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Abstract

Despite the use of hyphenated andror high-resolution instruments in analytical spectroscopy, the resulting spectral data
often represent mixtures of several components. When no reference data in the form of reference spectra or concentration
profiles are available, self-modeling mixture analysis techniques can be utilized to obtain the spectra of the pure components
and their concentration profiles. There are many different algorithms to resolve mixture spectra, and the mathematical proce-
dures involved are not always simple. This paper will discuss some of the aspects and problems of self-modeling mixture
analysis, with the focus on the three-way method and without going into the mathematical details. Practical examples will be
shown of methods applied to nuclear magnetic resonance data. The techniques discussed can also be applied to magnetic
resonance images and an example will be shown of the human brain. q 1999 Elsevier Science B.V. All rights reserved.

Ž . Ž . Ž .Keywords: Generalized rank annihilation method GRAM ; Nuclear magnetic resonance NMR ; Magnetic resonance imaging MRI ; Ex-
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1. Introduction

1.1. Self-modeling mixture analysis

The goal of self-modeling mixture analysis is to
resolve mixture data in terms of spectra of the pure

Ž .components and their contributions ‘concentrations’
in the original spectra without using reference data.

In order to demonstrate the principles of self-
modeling mixture analysis, a simulated mixture is
created by combining the two spectra of pure com-
ponents labeled in Fig. 1 as spectrum 1 and spec-
trum 2. The first mixture spectrum, labeled as mix-
ture 1, is created by taking a contribution of 1 part
of spectrum 1 and a contribution of 0.50 part of

Žspectrum 2 these numbers are listed in the table in
Fig. 1 on the first line in the columns under spec-

.trum 1 and spectrum 2 . Similarly, mixture 2 is

created by taking a contribution of 1 part of spec-
trum 1 and a contribution of 1 part of spectrum 2.
Mixture 3 is created by taking a contribution of 0.5
part of spectrum 1 and a contribution of 1 part of
spectrum 2.

The task of self-modeling mixture analysis is the
following: given only mixture 1, 2, and 3 calculate
the pure spectra and their contributions.

A valid solution is, of course, spectrum 1 and
spectrum 2 as the pure component spectra, with con-
tributions as listed. However, another valid solution
is spectrum 3 and spectrum 4 as pure component
spectra with the contributions listed in the table in

ŽFig. 1 rows 1–3 of the columns under spectrum 3
.and spectrum 4 . In fact, an infinite number of solu-

tions are possible to resolve mixture 1, 2, and 3 into
pure component spectra and their contributions. The
question now is how to find the right ‘chemical’ so-
lution from the infinite number of ‘mathematical’ so-

Fig. 1. Diagram representing the principle of self-modeling mixture analysis.
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lutions. This is the subject of self-modeling mixture
w xanalysis. For overview and review articles see 1–4 .

The methods used in the area of self-modeling
mixture analysis to resolve mixtures are all based on
the use of mathematical constraints. A widely used
constraint is that spectra and their contributions
should be positive. This alone is not enough to reach

Ža single solution, as is demonstrated in Fig. 1 both
.solutions are positive . An additional constraint may

be that each pure component spectrum has only one
peak. In this case the spectrum 1 and spectrum 2
solution would be found. Another constraint is the
presence of a pure peak for every pure component
spectrum. In other words, each pure component spec-
trum has a peak where all the other pure components
do not have a peak. In this case, the spectrum 1 and
spectrum 2 solution would be found again. Restric-
tions can also be applied to the contributions.

1.2. Self-modeling mixture analysis by the three-way
method

Although the use of constraints is a powerful tool
to resolve mixtures of unknown composition, the so-
lution is only as valid as the constraint and is there-
fore not unique. However, it is possible to obtain a
unique solution from two data sets, which have a

w xproportional relationship 5–9 . In Fig. 1, a second
mixture data set is presented as mixture 4, 5, and 6.
This data set has a proportional relation with the data
set presented by mixture 1, 2, and 3. The propor-
tionality of two data sets means that the resolved
spectra are identical, but the contributions for the
components differ by a scale factor. The contribu-

Žtions of spectrum 1 in the first mixture data set 1,
.1, 0.5 is proportional to the contributions of spec-

Ž .trum 1 in the second mixture data set 1, 1, 0.5 with
a ratio between the contributions of one. The contri-
butions of spectrum 2 in the first mixture data set
Ž .0.5, 1, 1 are proportional to the contributions of

Ž .spectrum 2 in the second mixture data 0.25, 0.5, 0.5
set with a ratio of 2.

As with the first mixture data set, there are an in-
finite amount of solutions possible to resolve the sec-
ond data set. However, if the two data sets have a
proportional relation only the correct solution will
show the proportionality. This is demonstrated in Fig.
1. The proper solution of the two mixtures with the

pure spectra 1 and 2 shows the proportionality, but
the solution with pure component spectra 3 and 4
does not show the proportional behavior of the re-
solved contributions. It can be proven mathemati-
cally that the proportionality is only preserved in one
solution. As a consequence, when two proportional
data sets are available, resolving them simultane-
ously with the restriction that the resolved contribu-
tions must be proportional, will lead to the correct
solution. This problem can be solved as the general-

w xized eigenproblem 7 .
When a single spectral data set is analyzed, each

spectrum is stored as a vector. A set of spectra are
stored in a matrix, where each row represents a spec-
trum. A vector is a one-way array, and a matrix is a
two-way array. When two spectral mixtures are ana-
lyzed, the data is present in two matrices that form a
‘cube’ of data and is called a three-way array. As a
consequence, the methods to resolve several data sets

w xsimultaneously are called three-way methods 10 .
Summarizing: a single mixture data set can be re-

solved in an infinite number of ways. Mathematical
constraints can be used to approach the proper solu-
tion, but ambiguities will remain.

Two data sets with a proportional relationship can
be stated as the generalized eigenvalue problem and
the solution is unique.

In order to obtain two data sets with a propor-
tional relationship, one needs, in general, two experi-

Ž .ments: a one can analyze two samples with the re-
Ž .quired proportional relationship or b one can ana-

lyze one sample under two different conditions.
Ž .As an example of a one can think of the analysis

of two samples with the same components, but dif-
ferent compositions by a method such as LCrUV
Ž .liquid chromatographyrultraviolet spectrometry
w x11,12 . Generalized eigen analysis is often applied
there for calibration purposes, using one sample with
a known composition in combination with a sample
with an unknown composition. The algorithm to per-

Žform this task is known as GRAM generalized rank
. w xannihilation method 8,9 . Problems arise because

the resulting data is often not exactly proportional.
This may be due to, for example, slight shifts in re-
tention time in the case of chromatography. An ex-

Ž .ample of b is fluorescence spectroscopy using dif-
ferent modulation frequencies, where successful ap-

w xplications have been reported 13 .
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Ž . Ž .Fig. 2. Original spectra of the gelatin 10% wrw and surfactant 0.2% wrw mixtures. A ‘typical’ gelatin peak and surfactant peak are
indicated by a ‘G’ and ‘S’, respectively.

1.3. ResolÕing mixture data with exponentially de-
caying contribution profiles

We recently developed a method to resolve a sin-
gle data set with an exponential profile unambigu-
ously solving the generalized eigenvalue problem
w x14,15 . Before discussing the mathematical principle
of the procedure, we will first introduce the problem
that led to our work.

Ž .Using nuclear magnetic resonance NMR spec-
troscopy, it is possible to generate a series of spectra
of mixtures, where the contribution of each of the
components decays with an exponential profile. This

Ž .is the so-called pulsed gradient spin echo PGSE
NMR experiment. The decay of the exponential is a
function of the diffusion coefficient of the compo-
nent. In Fig. 2 a series of overlaid spectra is shown
with two components: 10% wrw gelatin and 0.2%

Ž . Ž . Ž .Fig. 3. Regular plot of the intensities of the a gelatin and c surfactant intensities and of the logarithm of the intensities of the b gelatin
Ž .and d surfactant. Intensities were taken from the peaks indicated in Fig. 2.
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wrw surfactant in water. Resonances downfield of
Ž .4.5 ppm including water have been excluded from

the spectral region displayed. As can be seen in the
overlay plot, the differences between the spectra are
minimal. The spectrum is dominated by gelatin. A
‘typical’ gelatin and surfactant peak are indicated by
arrows and plotted in Fig. 2. The peak used for the
surfactant has a significant overlap with the gelatin.

In Fig. 3, intensities of the ‘typical’ gelatin and
surfactant peaks are plotted on a linear scale and a
logarithmic scale. Since exponential functions should
be linear on a logarithmic scale, this is a convenient
way to check whether profiles are exponential. The
decay of the logarithmic plot of gelatin clearly shows
an exponential behavior. The faster decaying surfac-
tant, however, clearly shows a behavior that is not
exponential; a significant deviation from a linear be-
havior can be observed in the logarithmic plot. This
is due to a high overlap of the surfactant and the
gelatin spectra.

The goal of an analysis such as described above is
Ž .two-fold: a determination of diffusion coefficients

Ž .and b resolve the mixture. For practical problems,
appropriate reference spectra are generally not avail-
able for all the components, so that the contribution
profiles cannot be determined. Even in cases where
reference materials are available, the behavior in ac-
tual mixtures may be different because of physical or
chemical changes such as the formation of micelles.
Since the determination of the diffusion coefficient is
a quantitative problem, self-modeling mixture analy-
sis of this data set is of limited value, because of the
ambiguities in the solution.

In order to obtain a unique solution, proportional
data sets are required. At this point the exponential
character of the decaying contributions appear to be
the key to an unambiguous solution for this mixture
problem. This will be demonstrated in Table 1. Un-

der D, two exponential decays are listed. This is rep-
resentative for the contribution profiles of a data set
containing two components, such as the one under
discussion. As a next step, D will be split in two
Ž .overlapping parts. Under A, the first three rows of
D are listed and under B the last three rows of D are
listed. It can be seen now, that the first column under
A is proportional to the first column under B, the only
difference is a scale factor of 3. The second column
under A is proportional to the second column under
B, the difference is a scale factor of 2. This means
that when a data set is available in which the compo-
nents have contribution profiles of an exponential
character, the data set can be split into two data sets
with an proportional character, and can thus be re-
solved unambiguously! This application is called

ŽDECRA direct exponential curve resolution algo-
.rithm , and has been applied successfully to NMR

w x Ž .spectra 14,15 and magnetic resonance MR images
w x16,17 .

Summarizing: a mixture data set in which the con-
tribution profiles of the components are an exponen-
tial decay, can be split into two proportional data sets.
The simultaneous resolution of the two data sets with
the requirement to obtain a proportional solution will
result into the resolution of the exponential decays.

2. Experimental

2.1. Instrumental analysis

The spectroscopy measurements were carried out
Ž .on a Varian Palo Alto, CA Inova 400WB spec-

trometer operating at a 1H frequency of 399.9 MHz
and equipped with a standard pulsed field gradient
Ž .PFG accessory. Three types of mixtures were ana-

Žlyzed. The first is a series of gelatin deionized East-

Table 1
Model for data set D with exponential decays, and how it can be split into the proportional data sets A and B

D A B

Component 1 Component 2 Component 1 Component 2 Component 1 Component 2

27 8 27 8 9 4
9 4 9 4 3 2
3 2 3 2 1 1
1 1
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.man Gelatin, Peabody, MA solutions containing a
Ž Ž . wnonionic surfactant di-C5-Glu, C H C CH -5 11 2 2

Ž . x .NHCO CHOH CH OH , Eastman Kodak, UK .4 2 2

The solutions contain a fixed surfactant concentra-
tion of 0.2% wrw and a varied gelatin concentration
ranging from 2 to 10% wrw. Samples were made
with D O and experiments were performed at 458C.2

The second mixture examined is a CDCl solution of3
Ž . Ž .toluene 5 mgrml and dibutylphthalate 5 mgrml .

Ž .The third is a CDCl solution of toluene 5 mgrml3
Ž .and tri-p-tolylphosphine 5 mgrml . All deuterated

compounds were obtained from Cambridge Isotope
Ž .Laboratories, Andover, MA and others from

Ž .Aldrich Milwaukee, WI .
The PGSE NMR experiment was used to acquire

the data. PGSE NMR is an established NMR method
for obtaining diffusion coefficients of components in
solution and involves the application of pulsed mag-
netic field gradients within a spin echo pulse se-

w xquence 18 . By varying the appropriate parameters in
the experiment, one can establish an exponential re-
lationship between the diffusion coefficient of the
components in solution with the acquired signal. The
signals from the faster moving components decay at
a faster rate than the slower ones. The fact that this
relationship is an exponential function is very impor-
tant and plays a key role in the mathematical proce-
dure for data analysis. Generally, 16 spectra are ac-
quired to accommodate the range of exponential de-
cays. Typical gradient strengths used were between 0
and 30 Grcm and typical pulse lengths were from 0.5
to 2 ms. Each spectra contained 8192 real data points.

ŽMR images were acquired on a GE Signa, GE
.Medical Systems, Milwaukee, WI 1.5 T whole body

imager employing a standard single-slice, single-
w xecho, spin-echo pulse sequence 19 and a quadrature

birdcage style RF head coil was used to acquire axial
magnetic resonance images of the brain. The image

Ž . Ž . Ž .Fig. 4. Regular plot of the resolved contributions of a gelatin and c surfactant and of the logarithm of the resolved contributions of b
Ž .gelatin and d surfactant.
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plane passed through the head of the age 42 years,
healthy male volunteer at the level of the lateral ven-
tricles. A set of 14 images were acquired in which the

Ž .echo time TE was varied between 15 and 210 ms
Ž .in 15 ms steps and the repetition time TR was held

constant at 1000 ms. This produced an effect similar
to the one described above in the PGSE NMR exper-
iment. Here, the relationship between TE and the
signal of each individual component is an exponen-
tial that depends upon the component’s spin–spin re-

Ž .laxation time T . As the TE increases, the signal2

from each component decreases differentially de-
pending on the magnitude of T . From a semi-log plot2

of signal versus TE, the T for each component may2

be obtained. Each 24 cm field of view, 5 mm slice
thickness image was acquired with 256 phase encod-
ing steps to form a 256=256 pixel image. The mo-
tion of the volunteer was found to be minimal during
the course of data collection, so no attempt was made

to register the pixels within the series of correlated
brain images.

2.2. Data analysis

ŽFor the data analysis MATLAB software The
.MathWorks, Natich, MA was used. The computer

configuration is a 200 MHz Pentium Processor with
64 MB RAM. MATLAB functions used for process-

w xing the data are described elsewhere 16,17 . MAT-
w xLAB code is given in Ref. 15 .

Bi-exponential curve fitting is used for some of the
Ždata described in this paper. Kaleidagraph Synergy

.Software, Reading, PA was used for this purpose.
Ž .The DOSY diffusion ordered spectroscopy pro-

gram is incorporated in Varian’s VNMR software,
which is written in C q q and runs on a SUN
Sparc20 workstation.

Ž . Ž . Ž . Ž .Fig. 5. Resolved spectra: a gelatin, b surfactant, c reference spectrum of surfactant and d the extra component resulting from a three-
component resolution. The horizontal line represents a value of zero signal intensity.
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3. Results and discussion

3.1. Application of DECRA to PGSE NMR data

In order to apply this approach to the data set
shown in Fig. 2, we split the original file with 16
spectra into two files. The first file contains the spec-
tra 1 to 15, the second file contains the spectra 2 to
16. Contribution profiles for both data sets result from
the application of DECRA. In order to simplify the
results, the overlapping parts of the contribution pro-

Ž .files spectra 2 to 15 were averaged in order to cre-
ate a single contribution profile for each component.
As was shown before, the two overlapping parts are

w xvirtually identical 14–17 . The resulting contribu-
tion profiles are presented in Fig. 4. It is clear from
the logarithmic plots that the extracted profiles are
indeed exponential.

The resolved spectra are shown in Fig. 5. The re-
solved gelatin spectra looks very much like the origi-
nal data, because it is the dominant component. The
resolved surfactant spectrum shows high similarities
with the reference spectrum of pure surfactant. Con-

Žsidering the minor contribution of the surfactant the
weight contribution of the surfactant is 2% of the

.weight contribution of gelatin, refer to Fig. 2 , and the
almost complete overlap of the pure components the
results clearly show the feasibility of this technique
to resolve spectral data with exponentially decaying
contributions. When DECRA was applied to find
three components, the additional spectrum in Fig. 5d
was found. This ‘spectrum’ shows positive and nega-
tive intensities in the same range. This clearly shows
that only two components are present in the mixture.

3.2. Comparison DECRA and exponential fitting

The next experiment involves establishing the re-
lation between the concentration of gelatin and the
diffusion coefficient of the surfactant. The diffusion
coefficients were determined in a series of mixtures
of gelatin and surfactant, where the gelatin concen-
tration was varied for each mixture. The diffusion

Ž .coefficients were determined in two ways. a A bi-
exponential fitting procedure of integrated peak area
between 0.75 and 1.25 ppm. This region contains

Ž .signal from both gelatin and surfactant. b DECRA:
the results of both techniques were plotted as a func-

Fig. 6. Relation between gelatin concentration and diffusion coef-
ficient as determined by DECRA and a bi-exponential fitting pro-
cedure.

tion of the concentration of the gelatin and shown in
Fig. 6. Whereas the nonionic surfactant does not in-
teract with the gelatin via electrostatic means, one
expects a continuous relation. It is clear that the re-
sults of DECRA show a behavior that is continuous,
while the results of the bilinear exponential fitting
show a discontinuous behavior. A line is provided as
a guide for the eye.

3.3. Comparison between DOSY and DECRA

The next example shows the complimentary na-
Žture of DECRA with the DOSY diffusion ordered

.spectroscopy technique. In summary, DOSY calcu-
lates the diffusion coefficients for all the separate

Ž .variables ppm values , and displays them on a plot
of the diffusion coefficient versus ppm. There are
several methods for doing this and are described

w xelsewhere 20 . The simplest approach is based on the
assumption that each variable shows a single expo-

w xnential decay 21 . In addition to this, a confidence
interval is calculated and incorporated into the plot.
An example of a DOSY plot is given in Fig. 7 for a
series of spectra of a mixture of toluene and
dibutylphthalate in CDCL . The diffusion spectrum3

in the DOSY plot in Fig. 7 clearly shows the pres-
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Fig. 7. DOSY plot for a mixture of toluene and dibutylphthalate in CDCL . The x-axis represents the spectral ppm scale and the y-axis is a measure for the diffusion3

coefficients. The spectrum at the top represents the mean spectrum of the data set. The so called diffusion spectrum along the y-axis represents the distribution of diffusion
coefficients calculated. The three components are clearly separated.
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Fig. 8. DOSY plot for a mixture of tri-p-tolylphosphine and toluene in CDCL . This map is not able to separate the components, due to the overlapping spectral behavior. The3

hashed box represents the overlapped spectral region.
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ence of three components: the peak at 16.5=10y10

m2rs represents the pure peaks of dibutylphthalate
and the peak at 23.6=10y10 m2rs the pure peaks of
toluene and CDCL can be observed at 25.0=10y10

3

m2rs.
As was shown above, DOSY works well for mix-

ture spectra where the components are clearly sepa-
Žrated i.e., the assumption that each variable possess

.a single exponential value is valid . For mixtures
where there are overlapping spectral areas, however,
the DOSY plot seems to indicate more components
than are really present. In order to demonstrate this,
Fig. 8 shows a DOSY plot for a mixture of tri-p-
tolylphosphine and toluene in CDCL . Arrows indi-3

cate the ‘lines’ with pure peaks of tri-p-tolyl-
phosphine and toluene and an impurity of unknown
composition which is present in the tri-p-tolyl-
phosphine material. However, there is an area of
spectral overlap indicated in the hashed box. It is ob-
vious from this DOSY plot that it is impossible to

determine the number of components in the mixture.
High overlap is not a problem for DECRA, however.
The spectral region in the hashed box was analyzed
by DECRA, and the mixture could be resolved into

Žtwo components i.e., resolving it in more compo-
.nents resulted in noise spectra as in Fig. 4d . The re-

solved spectra and their and reference spectra are
given in Fig. 9.

3.4. Application of DECRA to MR images of the hu-
man brain

The exponential behavior utilized to resolve the
mixtures is certainly not limited to NMR diffusion
experiments. In the area of magnetic resonance imag-

Ž .ing MRI it is possible to create a series of MR im-
ages, where different structures in the brain have an
intensity that decreases by an exponential decay re-
lated to the T of that structure and DECRA has been2

Ž . Ž .Fig. 9. The resolved spectra of the region indicated by the hashed box in Fig. 8: a represents the first resolved spectrum, compare with c
Ž . Ž .reference spectrum of toluene; b represents the second resolved spectrum, compare with d reference spectrum of tri-p-tolylphosphine.
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w xapplied successfully 16,17 . As an example, three
images out of a T series of 14 images are shown in2

Fig. 10. These images show an exponentially decay-
ing behavior that is different for different parts of the
brain. The question now is if DECRA can be applied
to these images. For spectral analysis, each spectrum
is represented by an array, and a series of spectra
forms a matrix. For the DECRA algorithm we use two
matrices to resolve the mixture. For image analysis,
however, each single image forms by itself a matrix,
and a T series of images forms a series of matrices.2

As a consequence, a direct application of the DE-
CRA algorithm is not possible. There is a simple way
around this problem, however. Each image matrix is
reorganized in an array by taking the first row of the

matrix, append the second row of the matrix, etc., and
thus form an array representing the image. An image
of 256=256 pixels forms an array of 65 536 ele-
ments. Once an image is represented as an array it is
not different from the representation of spectra, and
we can then apply DECRA to images. The resulting
resolved ‘spectra’ need to be rearranged back into
matrices again in order to obtain images, but this is a
trivial procedure. The application of DECRA to the
images represented in Fig. 10 resulted in three re-
solved images, which are shown in the same figure.

Ž .The contribution profiles not shown are again of a
clear exponential character. This shows that DECRA
can be applied equally well to MR images. Again, the
number of components was very clear, extracting

Ž . Ž . Ž .Fig. 10. The images a , b , c represent images of the original data set and clearly show the decaying behavior in the intensities. Images
Ž . Ž . Ž .d , e and f represent the resolved images.
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more components resulted in images representing
noise. Although one has to be careful with the inter-
pretation of these resolved images in biological terms,
the resolved images seem to represent the following
features: the first resolved image is dominated by the
tissues around the skull, the second resolved image is
dominated by free water as indicated by the clear
presence of the cerebro-spinal fluid, and the third im-
age seems to be dominated by water within the brain
tissue.

4. Conclusion

The examples discussed in this paper have
demonstrated that the three-way method DECRA can
be used as a tool for the analysis of PGSE NMR data.
Furthermore, it could also be applied successfully to
MR images. DECRA is applied as a routine tool at
Eastman Kodak for chemical mixture analysis and to
determine diffusion coefficients. DECRA can also be
applied to other types of exponential by a simple

w xtransformation 16,17 . The high signal-to-noise data
of NMR spectroscopy plays an important role in the
success of these applications. Since an exponential is
a common feature in nature, the application of DE-
CRA in other areas can be expected.
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