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SUMMARY

Recently, a new multivariate analysis tool was developed to resolve mixture data sets, where the contributions
(‘concentrations’) have an exponential profile. The new approach is called DECRA (direct exponential curve
resolution algorithm). DECRA is based on the generalized rank annihilation method (GRAM). Examples will be
given of resolving nuclear magnetic resonance spectra resulting from a diffusion experiment, spectra in the
ultraviolet/visible region of a reaction and magnetic resonance images of the human brain. Copyright 1999
John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Self-modeling mixture analysis

Given a data set with mixture spectra, the task of self-modeling mixture analysis is to determine
mathematically the spectra of the pure contributions (‘concentrations’) in the original spectra without
using reference data.

In a recent tutorial-like paper the principles of self-modeling mixture analysis have been explained
avoiding mathematical details.1 A shortened version of this explanation will be given in this paper.
For a more detailed review see Reference 2.

A simulated mixture is created by combining the two spectra of pure components labeled in Figure
1 asspectrum 1 and spectrum 2. The mixture data set presented asmixture 1, mixture 2 and
mixture 3 is created by using the contributions listed in Figure 1. The task of self-modeling mixture
analysis is the following: givenonly mixture 1, mixture 2 andmixture 3, calculate the pure spectra
and their contributions.
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Next to the solution given byspectrum 1andspectrum 2, it is also possible to express the mixture
data with purespectrum 3andspectrum 4with the contributions listed in Figure 1. As a matter of
fact, an infinite number of solutions are possible to resolvemixture 1, mixture 2 andmixture 3 into
pure component spectra and their contributions. The question now is how to find the right ‘chemical’
solution from the infinite number of ‘mathematical’ solutions. All the solutions given in Figure 1 can
be transformed into each other by simple mathematical means:

A� CP �1�

In this equation,A represents the mixture data set with the spectra in the rows,C represents the
concentration matrix with the concentrations in the columns andP represents the matrix with the pure
spectra in the rows. For a data set with ten mixtures of three components where each spectrum
contains 100 data points (e.g. wavenumbers), the dimensions of the matrices are 10� 100 for A,
10� 3 for C and 3� 100 forP.

In order to transform to other results, a transformation matrix needs to be used. If one knows the
transformation matrix for the spectra, for example, the transformation matrix for the concentrations is
simply its inverse:

D � CTÿ1TP �2�

The transformation matrix is obtained by using constraints that result in data with desirable chemical
properties such as positivity of spectra and concentrations, unique peaks for the pure components,
unimodal character of concentration profiles, etc.

The first step in most self-modeling mixture analyses is to use principal component analysis (PCA)

Figure 1. Diagram representing principle of self-modeling mixture analysis (reprinted from Reference 1, with
permission from Elsevier Science)
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as a starting solution (the ‘abstract’ solution), which is then transformed into a ‘basic’ solution using
proper constraints, using equation (2) given above.

The use of PCA for chemical applications has been described in the pioneering bookFactor
Analysis in Chemistryby Malinowski and Howery.3 A major problem is to determine the number of
components in a mixture data set, for which Malinowski developed several generally accepted
diagnostic techniques.3–5

One of the most powerful techniques for transforming the abstract solution into a basic solution is
the pure variable technique, which assumes that every pure component has a unique peak. This
constraint results in the solution ofspectrum 1 and spectrum 2 in Figure 1. The pure variable
concept originated from the pioneering work of Lawton and Sylvestre6 and Knorr and Futrell.7 The
pure variable concept was limited to two components until Malinowski extended the technique
toward any number of components, using a determinant-based approach.8,9 The use of the
determinant has also been adapted to self-modeling mixture analysis techniques that do not use
PCA.10,11

Other self-modeling mixture analysis techniques use target factor analysis, developed by
Malinowski and Howery.3 in order to determine the basic solution. For example, Gemperline12,13and
Vandeginsteet al.14 independently developed iterative target factor analysis (ITTFA) to resolve data
with unimodal concentration profiles.

Another group of self-modeling techniques apply PCA multiple times. Maeder and co-workers15,16

developed evolving factor analysis (EFA). By analyzing a time-resolved data set in a forward way
(PCA on first two spectra, first three spectra, etc.) and a backward way (last two spectra, last three
spectra, etc.), plots of the eigenvalues indicate regions where components are present. This
information is then used to resolve the spectra. Malinowski analyzes a data set multiple times by
using windows of different sizes in order to determine the regions where components are present. His
window factor analysis (WFA) approach avoids some of the problems of EFA.17,18

1.2. Self-modeling mixture analysis by the three-way method

Although the use of constraints resulted in powerful tools to resolve mixtures of unknown
composition, the constraints are generally on a simplification of actual behavior, which leaves
ambiguities in the solution. Furthermore, under certain constraints a range of solutions is possible. For
example, the solutions given in Figure 1 in the form ofspectrum 1/spectrum 2andspectrum 3/
spectrum 4are both valid solutions using positivity constraints. It is possible, however, to obtain a
unique solution fromtwo data sets which have a proportional relationship.19–24In Figure 1 a second
mixture data set is presented asmixture 4, mixture 5 and mixture 6, which has a proportional
relation with the data set presented bymixture 1, mixture 2 andmixture 3: the contributions of
spectrum 1 in the second mixture data set are proportional to the contributions ofspectrum 1 in the
first mixture data set with a ratio between the contributions of one. The contributions ofspectrum 2in
the second mixture data set are proportional to the contributions ofspectrum 2 in the first mixture
data set with a ratio of 0⋅5.

The equation for a data set proportional to the one in equation (1) is

B� C�P �3�

The diagonal matrix� contains the proportionality factors. For the two data sets in Figure 1 the
diagonal elements of� are 1⋅00 and 0⋅50.

As with the first mixture data set, there are an infinite number of solutions possible to resolve the
second data set. However, if the two data sets have a proportional relation,only the correct solution
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will show the proportionality. This is demonstrated in Figure 1. The proper solution of the two
mixtures with purespectrum 1andspectrum 2shows the proportionality, but the solution with pure
spectrum 3andspectrum 4does not show the proportional behavior of the resolved contributions. It
can be proven mathematically that the proportionality is only preserved in one solution. As a
consequence, when two proportional data sets are available, resolving them simultaneously with the
restriction that the resolved contributions must be proportional will lead to the correct solution. This
problem can be solved as the generalized eigenproblem.22

When a single spectral data set is analyzed, each spectrum is stored as a vector. A set of spectra are
stored in a matrix, where each row represents a spectrum. A vector is a one-way array and a matrix is a
two-way array. When two spectral mixtures are analyzed, the data are present in two matrices that
form a ‘box’ of data, called a three-way array. As a consequence, the methods to resolve several data
sets simultaneously are called three-way methods.25

1.3. Resolving mixture data with exponentially decaying contribution profiles

Using pulsed gradient spin echo (PGSE) nuclear magnetic resonance (NMR) spectroscopy, it is
possible to generate a series of spectra of mixtures where the contribution of each of the components
decays with an exponential profile.26 The decay of the exponential is a function of the diffusion
coefficient of the component. It is possible to generate two proportional data sets from such a data set;
see Table 1. UnderD, two exponential decays are listed. This is representative for the contribution
profiles of a data set containing two components. As a next step,D will be split into two parts:A
contains the first three rows ofD, andB contains the last three rows ofD. The data setsA andB are
proportional. The proportionality factors (matrix� in equation (3)) are 1/3 and 1/2. As a consequence,
when a data set is available in which the components have contribution profiles of an exponential
character, the data set can be split into two data sets with a proportional character and can thus be
resolved unambiguously.

Resolving of exponential data has been described before by Stilbset al.27 as CORE (component-
resolved NMR spectroscopy). The method is based on an optimization routine to resolve the linear
combinations of exponentials. This optimization can be time-consuming, e.g. 1 h for four
exponentials and 1000 frequency channels. DECRA has the advantages that it is a direct method (in
contrast with iterative optimization procedures) and that it is fast (e.g. less than 2 s for the NMR data
set discussed later with 16 spectra, 14 000 variables and five exponentials).

This application is called DECRA (direct exponential curve resolution algorithm) and has been
applied successfully to NMR,1,28,29magnetic resonance (MR) images30,31and to determine reaction
kinetics.32,33 This paper shows a new example with NMR spectra of polymers, where five
components could be resolved. Furthermore, an overview of previously done work with ultraviolet/
visible (UV-vis) spectra to determine rate constants and MR images of the human brain will be given.

Table 1. Model for data setD with exponential decays, and how it can be split into proportional data setsA andB

D A B

Component 1 Component 2 Component 1 Component 2 Component 1 Component 2

27 8 27 8 9 4
9 4 9 4 3 2
3 2 3 2 1 1
1 1
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2. EXPERIMENTAL

2.1. NMR spectra of polymer solution

Approximately 5 mg of a copolymer incorporating a low-molecular-weight (low-MW) poly
(dimethylsiloxane) (PDMS) segment was dissolved in dichloromethane-d2. NMR spectra were
acquired with a standard pulsed field gradient (PFG) probe and accessory on a Varian Inova 400
spectrometer using a stimulated echo pulse sequence26 incorporating PFG pulses. Sixteen spectra
were acquired using a gradient strength ranging from 2 to 33 G cm71, a diffusion time (�) of 200 ms
and a gradient pulse length of 4 ms.

Gel permeation chromatography (GPC) was used to obtain the molecular weight distribution of the
polymer. A standard technique with tetrahydrofuran as the mobile phase was used to obtain the curve.
Four fractions were obtained from a second run, dried with N2 gas and redissolved in
dichloromethane-d2 for further NMR analysis. Standard proton spectra of the GPC fractions were
acquired on a Varian Unity 500 spectrometer using Varian’s magic angle spinning nanoprobe capable
of examining as little as 20ml of sample. A spin rate of 3 kHz was used.

2.2. UV-vis spectra of reaction

This subsection summarizes an extensive study where DECRA was compared with a combination of
the Levenberg–Marquardt algorithm and parallel factor analysis (LM–PAR). This paper focuses on
the DECRA results. For the complete report see Reference 33. In short, the two-step consecutive
reaction of 3-chlorophenylhydrazonopropane dinitrile (A), an uncoupler of oxidative phosphorylation
in cells, with 2-mercaptoethanol (B) forms an intermediate product (C) which is hydrolyzed in an
apparently intramolecular reaction to the product 3-chlorophenylhydrazonocyanoacetamide (D) and
the by-product ethylenesulfide (E). The reaction can be described as

A � B!k1 C!k2 D� E �4�
If 2-mercaptoethanol is present in large excess, pseudo-first-order kinetics can be assumed and the

following kinetic rate equations can be used to describe the concentration profiles of A, C and D
respectively:

CA;i � CA;0eÿk1ti �5�
CB;i � k1CA;0

k2ÿ k1
�eÿk1ti ÿ eÿk2ti � �6�

CD;i � CA;0 ÿ CA;i ÿ CC;i �7�

whereCA,i, CC,i andCD,i are the concentrations of species A, B and D respectively at timeti, andCA,0

is the initial concentration of species A at the starting point of the reaction. For equations (5–7) to be
valid, only A is initially present.

The data in this paper result from monitoring this reaction by UV-vis spectroscopy. The
wavenumber region used for data analysis was 300–500 nm. The components B and E do not
contribute in this spectral region. As a consequence, the reactant A, intermediary C and main product
D will be considered for the data analysis.

2.3. MR images of the human brain

MR images were acquired on a GE Signa (GE Medical Systems, Milwaukee, WI) 1⋅5 T whole body
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imager employing a standard single-slice, single-echo, spin echo pulse sequence,34 and a quadrature
birdcage-style RF head coil was used to acquire axial magnetic resonance images of the brain. The
image plane passed through the head of the 42-year old, healthy male volunteer at the level of the
lateral ventricles. A set of 14 images were acquired in which the echo time (TE) was varied between
15 and 210 ms in 15 ms steps and the repetition time (TR) was held constant at 1000 ms. This
produced an effect similar to the one described above in the PGSE NMR experiment. Here the
relationship between TE and the signal of each individual component is an exponential that depends
upon the component’s spin–spin relaxation time (T2). As TE increases, the signal from each
component decreases differentially depending on the magnitude ofT2. From a semilog plot of signal
versus TE,T2 for each component may be obtained. Each 24 cm field-of-view, 5 mm slice thickness
image was acquired with 256 phase-encoding steps to form a 256� 256 pixel image. The motion of
the volunteer was found to be minimal during the course of data collection, so no attempt was made to
register the pixels within the series of correlated brain images.

2.4. Data analysis

For the data analysis, MATLAB software (The MathWorks, Natick, MA) was used. The computer
configuration is a 266 MHz Pentium processor with 128 MB RAM.

3. RESULTS

3.1. NMR spectra of polymer solution

The following example describes the product control of a polymer reaction. The final product consists
of a distribution of molecules with different molar masses. The proper product must have the low-
molecular-weight PDMS chain incorporated.

The polymers in different MW classes can be separated with a diffusion experiment; see Figure 2.
In order to determine whether PDMS is incorporated, one cannot simply compare plots of a ‘typical’
polymer peak and a ‘typical’ PDMS peak, since the profiles of the polymer will be linear
combinations of exponentials owing to the MW distribution. Furthermore, the PDMS profile may also
be a linear combination of exponentials in the case where it is present in different forms, e.g. free and
incorporated into polymers of different MW classes. In order to determine the nature of incorporation
of the PDMS chain in the polymer, the MW mixture needs to be resolved, for which DECRA is used.
The two extremes of possible outcome for PDMS are as follows.

In the case where PDMS in not incorporated at all, the low-MW component will be separated from
all the higher-MW polymers.

In the case where PDMS is incorporated completely with the high-MW component, it cannot be
separated from the high-MW component. The latter is the desired outcome.

As a reference method for the separation of the different MW classes of polymers, gel permeation
chromatography (GPC) was used

Figure 2 shows a stacked plot of the 16 spectra where the magnetic field gradient pulse strength (g)
has been varied. The signal for each component decays with an exponential directly proportional to
the component’s diffusion coefficient in solution (or hydrodynamic size). PGSE NMR is similar to
GPC for this reason. Several decay constants are seen in this data set, from the fast dichloromethane
to the much slower PDMS. DECRA is applied to the data set to resolve each individual component
and obtain the respective diffusion coefficients.

The resolved components are shown in Figure 3 and are ranked from fast-moving at the top to
slow-moving at the bottom. The spectra are normalized in such a way as to represent accurate
component composition. Aside from some visible but minor residuals, the spectral components are
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resolved cleanly. Five exponential constants, directly related to the components’ diffusion
coefficients, are obtained. These results are obtained despite the severe spectral overlap of the
MW components and close exponential decay rates in less than 2 s.

From the NMR data it is clear that (1) there are five primary components in the solution (including
the solvents), (2) the polymeric components vary by molecular size (or MW) and are similar in
chemical structure, (3) the linewidth increases with MW and (4) the PDMS, at 0⋅5% weight level, is
incorporated into the high-MW component of the material, which shows that the product has the
required properties, as stated above. If the PDMS were not incorporated, we would expect a larger
diffusion coefficient, similar to the starting material, and the resonance near 0 ppm would be evident
in one of the lower-MW components or as a separate component. Given the linewidth changes and
similarity in molecular structure, in this case we may use the terms molecular size and molecular
weight synonymously.

The resolved components are compared with extracts obtained from a GPC experiment performed
on the same material (see Figure 4). The result is shown in Figure 5. The GPC curve, in Figure 4,
shows several low-MW components with narrow MW distributions and high-MW components with
broad MW distributions. Four fractions were obtained from the experiment and examined with NMR.
The cut-off regions of the fractions are shown in Figure 4. The spectral comparisons of the resolved
components from DECRA with the GPC fractions for four spectral expansions are shown in Figure 5.
The DECRA-resolved spectra are very similar to the GPC fractions. The PDMS is shown to be

Figure 2. PGSE NMR data set resulting from diffusion experiment. Several decay constants are seen in this data
set, from the fast water and dichloromethane to the much slower PDMS. The solvent is dichloromethane-d2 and
the temperature is 23°C
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incorporated into the high-MW fraction. The spectra of fractions 3 and 4 are very similar and most
closely resemble the low-MW component found by DECRA. It is clear from the GPC data that the
three polymeric components and their respective exponential constants resolved by DECRA are not
pure. They are actually representative averages of MW distributions. The low-MW components are
most likely to be dimers, trimers, etc., having discrete diffusion coefficients very close in value. The
high-MW components contain much longer chains and have broad distributions of diffusion
coefficient.

This example shows that DECRA can be used for product control of polymeric reactions. The
unique aspect about this data set is that we were able to resolve five exponentials in seconds with only
16 spectra, of which three were different MW classes of the polymer which have an extreme spectral
overlap. There are few data analysis methods that are capable of this. Although the algorithm models
the data set with discrete exponentials (and therefore discrete hydrodynamic sizes), we are still able to
examine materials exhibiting broad distributions of molecular size. DECRA simply resolves the
primary components, despite highly overlapped spectral features and molecular weight distributions.

3.2. UV-vis spectra of reaction

The kinetic properties of a chemical reaction are often of key importance. For example, in the
chemical industry, rate constants of certain chemical processes are monitored to check whether a
process is in or out of control. Therefore it is important that the estimations of the reaction rate
constants are available rapidly in order to control the considered chemical process. The goal of this
experiment was to determine whether the fast DECRA approach could be used to measure the rate

Figure 3. Five resolved components from PGSE NMR data set shown in Figure 2, ranked according to magnitude
of diffusion coefficient (hydrodynamic size). The associated diffusion coefficients (m2 s71) are as follows: water,
6⋅06� 1079; dichloromethane-d2, 3⋅07� 1079; low-MW polymeric component, 0⋅734� 1079; mid-MW poly-
meric component, 0⋅355� 1079; high-MW polymeric component, 0⋅140� 1079. The spectra are normalized
in such a way as to represent accurate component composition
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constants of a reaction. Owing to extremely high overlap of the components of interest, it is not
possible to derive the rate constants from single wavenumbers. Equations (8–10) show that the
concentration profiles are linear combinations of three exponential profiles:

CA;i � f1eÿk1ti �8�
CC;i � f2eÿk1ti ÿ f2eÿk2ti �9�
CD;i � f1e0ti ÿ f1eÿk1ti ÿ �f2eÿk1ti ÿ f2eÿk2ti � �10�

wheref1 = CA,0 andf2 = k1 CA,0/(k2 7 k1).
Note that the constant termCA,0 in (7) is described as an exponential in (10) with a decay value of

zero: f1e
0ti. This is important, since DECRA requires exponential behavior. This property of a

constant has been utilized in DECRA before.30,31

Since the three components in the data set can be described with (linear combinations of) three
exponentials, DECRA can be applied and will result in three components with exponential decay
values ofk1, k2 and zero.

The analysis of ten replicate data sets has been described extensively before.32,33A sample of the
spectra of the averaged data set is shown in Figure 6. The data set needs to be split for DECRA. The
first data set consisted of spectra 1–269, the second of spectra 2–270. The decay values derived from
DECRA were 0⋅314 (k1), 0⋅027 (k2) and 0⋅000 (constant), in agreement with expectation. The spectra
and contribution profiles extracted by DECRA do not represent the components of interest, since the
extracted components are based on pure exponential behavior, while the components of interest are
based on linear combinations of the pure exponential components. In order to calculate the actual

Figure 4. GPC results. The experiment was performed using THF as solvent. Four fractions were collected, dried
and redissolved in dichloromethane-d2
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components of interest, the values ofk1 andk2 are substituted in (5)–(7), using an arbitrary value of
unity for CA,0. One has to realize that concentration values cannot be calculated unless a calibration
step is involved. Each of the components’ measures will have a different response factor in the
spectroscopy. The contributions were scaled to reproduce the total signal (TSI) of the original spectra,
using a least squares approach. As can be seen in Figure 7, TSI cannot be distinguished from the sum
of the resolved curves, which clearly shows that the exponential model used to resolve this data set
was correct.

The spectra associated with the contribution profiles were calculated using a least squares
approach. The results are shown in Figure 8, together with reference spectra for A and D. The
reference spectrum of the starting material A matches the resolved spectrum closely. Some

Figure 5.1H spectra of GPC fractions indicated in Figure 4, compared with spectra resolved with DECRA: a,
upfield region, including PDMS; b, methyl region; c, mid-spectral region; d, aromatic region. The spectra of the
GPC fractions were obtained using a Varian nanoprobe capable of handling as little as 20ml of sample. Impurities
resulting from the drying step appear in the spectra of the GPC fractions and are indicated with an asterisk

104 W. WINDIG ET AL.

Copyright  1999 John Wiley & Sons, Ltd. J. Chemometrics, 13, 95–110 (1999)



differences can be observed between the resolved spectrum of the end product (D) and the reference
spectrum. The fit between the latter two spectra is better when using LM–PAR, but this takes hours,
compared with seconds for DECRA. A reference spectrum for the intermediate product C is not
available. The three resolved spectra have a very high overlap. Nevertheless, DECRA is able to
resolve the data correctly.

This application of DECRA shows that it can be used as a fast method to determine rate constants
from spectral data.

3.3. MR images of the human brain

The exponential behavior utilized to resolve the NMR data presented above can also be generated in
T2 experiments in magnetic resonance imaging (MRI). Different structures in the brain have an
intensity that decreases by an exponential decay related to theT2 properties of that structure.
Generally, the results of such an experiment are ‘summarized’ in a single image, aT2 weighted image.

Figure 5. Continued
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By resolving a series ofT2 MRI images into ‘pure component’ images, the results of theT2

experiment will be the minimal number of images with the maximum information content. The
increased dimensionality of the results of the experiment provides important additional information.
As an analogy, one may think of a chromatogram of a sample, which shows a single summarized

Figure 6. Sample of UV-vis spectra monitoring reaction

Figure 7. Extracted and scaled concentration profiles of reactant A, intermediate product C and final product D.
The sum of the three curves is also plotted (—) together with TSI of the original data (.....). The two curves cannot
be discriminated from each other
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response (such as aT2 weighted image), compared with a hyphenated technique, which increases the
dimensionality of chromatography, enabling the resolution of overlapping peaks (such as the resolved
images).

A problem is that for MRI data each image is represented by a matrix and, as a consequence, the
whole data set is represented by a series of matrices. The algorithm requires the data set to be
presented in a matrix. This goal can be achieved by rearranging each MRI image into an array. The
series of images can then be arranged into a matrix and can thus be treated like the spectral matrices.
Successful applications of DECRA to MRI have been described.30,31As an example, three images out
of a T2 series of 14 images are shown in Figures 9(a)–(c). These images show an exponentially
decaying behavior that is different for different parts of the brain. The application of DECRA to the
images represented in Figures 9(a)–(c) resulted in three resolved images, which are shown in Figures
9(d)–(f). The contribution profiles (not shown) are again of clear exponential character. This shows
that DECRA can be applied equally well to MR images. The analysis time is about 30–40 s on a
modern PC. Although one has to be careful with the interpretation of these resolved images in
biological terms, the resolved images seem to represent the following features: the first resolved
image is dominated by the tissues around the skull; the second resolved image is dominated by free
water, as indicated by the clear presence of the cerebrospinal fluid; and the third image seems to be
dominated by water within the brain tissue.

From these results it is clear that the relatively slight differences in the continuous series of 14 MRI

Figure 8. Resolved components. Resolved component A (—) cannot be discriminated from the reference
spectrum (.....). For the intermediate product C no reference spectrum was available. The end product D (—)
shows minor differences from the reference spectrum (.....)
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images are greatly enhanced using DECRA with just three MRI images.
Next to the exponential decay profiles resulting fromT2 experiments, it is also possible to generate

a series of images with a so-calledT1 experiment, where the contribution profiles can be described by
the following general expression, wherex represents an array with equidistant increasing values:

ai�1ÿ eÿbix� �11�

This exponential function does not have the proportional character described above. The expression
can be rewritten as

ai�e0x ÿ eÿbix� �12�

Although this is a linear combination of two exponentials, it is not possible to apply DECRA, since
the rank of the data set is one. However, the solution to this problem is simple, since the decay of one
exponential is known, i.e. the constant term with the decay value of zero. As a consequence, the rank
of a data set can be changed simply by adding a column to the data set with a constant value. In this
case one will add an extra component with a constant contribution profile, which can be ignored. The

Figure 9. Images (a)–(c) represent images of the originalT2 data set and clearly show the decaying behavior of
the intensities; images (d)–(f) represent the resolved images (reprinted from Reference 1, with permission from
Elsevier Science)
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other components will be expressed with the properly resolved images, but negative contribution
profiles. The resolved spectra can now be used to calculate the contribution profiles using the original
(i.e. without the extra column) data. Successful applications have been reported.30,31 In Figure 10 a
sample of the original images is shown along with two resolved images. The first resolved image is
dominated by white matter, the second by gray matter. Again it is clear that DECRA enhances the
differences in the original series of MRI images. One can expect that there are cases where this
increase in the dimensionality of the results of an MRI analysis will make it possible to discriminate
brain tissues (samples) in a way that cannot be distinguished with conventional techniques, similar to
the enhancements that hyphenated techniques bring to conventional chromatography.

4. CONCLUSIONS

This paper showed the application of DECRA for very different applications. In all the cases
presented, DECRA resolved the data sets successfully and at high speed. Despite the fact that
exponential profiles with different decay values have high correlations, it was possible to resolve up
to five components.

These results and the fact that exponential behavior is a very common feature in many processes
indicate the value of DECRA as a tool to resolve data with an exponential character.

Figure 10. Images (a)–(c) represent images of the originalT1 data set and clearly show the exponential behavior
of the intensities; images (d) and (e) represent the resolved images
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