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SUMMARY

DECRA (direct exponential curve resolution algorithm) is a fast multivariate method used to resolve spectral
data with concentration profiles that are linear combinations of exponential functions. DECRA has been
previously applied to a wide variety of spectroscopies. Results are presented in this paper for two new application
areas: solid state nuclear magnetic resonance spectra of polymorphic crystal mixtures and mid-infrared
spectroscopy of chemical reactions. Furthermore, the paper will show the effect of the way the data set is split,
which is a part of the algorithm, on the results. Copyright 2000 John Wiley & Sons, Ltd.

KEY WORDS: direct exponential curve resolution algorithm (DECRA); generalized rank annihilation method
(GRAM); MIR spectra; solid state NMR spectra; kinetics; polymorphs; exponentials

1. INTRODUCTION

Recently, a novel technique was developed to resolve linear combinations of exponential profiles.
The technique is called DECRA (direct exponential curve resolution algorithm) and is based on
GRAM (generalized rank annihilation method) [1,2]. The technique is multivariate, and it is possible
to resolve spectral data sets with thousands of exponential variables in a fraction of a second with a
personal computer. Because exponential behavior is a common phenomenon in many processes,
DECRA can be applied in a wide variety of areas: pulsed gradient spin echo nuclear magnetic
resonance (PGSE NMR) diffusion spectra of complex polymer mixtures [1–4], magnetic resonance
images (MRIs) of the human brain [5,6] and kinetic spectral data in the near-infrared (NIR) [7] and
ultraviolet-visible (UV-vis) region [4,8]. DECRA is able to resolve spectra with extreme overlap, and
up to five components have been resolved [4]. It is interesting to note that basically the same approach
was developed before in the field of signal processing [9].

This paper will introduce two new application areas: solid state NMR of polymorphic materials and
mid-infrared (MIR) spectroscopy of several chemical reactions. In order to apply DECRA, a data set
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needsto be split into two parts.The way in which the dataset is split affects the accuracyand
precisionof DECRA. A simple modelsystem is usedto help characterize this phenomenon.

2. MATERIALS AND METHODS

2.1. Computerizedanalysis

2.1.1.DECRA. When two mixture data setsare available wherethe componentconcentrationsin
oneareproportional to those in the other (uniqueto eachcomponent),it is possible to unambigu-
ously resolve the datasets into a matrix containing the concentrations of the purecomponentsand
a matrix containing the pure component spectra[10]. This can be expressed in equations as
follows:

A � CPT �1�
B � CXPT �2�

In these equations,matrices A andB represent spectral datasetsthat areproportional. The spectra
are organized in rows. Matrix C representsthe pure componentconcentrationsorganized in col-
umns,matrix P represents the purespectraorganized in rows,andsuperscript T standsfor the ma-
trix transpose. With the type of problemsdiscussedin this paper, concentrationsarenot obtained,
but profiles proportional to concentrations. In order to obtain concentrations, a calibration step
would be needed. In order to indicate the natureof the profiles discussed in this paper,the term
contribution will be usedinsteadof concentration.

The diagonal matrix X contains the unique proportionality factors relating A with B. In other
words, the mixtures have the same pure components and the same concentrations, but the
contributionsdiffer by ascalefactoruniqueto eachcomponent. Thisproblemcanbeexpressedasthe
generalized eigenvector problem and is the basis of the generalized rank annihilation method
(GRAM) [11,12].

Whendataareof anexponential character,it is possible to split onedatasetinto two datasetsthat
areproportional [1–8]. Theprinciple is givenin TableI. UnderD, two exponential decaysarelisted.
This is representativeof thecontributionprofilesof a datasetcontainingtwo components.As a next
step,D will besplit into two parts:A contains thefirst threerows of D, andB containsthelast three
rowsof D. As definedabove,datasetsA andB areproportional. Theproportionality factors(matrix X
in Equation (2)) are1/3 and1/2. A dataset in which the components havecontribution profilesof
exponential charactercanbe resolved unambiguously, becauseit canbe split into two proportional
datasets.This adaptation of GRAM is the basisfor DECRA.

Thedatasetin TableI wassplit into two partswhichdifferedby onespectrum. It is alsopossible to
split thedatasetin otherways.Thetermshift will beusedto identify how thedatasetwassplit up.
Forexample,whenadatasetcontains30spectra,ashift of onemeansthatthefirst datasetconsistsof
spectra1–29andtheseconddatasetconsistsof spectra2–30.A shift of five meansthatthetwo data
setsconsistof spectra1–25and6–30, etc.

2.1.2.Kinetics. The useof the DECRA approachfor kinetic datawasfirst described by Bijlsma et
al for a pseudo-first-order reaction with an intermediateproduct [7,8]:

A ÿ!k1 B ÿ!k2 C

The reaction constants are represented by k1 and k2, which have the dimension min71. The
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concentrationprofilesfor thestarting material A, the intermediateproduct B andthefinal productC
are

CA;i � CA;0eÿk1ti �3�

CB;i � k1CA;0

k2ÿ k1
�eÿk1ti ÿ eÿk2ti � �4�

CC;i � CA;0 ÿ CA;i ÿ CB;i �5�

where i indexes the ith spectrum and ti represents the time in minutes. CA,0 representsthe
concentrationof A at time zero. In this papera simple first-order reaction without intermediatewill
alsobeshown:

Aÿ!k1 B

Theconcentrationprofile for thestarting material is describedby Equation (3). Theconcentrationof
the product B is

CB;i � 1ÿ CA;i �6�
An important fact is that the constantterms in these kinetic equations can be describedas

exponentials with the decayvalue zero, which enablesthe use of DECRA. As a consequence,
Equations(3)–(5)canbedescribedaslinearcombinationsof exponentials,where thevalue onehas
beenchosen for CA,0:

CA;i � eÿk1ti �7�

CB;i � k1

k2ÿ k1
�eÿk1ti ÿ eÿk2ti � �8�

CC;i � e0ti ÿ CA;i ÿ CB;i �9�
The concentration arraysare in columns. Similarly, Equation (6) can be expressed as a linear

combination of exponential functions. For a first-order reaction with an intermediate product,
DECRA is usedto resolve threecomponents. The contribution profiles extractedare exponential
functionswith decayvaluesk1, k2 andzero. The decayvaluescanbe directly calculatedfrom the
eigenvaluesresultingfrom thesolution of thedatasetsby DECRA. Theeigenvaluesresultingfrom

TableI. Model for datasetD with exponentialdecays,andhow it canbesplit into theproportionaldatasetsA
andB

D A B

Component1 Component2 Component1 Component2 Component1 Component2

27 8 27 8 9 4
9 4 9 4 3 2
3 2 3 2 1 1
1 1
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the solution of the generalized eigenvector problemare the matrix X in Equation (2). The decay
valuescanthenbecalculatedsimplyby takingthelog. Thedecayvaluesaresubstitutedin Equations
(3)–(5) to give the desiredkinetic profiles.

Thescalingof thecontributionprofilesis arbitrary, sinceCA,0 waschosen to beone.Furthermore,
different components have different intensity responsesin the spectra. In order to scale the
contributionsin suchawaythattheyreflect thespectral signals,ascaling is appliedsothatthesumof
theprofilesreproduces thetotal signalt of thespectra.Thetotal signalof thespectrais calculatedas
follows:

tj �
Xnspec

i�1

Di;j �10�

D standsfor the original (i.e. unsplit) datasetwith nspecspectra.
The contribution matrix C is definedasfollows:

C � �cA cB cC� �11�

C hasa row for eachspectrum andthreecolumns.The scaledcontributionsCscaledarecalculatedas
follows. The contribution profiles in C needto be scaledin sucha way that they reproduce t, as
expressed by the following relation:

Cx � t �12�

The unknownx canbe calculatedasfollows:

x � C�t �13�

The properly scaledcontribution profilesin Cscaled cannow be calculatedasfollows:

Cscaled� Cdiag(x) �14�

wherediag(x) standsfor a diagonalmatrix with the threeelementsof x.
With thesescaledcontributionsthespectra canbecalculatedby standard leastsquaresprocedures

from the original datamatrix (i.e. the matrix before splitting):

PT � Cscaled�D �15�

whereCscaled� standsfor the pseudoinverseof Cscaled.
Thecontributionsin Cscaledarebasedon idealexponential profiles.In orderto seehow well these

profilesmatchtheoriginal data,theprojection of Cscaledin theoriginal datais calculatedasfollows:

Cprojected� D(PT�� �16�

Thecombined plots of Cscaled andCprojectedprovidea goodvisual diagnostic tool. Fromtheresolved
datathe original datasetcanbe reconstructed:

Dreconstructed� CprojectedP�: �17�
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Therelative root of sumsquaresof difference(RRSSQ)between thetwo datasetscanbecalculated
asfollows:

RRSSQ�

�����������������������������������������������������Pnspec

i�1

Pnvar

j�1
�di;j ÿ dreconstructed

i;j �2

Pnspec

i�1

Pnvar

j�1
d2

i;j

vuuuuuut �18�

2.1.3.Data analysis. For the dataanalysis,MATLAB software(v. 5⋅2) wasused(The MathWorks,
Natick, MA). Thecomputerconfiguration is a 266MHz Pentiumprocessorwith 128MB RAM.

2.2. Kinetics of chemical reactionsusingMIR spectroscopy

2.2.1.First-order reaction. The reactionstudied involves the formation of an aromaticdiazonium
salt from a primary aromaticaminewith sodium nitrite in aqueous mineral acid asfollows:

The diazonium reaction wasrun in a 500ml jacketedvessel equippedwith a mechanical stirrer
set to stir at 300 rpm. The starting amine was dissolved in aqueous mineral acid and cooled to
10 °C. A concentratedsodium nitrite/watersolution wasaddedover 20min. The reactionwasstir-
red for a total of 50min. The diazonium productwas then usedimmediately to form other pro-
ducts, which are not part of this discussion.The reaction is a second-order reaction; however,
sincethe sodium nitrite wasin excess, the reactioncanbe consideredasa pseudo-first-order reac-
tion.

The diazonium salt formation was monitored in situ using Fourier transform infrared (FTIR)
spectroscopy.The FTIR instrument was a BomemMB-100 equippedwith an MCT detector and
Axiom DP-210 immersionprobe with an AMTIR ATR reflection element. Data collection was
performedusing BomemGRAMS/386softwarein the kineticsmode.Datawerecollected over the
50min reactiontime at the rate of one spectrum per minute. Thirty-two FTIR scansof 4 cm71

resolution wereaveragedover each60s scanperiod.

2.2.2.First-order reaction with intermediate. The reaction involves the formation of a six-mem-
beredheterocycle via the reactionof thiocarbohydrazidewith a �-chloro aliphatic ketone.The re-
actionproceedsthrougha non-isolatedintermediate not shownhere.The reactionis asfollows:
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The reaction was run in a 500ml jacketed vessel equippedwith a mechanicalstirrer set to stir
at 300 rpm. The startingcarbohydrazide wasmixed with the methanol/propyl acetate and formed
an insoluble slurry. The starting ketonewasaddedto this mixture and dissolved completely.The
ketonematerial wasin excess.As a result, the second-order reaction canbe considered asa pseu-
do-first-order reaction.The reactionmixture wasthenwarmed moderately andstirred for over 1 h
beforethe product wasisolated.

The reactionwas monitored in situ using Fourier transform infrared (FTIR) spectroscopy.The
FTIR instrument andcollection parameterswerethesameasfor thediazonium reaction.Datawere
collected over the entire reactiontime at the rate of one spectrum per minute at a resolution of
4 cm71.

2.3. Proton relaxationin solid stateNMR

For a completedescription of this study, seeReference[13]. Many organic solidscancrystallize in
more than one crystal structure, a behaviorknown as polymorphism. Polymorphs differ in their
solubility, color andmany other physical,chemicalandmechanical properties that arekey to their
endusein the pharmaceutical or materialssciences.The ability to detectthe presenceof different
polymorphsin a sample,assaytheir relativeamount andultimately obtainthe desiredform in very
high yield arekey issuesin chemicaltechnology.

Protonrelaxation maybeusedto discriminate unique components(or phases)in a solid. Because
theypossessdifferentcrystal structures,polymorphsmayexhibit differentrelaxationbehaviorcaused
by variedmolecular ordering. Sincethereis fastspindiffusion in thesolidstate,all protonsin agiven
phasewill exhibit thesamerelaxationratedeterminedby thefastest-relaxingprotons,usuallymethyl
groups. Therefore the spectraof separate crystalline phases canin principle be resolved. The spin–
latticerelaxation rateT1 maybemeasured,or T1-edited spectraacquired, usinganinversionrecovery
cross-polarization/magic angle spinning (IR-CP/MAS) experiment [14]. In this experiment the
protonson the molecule are excited using an inversion recoveryscheme;then magnetization is
transferredto carbonnucleiandthe13C NMR spectrumis acquired. A delayperiod� is variedin the
experimentanda separatespectrum for each� valueis acquired. Eachspectrum is thenaddedto a
spectrum acquired underthe condition where � = 0. The relationship between � and the acquired
signalis exponential andis given below (k is a constant):

S� ÿkeÿ�=T1 �19�

Hencefor long � valuesthe signal approacheszero.
TheNMR spectrawereobtainedonaChemagneticsCMX 300solidstateNMR spectrometerusing

Spinsight2.5 software. Two polymorphs (type I and type III) of the structure shownbelow were
mixed in a 1:1 ratio:
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Ten13C CP/MAS spectrawerecollectedfor valuesof � rangingfrom 0⋅2 to 3⋅8 s in incrementsof
0⋅4 ns.Eachspectrum contained2048realdatapoints.The signof thespectrawasinvertedandthe
data set was split into two: spectra1–9 and spectra2–10. DECRA requires that the numberof
componentsbedefinedprior to analysis.Because theanalysis is sofast,typically a few secondsfor a
data set this size, it is no problem to try severalpermutations of spectral rangeand numberof
components. For this datasetwe tried both two andthreecomponents.

3. RESULTS AND DISCUSSION

3.1. Effectof the shift

In orderto determine thebestway to split thedatasetinto two parts,ten replicateUV-vis dataof a
chemicalreaction wereanalyzedby Bijlsma etal. [8] in orderto determine thekinetics.Thereaction
constants,whichcanbederiveddirectly from theeigenvalues, werecalculatedfor all thedatasetsasa
functionof theshift. Thestandard deviationof thereaction constantswascalculated,resulting from
separateanalysesof thedatasetsfor differentshifts. It appearedthattheoptimal shift, in termsof the
minimal standarddeviationfor thereaction constants,was30[8]. However, whenthediagnostic was
basedonsimilarity of thereferencespectrawith theextractedspectra,ashift of oneappearedto give
the bestresults[4].

In orderto understand theapparentdiscrepancyin theseresults,thedatasetswerestudied in more
detail.It appearedthattheDECRAresults wereslightly betterwhen abaselinecorrection wasapplied
[4]. Knowing thatapositivenoisy baselineproblemis basically alwayspresentin thedata, becauseof
sourcessuchaselectronicnoise,asimplemodelwasgeneratedby addingapositivenoisebaselineto
anexponential. The exponential

y� eÿbx �20�

wascalculatedfor x valuesrangingfrom 0 to 40,with b = 0⋅1. Randomuniformly distributednoise r
with valuesbetween 0 and0⋅001wasadded:

y� � y� r �21�

wherey* standsfor anexponential function with theaddednoise. Theexponential decayvaluesfor
different y* shifts� wereestimatedasfollows:
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b� � 1
�

log
y�Ty��
y�T� y��

� �
�22�

This estimate is reasonable,becauseif thereis no noise,b� = b andcorresponds to the DECRA
estimate for univariatedata.Furthermore,thedecayvaluescalculatedby theexponential ratiomodel
in Equation(22)werecomparedwith thedecayvaluescalculatedfrom theeigenvaluesresultingfrom
solving the generalized eigenvectorproblemfor the samedatasets.It appeared that thedifferences
between the valueswere in the order of the machineprecision, thus for all practicalpurposesthe
resultswereidentical. Theuseof Equation(22) asa simplified modelof thecalculationsallows the
exploration of Taylor seriesto obtaina betterunderstanding of the effect of the shift.

The shift � was varied from 1 to 20. The calculations were repeated 1000 times for newly
generatednoise distributions.The two exponentials y* andy�� areof thesame size, i.e. 20 elements,
but shiftedwith respectto eachother.This is different from theway actualdatasetsaresplit up for
DECRA, where increasingshift valueswill result in smaller data sets. In order to simplify the
comparisonof exponentialsfor differentshift values,thesizeof therangeis keptconstant. Simulation
studiesshowed that the behaviors of the exponentials, as will be discussedbelow, are basically
identicalfor exponentialswith aconstantnumberof elementsandexponentialswith differentlengths
occurring in practicalsituations.

Onemaywonder if this simplemodel properly representsthecalculationsto solve thegeneralized
eigenvector problemwhen noiseis present. A betterchoicewould besimulateddatasetswith more
thanonecomponent. This wasnot assimpleasit might seem.For example, a simplenoisy positive
baselineaddedto asimulatedthree-componentdatasethasthesameeffectasaddinganoisybaseline
with anaverageof zero,sincethere is alreadya constantcontribution in thedataset(theexponential
with decayvaluezero;seeEquation(9)). Determinationof theproperbaselinemodel is thereforea
complicated and time-consuming matter that falls outside the scopeof this application study.
Furthermore, for real datasetsthe effect may be different for different components.Oneresolved
componentmaybe heavily affectedby theshift while another is basically unaffected.Therefore an
attemptwasmade to simplify theprobleminto oneof anexponential model.In Figures1(a)and1(b)
themeanvaluesandthestandard deviationsfor b� areplotted.As canbeseen,thebestvaluefor the
decayconstant, basedon the meanvalues,is obtained whenthe shift � = 1. On the otherhand,the
bestvaluebasedon the minimal standard deviationvalueis for shift � = 8. This simple simulation
showsvariancebehavior similar to thatreported by Bijlsmaetal. [8]. In orderto betterunderstandthe
variancepropertiesof thisestimator of b, weattemptedto deriveanexactexpressionfor thevariance.
It turnedout to beintractable.A first-orderapproximationto thevariancewasderived,andit showed
non-monotonic behaviorof thevariance asa functionof theshift. This approximationdid not agree
well with thesimulation, indicatingthathigher-orderapproximationsarenecessary.Nevertheless,the
complexity of the first-orderapproximation suggeststhat the dependenceof the variance on � is a
complicatedone.

More importantly, however, is theissueof what shift to usein everydaypractice.As statedabove,
no theoretical guidanceis availableat this time. Practicalexperienceandsimulationsprovidesome
guidance.However, to correctly interpretthem,it is importantto realizethatvariability is only partof
theissue.We must considerbiasaswell. Meansquareerror (MSE) is acommonly acceptedmeasure
of the overall accuracyof an estimator,andit takesbothbiasandvariance into account:

MSE� E��b̂ÿ b�2� � bias2�b̂� � var�b̂� �23�

whereE[ ] standsfor the expectedvalueand b̂ is the estimator of b. Therearemanyexamplesof
estimators that arebiasedyet havesmallerMSEs than their unbiasedcounterparts. PLS andridge
regression arewell-knownexamples.
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Figure 1(c) showsthe bias for the simulation example. It increasesin magnitudeas the shift
increases.This is largelydueto thefact thattheaddednoiseis positive.Offsetting theincreasedbias
is decreasedvariance (standard deviation). Putting both together as(root) meansquare error shows
thatshift � = 1 is thebestchoicein termsof overallaccuracy(Figure1(d)).This is in concert with our
practicalexperience.DECRA is usedasaroutinetool for PGSENMR spectra. By now,morethan70
differentdatasetsresultingfrom awidevariety of problemshavebeenanalyzed, andtheresultswere
always,with notasingleexception,thebestfor ashift of one.Thequality of theresultswasevaluated
by an experienced spectroscopist (B. Antalek) by comparing the resolved results with known
referencespectra (if available), known properties of spectra(even if reference spectraare not
available, ‘typical’ peaksareoftenknown, soit is possibleto judgethequality of theresolved results
asfar asoverlapis concerned, etc.)andtheoccurrenceof negativeintensities in spectra.Next to the
PGSENMR spectra, wehaveexperiencewith MRIs, MIR, NIR andsolid stateNMR spectra.Again,
with no exception, a shift of onegives the bestresults.

3.2. Kinetics of chemical reactionsusingMIR spectroscopy

3.2.1.First-order reaction. The first few spectraof the datasetweredeleted from the analysis be-
causeof problems with them,which were probably causedby incompletemixing. Also, the results
of the DECRA analysis werebetterwhenthe spectra at the endof the reactionandafter comple-
tion of the reactionwerenot included in the dataanalysis. In thediscussion below thefirst andlast

Figure1. Resultsof a simulationstudyto determinethe effect of shift.
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spectrarefer to the datasetusedfor the dataanalysis. Because of the speedof the DECRA analy-
sis, the proper datato analyze canbedetermined interactively within 1 min.

Figure2 showstheresultsfrom theDECRAanalysisfor thediazoniumreaction.Thefirst spectrum
(a) is representative of the startingmaterial,but contains some contribution from the product as
indicatedby the arrows. Spectrum (b), while not a referencespectrum, is representative of the
product. No referencespectrumof this componentis available, sincethe material wasnot isolated.
The DECRA-resolved spectraarepresented in (c) and (d). It is evidentthat the DECRA-resolved
spectrum (d) very closely matches the corresponding spectrumfor the product (b). The resolved
spectrum (c) veryclosely matches thatof thestartingmaterial (a),but thecontributionof theproduct
(indicatedwith arrowsin (a)) is negligible,whichconfirmsthatthespectrum in (c) representsthepure
startingmaterial. Of most significanceis thepresenceof theabsorptionbandat2239cm71 in spectra
(b) and (d), which is indicative of the diazonium � N�2 � functionality and therefore product
formation.

Theexponential contributionprofilesof thestarting material andproductaregivenin Figures2(e)
and2(f). Theseprofilesareconsistentwith theintensity changesseenfor individualabsorptionbands
for the reaction.Furthermore, these resultsare similar to thoseseenwith SIMPLISMA [15–17]
analysis of the dataset.

Figure2. Thefirst andlastspectraof thedatasetarepresentedin (a)and(b). Theresolvedspectraarepresented
in (c), which representsthestartingmaterial,and(d), which representstheproduct.Thepresenceof theproduct
in the first spectrumis indicatedby arrows.The exponentialcontributionprofilesof the startingmaterialand
productaregiven in (e) and(f), wherethe curvesrepresenttheexactcalculatedexponentialprofiles(Equation

(14)) andthe asterisksrepresentthe projecteddatapoints(Equation(16)).
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In Figure 3 the resolved profiles are plotted again,together with their sum and the total signal
intensity of thedataset.A closematchbetweenthe latter two profilesis confirmedby thevery low
RRSSQ(Equation (18)) valuegiven in the figurecaption.

3.2.2. First-order reaction with intermediate. The proper seriesof spectrato analyze was deter-
minedinteractivelyasdescribed above.

Figure4 showsthedatafrom theDECRAexperimentfor theheterocyclic reaction.Spectrum(a) is
the first spectrum of the datasetandis a goodreferenceof the startingketone.Spectrum(b) is the
eleventhspectrum of thedataset, atwhichpoint theintermediateis at its highestcontribution.While
representativeof the intermediate, therearealsominor contributionsfrom the product andstarting
ketone.Spectrum(c) is thelastspectrum of thedatasetandis representativeof theproduct. Spectrum
(g) is a referencespectrumof theproduct.TheDECRA-resolvedspectraarepresentedin (d)–(f). It is
evidentthattheDECRA-resolvedspectrum(d) very closelymatchesthecorrespondingspectrum for
theketonestarting material (a),andtheresolved spectrum (e) thatof theintermediate(b), evenwith
the tracepresenceof other componentsin (b). Also, resolvedspectrum (f) comparesfavorably with
the reactionproductspectrum (g). However, it is apparentthat spectrum (f) hassome problems:
slightly negativeabsorbencies(setto zeroin thefigure)arepresentacrosstheentirespectrum. This is
an indication that the spectralmixture datadeviatesomewhatfrom the ideal exponential mixture.
Closeexaminationof thesebandsshowsthattheyhaveacontributionfrom theintermediatespectrum
(e) andlikely result from the fact that this componenthasan extremely high absorptivity. Evenso,
spectrum (f) is sufficiently resolved such that the major absorption bands can be identified.
Furthermore, it is clear that these bandsmatchup well with thosein the referencespectrum of the
product(g).

It shouldbenotedherethatwhile thestrongmethanol bandat 1040cm71 hasbeendeleted from
thedataset,othermethanol bandsarestill present.Thesecanbeseenbetween 1350and1450cm71

in spectra(a), (c) and(d) andarelessapparentin (b), (e)and(f). In theproduct referencespectrum (g),
methanol hasbeenspectrally subtractedout.

Theexponential contributionprofilesof thestartingmaterial, intermediateandproduct aregivenin
(h)–(j). Theserepresent the kinetic behavior of eachcomponentover the course of the reaction, as
determinedby DECRA. Theseprofilesareconsistentwith thoseobtainedfrom SIMPLISMA [15–17]
analysisof the dataset.

Figure3.Thestarting(—) andproduct(---) profilesarepresentedagain,togetherwith theirsum(—) andthetotal
signalof the dataset(---). TheRRSSQis 0⋅0069838.
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Figure5 showshow well thesumof theresolved contribution profilesmatchesthe total signalof
the original dataset.

3.3. Solid stateNMR dataanalysis

Figure6 shows a portion of the datasetaswell asthe results of DECRA comparedwith reference
spectra. As canbeseenin Figures6(a)and6(b),changes areobservedin thespectraasa function of
the � value; note the changein the vertical scale.Some of the peaksdecay(or havecompletely
disappeared) with respect to the others.DECRA analysisusingtwo components providestwo very
different spectra. Theseareshownin Figures6(c) and6(d). Referencespectrafor comparisonare
shownin Figures6(e)and6(f) andaretypes I andIII respectively.Analysis using threecomponents
providestwo spectrathat are identical to those of the two-componentanalysis, as well as a third
spectrum consisting of only noise. This indicatesthat thereareonly two componentspresent(based
on T1). The similarity between the resolved spectraandthe referencespectrais excellent.

Theresolved T1 valuesfor type I andtype III formsare1⋅16 and7⋅18s. SeparateT1 experiments
were not performed,but as a check we determinedT1 values directly from two well-resolved

Figure4. The first, eleventhandlast spectraof the datasetarepresentedin (a)–(c).The resolvedspectraare
presentedin (d), which representsthestartingmaterial,(e), which representsthe intermediateproduct,and(f),
which representstheproduct.Spectrum(g) is a referencespectrumof theproduct.Theexponentialcontribution
profilesof the startingmaterial,intermediateandproductaregiven in (h)–(j), wherethe curvesrepresentthe
exactexponentialprofiles(Equation(14)) andtheasterisksrepresenttheprojecteddatapoints(Equation(16)).
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Figure5. Thestarting(—), intermediate(---) andproduct(......)profilesarepresentedagain,togetherwith their
sum(—) andthe total signalof the dataset(---). TheRRSSQis 0⋅011896.

Figure6. Thefirst andlastspectraof thedatasetarepresentedin (a)and(b). Theresolvedspectraarepresented
in (c), which representsthe starting material, and (d), which representsthe product.Referencespectraare
presentedin (e) and(f). Thecorrelationcoefficientsof theresolvedcomponentswith themodelspectraare0⋅93
and0⋅92 respectively.Theexponentialcontributionprofilesof thestartingmaterialandproductaregivenin (g)
and(h), wherethecurvesrepresenttheexactexponentialprofiles(Equation(14)) andtheasterisksrepresentthe

projecteddatapoints(Equation(16)).
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resonances in the dataset.For the resonances at 13⋅7 and12⋅3 ppm we obtain valuesof 1⋅36 and
6⋅13s respectively for T1.

Figure7 shows how well the resolved results reproduce the original data. It canbe seenthat the
match is not as closeas with the other examples shown. The resolved spectra in Figure 6 show,
however, that DECRA resolved the mixture datasuccessfully.

4. CONCLUDING REMARKS

TheresultsaboveshowedthatDECRA canbeusedto study chemicalreactionsmonitoredby MIR. It
is important for DECRA that the data do not deviate significantly from the trilinear model. An
interactive processis necessary to determine theproper seriesof spectrato analyze.Futureresearch
will focus on the automateddetermination of the proper part of the dataset to analyze.It is also
noteworthy that the dataanalysisimprovedwhenthe solventpeakwasdeleted, for reasonsthat are
notclear.Whereasthesolventpeakis basically constant,it doesnotaddto therankof thedataset,and
onewouldexpectto obtainresolvedcomponentsintermixedwith thesolvent.A possible reasonmay
besome effectson thesolventpeak,suchaspeakbroadening.Preprocessingthis typeof datais an
importantsubject for future research.

In orderto resolve thedatasetsproperly, it is importantto know thestartingtime for thereaction,
sincedifferentstartingpointswill resultin differentcontribution profilesfor Equations(3)–(5). This
is not alwaystrivial, becauseof mixing problems, etc.

It alsohasto benoted thatit is not clearfrom theDECRA resultswhichoneof theresulting decay
constants is k1 andwhich is k2. This needseither to be known, or to be judged from the resolved
spectraresultingfrom Equation(15). Whenthedecayconstantsareexchanged,theresulting spectra
often exhibit unrealistic features,suchasnegative intensities.

ThesolidstateNMR applicationof DECRA wasstraightforwardandwithout problems.As canbe
seenin Figure7, thereconstructedtotal signalandtheoriginal total signaldonotmatchascloselyas
for theMIR data,althoughthe resolved spectrahaveanexcellentmatchwith the referencespectra.

Thestudy of theeffectof theshift waslimit edanda simplified model wasused.A more thorough
understandingof this issueis an opentopic for further research.

Figure7.Thestarting(—) andproduct(---) profilesarepresentedagain,togetherwith theirsum(—) andthetotal
signalof the dataset(---). The RRSSQis 0⋅12491.
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