NOC residualsE (I � J). Because usually the process variables will not
be explained equally well, the standard deviation of theI NOC residuals will be different for each of
theJ process variables. By scaling these residuals with the standard deviation of theI measurements
of the corresponding process variables, the contribution of each residual to theQ-statistic (or in on-
line monitoring often called SPE) will be corrected for the expected size of the residuals for that
specific process variable. For on-line monitoring of batch processes, only the measurements of a
specific time periodtk are considered. This means that the NOC setXt (I � J) changes for each
different time period. However, the same ideas can be applied for each new set ofXt andxT

new.

3. RESULTS

3.1. Simulated batch process data

To show the effect of scaling the residuals with the corresponding standard deviation from the
residuals of the NOC data, a benchmark data set of a simulated semi-batch emulsion polymerization
of styrene and butadiene will be used [16]. Meaningful disturbances such as impurities in the initial
charge of the organic phase and in the butadiene feed to the reactor were added. Measurements were
taken from flow rates, temperatures, density, estimates of the conversion and energy release. A
detailed description can be found in the literature [3]. Fifty batches were simulated to construct the
NOC data, by introducing typical variations. Three additional batches were simulated, one with
normal conditions and two with product that was out of the specification range. One of the erroneous
batches had an initial organic impurity contamination in the butadiene feed. The other erroneous
batch had the same problem, but the contamination was higher and started halfway through the batch
operation.

The NOC data were arranged in a three-way arrayX (I � J� K) of I = 50 batches,J = 9 process
variables andK = 200 times points. To describe the variation of the process variables around their
average trajectories, each column ofX was centered to mean zero. Furthermore, each process variable
was scaled to unit sum of squares. This type of scaling is called slab scaling [17, R Bro, A K Smilde,
submitted manuscript].

The NOC data were modeled with a PARAFAC model [18,19]. Three components were found to
best fit the data. Although the 50 batches were simulated to come from normal operating conditions,
two batches were fitted rather badly by the PARAFAC model and were both outside the 99% control
limit of the D-statistic. These two batches were removed from the NOC set, and the finalX
(48� 9� 200) was used to develop the MSPC model. The PARAFAC model with three components
describes 21% of the total variance in the NOC data. This amount is small; however, such low
percentages are often seen in the modeling of batch process data. To determine the effect of scaling on
theQ-statistic, residuals of process variables 4, 5, 7 and 8 were studied in detail. These four process
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Figure 3. (a) OrdinaryQ-statistic chart and (b) standardizedQ-statistic chart with 95% and 99% control limits of
the simulated SBR batch data. Points represent the NOC batches and asterisks represent the new batches.
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variables describe the temperature of the reactor and the cooling system as well as the density of the
latex and the conversion rate of the polymerization. The disturbances of the two erroneous batches are
detected mainly in these four process variables.

Figure 3 shows theQ-statistic charts for this specific data set. Figure 3(a) shows the ordinaryQ-
statistic calculated using the standard residuals, and Figure 3(b) shows the standardizedQ-statistic
chart using the scaled residuals. TheQ-statistic is calculated using the residuals of all process
variables available. The first 48 batches (1–50 without 12 and 16) are the NOC batches obtained
without any disturbance. Batches 51–53 are the new batches, of which 51 and 52 have a disturbance
of impurities entering the reactor. In both cases all NOC batches and batch 53 are within the 95%
confidence limit, which shows that these batches are all in control, except for batch 45 which is just
above the 95% limit in the standardizedQ-statistic chart. In Figure 3(a), batch 52 is above the limits
and batch 51 is well below the 95% confidence limit. In Figure 3(b), batch 52 is out further than in
Figure 3(a), while batch 51 is now above the 95% confidence limit.

Figures 4 and 5 show the effect of scaling the residuals of batch 51 with the standard deviation
known from the NOC data. Figure 4 shows the ordinary residuals of process variables 4, 5, 7 and 8 of
this batch where impurities entered the reactor from the start of the process. Just as in Figure 1, the
dotted curves are the limits of 2⋅57 times the standard deviation of theI residuals of each separate
process variable at each separate time period. The solid lines represent the limits of 2⋅57 times the

Figure 4. Residuals of batch 51 (solid curves). Solid lines represent control limits based on 2⋅57 times the
standard deviation of all residuals of the four process variables of all time periods of the NOC batches. Dotted
curves represent control limits based on 2⋅57 times the standard deviation of residuals of each specific process

variable for each specific time period of the NOC batches.
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pooled standard deviation of allI � JK residuals of the process data. These lines are the limits
considered when the residuals are summed as in the ordinaryQ-statistic. Figure 5 shows the residuals
scaled by the standard deviation of the residuals of the corresponding process variable and time
period. This means that after scaling, all residuals of each process variable and time period are
assumed to have variance equal to one. Thus the residuals are scaled according to their expected
variation. The dotted lines are the new confidence limits, which are the same limits as the dotted
curves in Figure 4.

It is clearly seen that the scaled residuals are more sensitive to deviations from normal operating
behavior than the ordinary residuals. Before scaling, small residuals have a small contribution to the
ordinaryQ-statistic, even if these residuals are larger than expected. After scaling, these residuals will
have a high contribution to the standardizedQ-statistic because they are larger than expected. This
can be seen for process variable 7 at times 20 and 105 and for process variable 8 at time 190. If
residuals are high, then before scaling, they have a large contribution in the ordinaryQ-statistic, even
if such a high residual was expected according to the NOC residuals. After scaling, such a residual has
a lower contribution to the standardizedQ-statistic, because such a residual is not rare for that process
variable at that specific time during the batch run. This can be seen for process variable 8 at times
7–10.

This shows that standardizing the residuals of batch 51 allows them to be compared to the expected
variation at each specific process variable and time period. Some periods therefore gave higher

Figure 5. Residuals of batch 51 scaled by the standard deviation of the corresponding process variable and time
period of the NOC batches (solid curves). Dotted lines represent the same control limits as the dotted curves in

Figure 4.
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Figure 6. (a) OrdinaryQ-statistic chart and (b) standardizedQ-statistic chart with 95% and 99% control limits of
the industrial polymerization batch process data.
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contributions to theQ-statistic because residuals were higher than expected even if the absolute value
of the residuals was not high. This forced theQ-statistic of batch 51 to go outside the 95% confidence
limit, and thus this batch becomes suspicious and should be examined in more detail.

3.2. Industrial batch process data

The second batch process data set was provided by DuPont and was described previously in the
literature [2,20,21]. Fifty batches were obtained from a polymerization process, and eight process
variables were obtained over 116 time intervals. A Tucker3 model with three components in the batch
mode, two components in the variable mode and three components in the time mode was used to
model the three-way array. Three batches were found to be outside the control limits and were
removed from the NOC data. The remaining 47 batches were modeled using a Tucker3 model with
the same number of components as used above.

Figures 6(a) and 6(b) show respectively the ordinaryQ-statistic and the standardizedQ-statistic for
the 47 NOC batches (batches 1–50 without 12, 46 and 47). The main difference between the twoQ-
statistic plots is that after standardizing the residuals, batch 30 has come below the 99% confidence
limit and batches 37 and 48 have gone above the 95% confidence limit.

Figure 7. (Top plots) Residuals of batch 30 of the industrial application (solid curves). Solid lines represent
control limits based on 2⋅57 times the standard deviation of all residuals of the four process variables of all time
periods of the NOC batches. Dotted curves represent control limits based on 2⋅57 times the standard deviation of
residuals of each specific process variable for each specific time period of the NOC batches. (Bottom plots)
Standardized residuals of batch 30 (full curves). Dotted lines represent the same control limits as the dotted

curves in the top plots.
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Batch 30 might be considered an erroneous batch because it is just outside the 99% confidence limit
in the ordinaryQ-statistic plot. However, after standardizing the residuals, it is only just outside the
95% confidence limit. Figure 7 shows the residuals of batch 30 for process variables 1 and 2. In the
top plots of Figure 7 the solid lines represent control limits based on 2⋅57 times the pooled standard
deviation of all residuals of the NOC process data. These limits are implicitly used by the ordinaryQ-
statistic by summing all residuals without taking into account their expected variation. The dotted
curves represent control limits based on 2⋅57 times the standard deviation of each separate process
variable at each time period. This shows that the standard deviation of the residuals is not the same for
each process variable and for each time period. The residuals of batch 30 are represented by the solid
curves. It is clear that in the first few time periods, batch 30 is far outside the solid-line confidence
limits. This is the main reason that the ordinaryQ-statistic of batch 30 is outside the 99% confidence
limit. In the bottom plots the residuals are standardized and the dotted-line control limits are the same
as the dotted-curve confidence limits of the top plots. Batch 30 is still outside the confidence limits at
the beginning of the run, but not as far as without the standardization. In other words, the high
residuals at the beginning of batch 30 for process variables 1 and 2 are not that abnormal, because
high residuals are expected in this region. Therefore batch 30 is not as deviating as is indicated by the
ordinaryQ-statistic.

Figure 8. (Top plots) Residuals of batch 37 of the industrial application (solid curves). Solid lines represent
control limits based on 2⋅57 times the standard deviation of all residuals of the four process variables of all time
periods of the NOC batches. Dotted curves represent control limits based on 2⋅57 times the standard deviation of
residuals of each specific process variable for each specific time period of the NOC batches. (Bottom plots)
Standardized residuals of batch 37 (full curves). Dotted lines represent the same control limits as the dotted

curves in the top plots.
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Batch 37 went outside the 95% confidence because of the standardization; however, it is still not
considered an erroneous batch. Figure 8 shows the residuals of this batch for process variables 5 and
6. Just as in Figure 7, here the ordinary residuals are presented in the top plots and the standardized
residuals are presented in the bottom plots of Figure 8. At 20 min and also around 50 min the
standardized residuals are outside the confidence limits, as can be seen in the bottom plots. Although
the ordinary residuals are rather small and fall well inside the ordinary confidence limits, as can be
seen in the top plots, they are higher than expected for that specific region.

Concluding, standardizing residuals by scaling them by their corresponding standard deviation
improves the sensitivity of theQ-statistic. This may force some batches to go outside confidence
limits, but it can also force batches to go inside confidence limits. Batches that seem erroneous
because of the ordinaryQ-statistic may be good after all.

4. CONCLUSION

In this paper the sensitivity of theQ-statistic is improved by scaling the residuals of new batches by
their expected variation. This expected variation is determined as the standard deviation of a set of
residuals obtained from process data obtained under normal operating conditions. By this scaling, the
relative contribution of a residual to theQ-statistic, as compared to the spread of residuals of the NOC
data, is considered instead of its ordinary contribution. The use of scaled residuals instead of ordinary
residuals improves the power of theQ-statistic considerably, as shown using a simulated batch
process and an industrial polymerization batch process. The newly definedQ-statistic is called the
standardizedQ-statistic.
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