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Abstract

The aim of this study was to investigate the ability of a control sample, of known content and identity, to diagnose

and correct errors in the predictions when the same multivariate calibration model was used for analysis of new samples

over time. A calibration set consisting of 16 samples with a known content of lidocaine was analysed and two external

test sets, A and B, were used for the validation. Test set A contained 15 samples with different concentrations of

lidocaine and test set B contained three samples with different lidocaine content, which were analysed six times in order

to obtain a measure of repeatability. The multivariate calibration was done with PLS regression on UV spectra

collected between 245 and 290 nm. A representative UV spectrum was exported from the collected DAD files by two

methods, average spectrum over the whole file and average spectrum over the sample plug. Test set A was analysed

further on another three occasions together with a control sample. The results showed that the control sample could be

used to give a diagnosis and estimate of the prediction error. Moreover, the measured prediction error of the control

sample could also be used to correct the predictions, thereby reducing the prediction error. Finally, some practical

considerations regarding use of the proposed DAD method with a control sample are presented. The procedure

suggested could lead to an efficient analytical approach where the same calibration model could be used over time

without recalibration, which may be attractive in industrial quality control or screening analysis in pharmaceutical

research.
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1. Introduction

The determination of pharmaceutical substances

in solution can be done with various analytical

methods. In the pharmaceutical industry high-
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performance liquid chromatography (HPLC) with
external standards is often employed for this

analysis. In fact, even though HPLC is a separa-

tion technique, it is often used for the analysis of

samples that do not need any separation, i.e.

solutions containing only one dissolved substance.

For pharmaceutical solutions of this type, spectro-

metric analysis with multivariate calibration is an

alternative to HPLC.
When a multivariate calibration model is con-

structed on one occasion and used for the predic-

tion of new samples on later occasions, there is

always some influence from small variations in the

instrumental parameters, which can lead to errors

in the predictions obtained. If samples are mea-

sured on a different instrument or under different

conditions than the calibration samples, this also
affects the reliability of the predictions. For the

latter problem, various chemometric methods for

calibration transfer between instruments have been

presented [1]. These methods include procedures to

be used before the calibration model is implemen-

ted such as instrument matching [2], global models

including all expected sources of variance, model-

updating techniques by adding new samples and
sensor selection using variables less sensitive to

variations in the experimental conditions [3].

When a calibration model is in use, different

methods to compensate for non-calibrated varia-

tions have also been described. Here instrument

standardisation is common where a new set of

samples is analysed on the different instruments

and the results obtained are used to standardise
the predicted values [4], the regression coefficients

or the spectral responses [5].

A possible way to obtain diagnostic information

about the reliability of the predictions is to use a

sample of known content and identity, a control

sample, and to analyse it together with the other

samples. By comparing the accepted reference

value of the control sample with the predicted
value it should be possible to obtain diagnostic

information about how reliable the predictions

are. This analytical procedure could be a simple

and straightforward approach, although the use of

control samples together with multivariate calibra-

tion is not common in the literature. Another way

to detect poor predictions and outliers in multi-

variate calibration is to analyse how well the new
samples fit into the calibration model, i.e. to use

the residuals. Using multivariate residuals as well

as a control sample could be a way of implement-

ing multivariate spectrometric determinations of

pharmaceutical solutions with the same calibration

model over time. The use of residuals was dis-

cussed in a previous paper, in which the idea of

control samples was also briefly introduced [6].
Another approach to the problem of calibration

transfer is to try to minimise it by simplifying the

analytical process as much as possible. With the

aid of automation, the spectrometric analysis of

pharmaceutical solutions containing only a few

ingredients can be simplified. Previously, a method

for the determination of lidocaine with scanning

UV�/Vis spectroscopy and multivariate calibration
was presented [6]. This method was further devel-

oped with non-column chromatographic diode

array UV spectroscopy using a conventional

HPLC�/DAD system without separation, giving

a fast analytical method with a high degree of

automation [7]. In the following text the non-

column diode array UV spectroscopy is referred to

as the DAD method.
The aims of the following study were to

investigate the ability of a control sample to

diagnose errors in the predictions when a calibra-

tion model is used over time and to investigate

whether the predictions of the samples can be

corrected with the help of the known prediction

error of a control sample. A further aim was to

outline the practical procedure for the use of
control samples together with the DAD method.

In this study plain lidocaine solutions were used

as a simple and well-known [6,7] model solution

on which to test the idea of control samples.

2. Experimental

2.1. Instrumentation

The HPLC was a Dionex Summit with the

chromatographic data system Chromeleon version

6.11. A Dionex PDA 100 Diode Array Detector

with a wavelength range of 190�/800 nm was used

with the bandwidth 1 nm. The autosampler in the
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system was a Dionex ASI 100T and the pump a

binary high-pressure gradient pump, Dionex

P580HPG.

When non-column chromatographic diode ar-

ray detection was used, a back-pressure tube

(PEEK, id 0.1 mm, length 6 m) was connected

between the autosampler and the detector to

obtain a pressure for the pump to work against

and purified water (Waters Milli-Q) was used as

eluent.

The UV spectra were collected in the same

wavelength interval as in previous investigations,

245�/290 nm [6,7]. The structure and UV spectrum

of lidocaine are described in Fig. 1. The multi-

variate calibration with partial least squares re-

gression (PLS) [8,9] was done using the software

Simca-P 8.1 (Umetrics).

The instrumental setting was taken from an

experimental design study carried out in a previous

investigation, with flow 1.5 ml min�1, data-

collection rate 10 Hz, rise time 1 s, data-sampling

time 0.5 min and spectral resolution 1 nm [7]. The

rise time is defined in Chromeleon as the time

taken for the output signal to rise from 10 to 90%

of its final value [10].

The preparation of the calibration and test set

samples was done by weighing lidocaine into stock

solutions with a calibrated balance, Sartorius

MC5, and then further diluting these solutions

with an automatic diluter, Hamilton Microlab

1000, to the desired concentrations.

2.2. Reagents

Analytical grade chemicals were used through-

out the study. The water used was HPLC grade

water provided by a Millipore Milli-Q filtration/

purification system.

AstraZeneca Bulk Production Södertälje sup-

plied lidocaine hydrochloride. The lidocaine solu-

tions used in the study were made by weighing and
dissolving the substance in Milli-Q water and

further dilution to the concentration range 0.15�/

0.3 mg ml�1.

2.3. Data sampling

The shape of the data sampled with a DAD has

one main difference compared to scanning UV�/

Vis spectroscopy. While the scanning spectrophot-
ometer measures the absorbance as a function of

wavelength, the DAD has one further dimension,

time. Hence the data resulting from a DAD

analysis can be viewed as a number of UV�/Vis

spectra collected over a time interval, the sampling

time. The rate at which spectra are collected is

controlled by the data-collection rate. In this study

a data-collection rate of 10 Hz and a sampling time
of 30 s gave about 300 spectra in each collected

DAD file. The wavelength region chosen, 245�/290

nm, gave, with a resolution of 1 nm, 46 variables.

If multivariate calibration with ordinary PLS is to

take place on DAD data from a number of

samples, it is essential to transform the data of

each sample into a two-dimensional matrix. This

can be done by unfolding, where an A�/B�/C
array is unfolded, for instance, to an A�/BC

matrix [11]. Another approach is to reduce the

data to a two-dimensional matrix. This means

finding a way to export a representative UV�/Vis

spectrum from the collected DAD file (Fig. 2). One

way of doing this is to export the spectrum at the

maximum intensity time (SMIT) (Fig. 2a), while

another is to calculate an average spectrum. By
calculating the average of all the spectra collected,

an average spectrum for the whole DAD file can

be obtained (Fig. 2c). Exporting the spectrum at

SMIT and calculating an average spectrum of the

whole DAD file was investigated in a previous

study, which gave roughly equal prediction results
Fig. 1. UV spectra (245�/290 nm) and structural formula of

lidocaine (0.15 mg ml�1) in Milli-Q water.
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[7]. A third approach is to calculate the average

spectrum for the part of the DAD file that

contains the spectra of the sample of interest, i.e.

in a solution containing only one substance the

average spectrum over the sample plug (Fig. 2b).

Calculating the average spectrum only over the

sample plug, when the sample is actually in the

sample cell, could be one way of reducing the

influence of noise coming from parts of the DAD

file that do not contain spectra of the sample of

interest. In this study, the average spectrum for the

whole collected DAD file as well as for the sample

plug was used.

With a flow rate of 1.5 ml min�1, the lidocaine

sample plug was about 0.15 min wide and the time

interval for the calculation of the average over the

sample plug chosen was 0.13�/0.3 min (Fig. 2).

This interval was chosen since some minor varia-

tion of the SMIT was observed (9/1 s). Hence a

somewhat too wide time interval was applied to

take account of this small variation. With the data-

collection rate used, this gives about 100 spectra in

this time interval.

A representative UV spectrum of each collected

DAD file was exported with the two different file-

export methods with the help of macros written in

MS Excel.

After the analysis of the samples with the

different methods, the spectra were exported to

the software Simca-P 8.1, in which PLS calibration

models and predictions were made. All the data

were mean-centred before modelling and all the

Fig. 2. Schematic image of the three approaches to export a representative UV spectrum from a collected DAD file. The 3D image is

taken from Chromeleon version 6.11. (a) UV spectrum at spectrum maximum intensity time (SMIT), (b) average UV spectrum over

sample peak, (c) average UV spectum over whole DAD file.
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PLS models used in the study contained one PLS
component that explained �/99% of the variation

in the data.

2.4. Calibration set and control sample

A calibration set of 16 samples was constructed

containing 0.15�/0.3 mg ml�1 lidocaine. The
lidocaine concentration of these samples varied

by a fixed step (i.e. 0.150, 0.160, 0.170 mg ml�1

etc). This concentration range was chosen since it

had been used in a previous study [7]. The

calibration set was used for construction of the

calibration model used in the study. Control

samples containing 0.22 mg ml�1 lidocaine were

also prepared in conjunction with the calibration
samples.

2.5. Validation

The calibration models were validated with two

external test sets (A and B). Test set A contained

15 samples with different amounts of lidocaine in

the range 0.15�/0.3 mg ml�1. Test set B contained
three samples with different amounts of

lidocaine*/0.166, 0.227 and 0.296 mg ml�1*/

that were analysed six times to obtain a measure

of repeatability. The calibration set and the

samples in test set A and B were analysed on the

same occasion. Six repeated analyses of a control

sample were also made on this occasion.

Test set A was analysed further on another three
occasions to investigate whether the use of a

control sample could estimate and correct for the

prediction error when the same calibration model

was used over time. These analyses were per-

formed 1�/3 weeks after the calibration model

had been made. In this part of the study the

average spectrum over the whole DAD file was

exported and used. The same samples were ana-
lysed on these three occasions and in between the

analyses they were stored in a refrigerator.

For the evaluation of the predictive ability of the

samples in test set A, the root mean square error of

prediction (RMSEP) [12] and relative standard

error of prediction (RSEP) [13] were calculated.

RMSEP�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i�1

(ypred � yobs)
2

n

vuuuut
; (1)

RSEP(%)�100�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i�1

(ypred � yobs)
2

Xn

i�1

(yobs)
2

vuuuuuuut
; (2)

where ypred is the predicted concentration in the

sample, yobs is the observed or reference value of
the concentration in the sample and n is the

number of samples in the test set.

3. Result and discussion

In Table 1 the predictions of the samples in

external test set A are shown. These results come

from analysis where the calibration set and the test

sets were analysed on the same occasion and the

predictions for the two ways of exporting a

representative UV spectrum from the DAD file

are presented. The RMSEP and RSEP are pre-
sented for each set of predictions of the samples in

test set A.

From the results in Table 1 it can be seen that

the average spectrum over the sample plug gave

slightly better results than the average spectrum

over the whole DAD file. One possible explanation

for this is the following. The average UV spectrum

calculated over the whole collected DAD file is an
average spectrum calculated from about 300

spectra. Of these 300 spectra, less than 100 contain

a UV spectrum of lidocaine since the sample plug

with this instrumental setting is about 0.15 min

wide (Fig. 2). Hence more than 200 of the spectra

in the DAD file contain noise since no lidocaine is

analysed. At the beginning of the DAD file there is

also a small injection disturbance caused by the
injection of the sample with the autoinjector. If an

average spectrum of the whole DAD file is

calculated, this means that this noise is added to

the average UV spectrum calculated. An average

spectrum only over the sample peak probably

reduces the influence of this noise.
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In Table 2 the results of the repeatability study

are shown. Three samples with different concen-

trations of lidocaine were each analysed six times.

The relative standard deviation (RSD) is pre-

sented. As can be seen in Table 2, the two file

export methods gave similar results, with a RSD of

B/0.8% at the lowest concentration. This precision

is somewhat worse compared to a previous study

where a scanning spectrophotometer was used [6].

In this study six repeated analyses of a solution

containing 0.18 mg ml�1 lidocaine gave an RSD

of about 0.05%. One possible explanation for this

might be the dynamic sample compartment in the

DAD, where liquid is constantly flowing through

the detector cell. In this study this analysis was
done using six injections with the autosampler,

which probably induces some instrumental varia-

tion in the analysis.

Table 3 shows the predictions of the samples in

test set A as well as the control sample on three

different occasions analysed with the DAD

method using the average spectrum for the whole

DAD files. These analyses were done 1�/3 weeks
after the calibration set in order to test the ability

of a single control sample to diagnose the relia-

bility of the predictions over time. The result

shows that predictions could be made over time

with a reasonably low prediction error (RMSEP

B/0.006 and RSEP B/2.3%). These results can be

compared with the results obtained for the average

spectrum of the whole DAD file in Table 1. It is
obvious that the prediction error increases when

the calibration samples and test set samples are

analysed on different occasions.

In the analysis of the 15 samples on the three

occasions, a single control sample containing 0.22

mg ml�1 lidocaine was included. Hence the

lidocaine content of the control sample was in

Table 1

Prediction results of the samples in external test set A

Sample number Accepted reference value Predicted concentration (mg ml�1)

DAD method (average spectrum) DAD method (average spectrum sample plug)

1 0.153 0.151 0.153

2 0.166 0.162 0.164

3 0.175 0.173 0.175

4 0.186 0.185 0.186

5 0.198 0.197 0.198

6 0.205 0.205 0.206

7 0.216 0.215 0.217

8 0.227 0.228 0.228

9 0.238 0.238 0.238

10 0.246 0.244 0.246

11 0.256 0.254 0.256

12 0.269 0.270 0.271

13 0.276 0.275 0.276

14 0.286 0.284 0.287

15 0.296 0.299 0.298

RMSEP 0.0018 0.0011

RSEP (%) 0.83 0.46

Table 2

Repeatability of prediction results of the samples in external

test set B

Instrument Accepted reference

value

RSD of six

replicates (%)

DAD method (average

spectrum)

0.166

0.227

0.78

0.50

0.296 0.26

DAD method (average

spectrum sample plug)

0.166

0.227

0.71

0.20

0.296 0.31

RSD, Relative standard deviation.
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the centre of the concentration interval covered by
the calibration set and test set A (0.15�/0.3 mg

ml�1).

From the predictions of this control sample on

the three different occasions, it can be seen that it

was predicted slightly high on the first two

occasions, 0.223(�/1.4% from the accepted refer-

ence value) and 0.225(�/2.3%), and slightly low on

the third occasion, 0.219(�/0.5%). This might
indicate that the predictions of the 15 test set

samples on the first two occasions were also a bit

high and that the predictions on the third occasion

were a bit low.

The differences in % between the predicted and

accepted reference values of the 15 samples on the

three occasions were calculated and the results are

shown in Fig. 3a. The control sample indicated
that predictions for the first two occasions were

slightly high. As can be seen in Fig. 3a, this also

seems to be the case for the 15 test set samples. For

the first occasion, all predictions are slightly high,

ranging from 0.9 to 3.4% above the accepted

reference value. For the second occasion, all

predictions but four are higher than the accepted

reference value and the difference in % from the
accepted reference value is in the range 4.2 to �/

0.5%. For the third occasion, on the other hand,

the prediction of the content of the control sample

was slightly lower than the accepted reference

value, �/0.5%. In Fig. 3a it can be seen that for

the third occasion the predictions are more evenly

spread around the accepted reference value, with

eight prediction values above and four below in
the range �/1.6 to �/1.2%.

From the six repeated analyses of the control

sample performed together with the analysis of the

calibration samples the precision can be estimated.

If the repeated measurements are assumed to be

normally distributed, a confidence interval of the

average of the predictions of the control sample

(m ) can be calculated from the equation:

m� x̄9t(
ffiffiffi
n

p
=s); (3)

where x̄ is the average of the predictions of the

content of the control samples, t is the t value at

the significance level chosen (here 95%) with the

appropriate number of degrees of freedom (n�/1),

n is the number of samples and s is the standard

Table 3

Prediction results of the samples in external test set A and the control sample on three different occasions with the DAD method

(average spectrum whole DAD file)

Sample number Accepted reference value (mg ml�1) Predicted concentration (mg ml�1)

First occasion Second occasion Third occasion

1 0.153 0.158 0.159 0.153

2 0.166 0.167 0.173 0.167

3 0.175 0.179 0.182 0.177

4 0.186 0.191 0.191 0.187

5 0.198 0.203 0.204 0.200

6 0.205 0.208 0.212 0.207

7 0.216 0.220 0.221 0.215

8 0.227 0.230 0.229 0.225

9 0.238 0.240 0.237 0.234

10 0.246 0.252 0.246 0.248

11 0.256 0.262 0.256 0.257

12 0.269 0.273 0.269 0.269

13 0.276 0.285 0.277 0.276

14 0.286 0.294 0.291 0.282

15 0.296 0.303 0.300 0.297

Control 0.220 0.223 0.225 0.219

RMSEP 0.0052 0.0047 0.0021

RSEP (%) 2.23 1.96 0.85
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deviation. The confidence interval calculated for

the average of the predictions of the control

sample was m�/0.2209/0.0012, giving the confi-

dence limits 0.219�/0.221 mg ml�1 for the sam-

pling distribution of the mean.

If the prediction of the control sample on the

three occasions is compared with the confidence

limits calculated, it can be seen that on the first

and second occasions the predictions are outside

this interval (0.223 and 0.225), while being inside it

on the third occasion (0.219). This indicates the

presence of a systematic error on the first two

occasions.

The predictions of the samples can be corrected

according to the prediction error of the control

sample analysed on that occasion. But this should

only be done if the prediction of the control

sample is outside the confidence limits. Hence

corrections were made only for the first two

occasions and not for the third, and the results

obtained are shown in Fig. 3b. This simple

correction seems to make the scatter of the

prediction error more evenly spread around zero

and hence lowers the overall prediction error (first

occasion RMSEP 0.0024 and RSEP 1.02% and

second occasion RMSEP 0.0039 and RSEP

1.70%).

Hence the use of a single control sample seems

to give an indication of how reliable the predic-

tions of the samples in the external test set are.

Furthermore, correction of the measured predic-

tions with the measured prediction error obtained

for the control sample decreases the prediction

error over the sample set and also decreases the

systematic behaviour of the prediction error.

It is possible that more than one control sample

would give better diagnostic information about the

reliability of the predictions if a whole concentra-

tion interval were used, as in the calibration set

and test set A. For instance, three control samples

at the minimum, centre and maximum of the

interval of the concentration interval would prob-

ably give better diagnostic information about the

reliability of the predictions. However, in the case

of the analysis of real samples from a pharmaceu-

tical process, it is more likely that the aim is to

analyse many samples containing the same

amount of lidocaine. In this case, it may be enough

to have one control sample having approximately

the same content that the samples are expected to

have.

In situations where the prediction of the control

sample is outside the confidence limits, the deci-

sion about whether or not to correct the predic-

tions of the samples could be further tested. If

multiple analysis of the control sample is made on

each occasion, the average of these predictions can

be compared with the accepted reference value of

the control sample with a significance test using t -

statistics.

Fig. 3. Overview of the predictive results of the samples in

external test set A on three occasions presented as difference

from accepted reference value (%). (a) Without correction for

the measured prediction error of the control sample, (b) with

correction for the measured prediction error of the control

sample if this was outside the confidence limits.
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3.1. Practical considerations

In a previous investigation the practical proce-

dure for an analysis of content and identity of

lidocaine solutions with scanning UV�/Vis spectro-

scopy and multivariate determination was outlined

[6]. In this previous work soft independent model-

ling of class analogy (SIMCA) [14,15] was used for

the determination of identity and PLS regression
for the content determination. SIMCA classifica-

tion is a powerful classification technique based on

principal component analysis (PCA) or PLS,

which uses the multivariate residuals of each

sample for the classification. From the residuals

of the samples in the calibration set, a confidence

region for the calibration class is constructed

around the principal component. New samples
are regarded as members of the class if their

distance from the principal component space

does not exceed a critical limit defined by the

confidence region. The results obtained in this way

can be used to determine the identity of the

sample. A positive identity would then imply that

the sample has been predicted to belong to the

calibrated class, while the opposite holds true for a
negative identity of the sample. When a calibration

model is made with PLS, SIMCA classification

can also be carried out in addition using the

residuals of each sample from the PLS regression.

Hence the PLS calibration model can be used for

determination of both content and identity. The

identity determination was not applied in this

study, however, although it can easily be imple-
mented. If control samples, SIMCA classification

and PLS regression are employed for the analysis

of new samples with the DAD method, the

practical procedure for determination of identity

and content is described in Fig. 4. The calibration

model and confidence interval for the prediction of

the control sample are assumed to have been

carried out beforehand. The analysis of the
samples and the control sample with the DAD

method has been performed and the spectra of the

samples and the control sample are transferred in

digitised form to the calibration software which

contains the PLS calibration model.

Firstly, the identity and content of the samples

and control sample are determined with the PLS

calibration model (1). If the identity is negative,
this indicates a significant difference between the

samples analysed and the calibration model, mak-

ing the content predictions unreliable. This can be

caused by gross errors such as instrumental errors

influencing the spectra or by contaminated sam-

ples etc. Hence if a negative identity is predicted

for the samples or for the control sample, a

reference method is needed for evaluation.
However, if the predicted identity of the control

sample and the samples is positive, the spectra of

the samples will then fit well into the multivariate

calibration model and the predictions of the

content can be regarded as reliable.

The estimated prediction error of the control

sample can thereafter be used to detect any small

systematic error in the predictions, which may
justify making a correction to the predictions of

the samples (2). To decide this, the confidence

interval for the content of the control sample can

be utilised as a specific limit for whether or not to

make any correction. After this step the analysis of

the samples is finished (3).

Multivariate calibration was used in this study

even though the content of the lidocaine solutions
could have been determined using univariate

calibration. However, in order to determine the

identity and to be able to use the same calibration

model over time, a reliable method for identifying

new samples is needed, and this can be achieved by

the use of the multivariate residuals. Moreover,

multivariate calibration using many variables is

generally more robust in relation to instrumental
variation and interference from other UV absorb-

ing compounds than univariate calibration.

The procedure described in Fig. 4 could prob-

ably be easily automated and implemented with

the help of computer software. In a previous study

the term high capacity analysis (HCA) was intro-

duced as an analytical approach consisting of

spectroscopic analysis, chemometric data evalua-
tion and a high level of automation [7]. The DAD

method proposed, with some further development

regarding automatic export of data and implemen-

tation of the practical procedures suggested in Fig.

4, could lead to an HCA method. This method

could then serve as a fast and efficient analytical

approach for screening purposes or industrial
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quality control, where the same calibration model

could be used over periods of time without the

need for recalibration.

4. Conclusion

This study shows that the use of a control

sample could be one way of diagnosing and

estimating the prediction error as well as correct-

ing the predictions, thereby lowering the predic-

tion error. The ease of use, automation and high

speed of the DAD method make it attractive for

routine multivariate determination of pharmaceu-

tical solutions. Finally, the practical procedure

proposed could be a way of implementing the

DAD method as a high-capacity analysis method

for routine use.

Fig. 4. Schematic diagram of the procedure for the identity and content determination with the DAD method using a control sample

for estimation and correction of the prediction error.
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